Hierarchical features-based targeted aspect extraction from online reviews

With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad scope of the aspects of the various products makes this task overarching but challengi...

Full description

Saved in:
Bibliographic Details
Published inIntelligent data analysis Vol. 25; no. 1; pp. 205 - 223
Main Authors He, Jin, Li, Lei, Wang, Yan, Wu, Xindong
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2021
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1088-467X
1571-4128
DOI10.3233/IDA-194952

Cover

Abstract With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad scope of the aspects of the various products makes this task overarching but challenging. A commonly used solution is to modify the topic models with additional information to capture the features for a specific aspect (referred to as a targeted aspect). However, the existing topic models, either perform the full analysis to capture features as many as possible or estimate the similarity to capture features as coherent as possible, overlook the fine-grained semantic relations between the features, resulting in the captured features coarse and confusing. In this paper, we propose a novel Hierarchical Features-based Topic Model (HFTM) to extract targeted aspects from online reviews, then to capture the aspect-specific features. Specifically, our model can not only capture the direct features posing target-to-feature semantics but also capture the latent features posing feature-to-feature semantics. The experiments conducted on real-world datasets demonstrate that HFTMl outperforms the state-of-the-art baselines in terms of both aspect extraction and document classification.
AbstractList With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad scope of the aspects of the various products makes this task overarching but challenging. A commonly used solution is to modify the topic models with additional information to capture the features for a specific aspect (referred to as a targeted aspect). However, the existing topic models, either perform the full analysis to capture features as many as possible or estimate the similarity to capture features as coherent as possible, overlook the fine-grained semantic relations between the features, resulting in the captured features coarse and confusing. In this paper, we propose a novel Hierarchical Features-based Topic Model (HFTM) to extract targeted aspects from online reviews, then to capture the aspect-specific features. Specifically, our model can not only capture the direct features posing target-to-feature semantics but also capture the latent features posing feature-to-feature semantics. The experiments conducted on real-world datasets demonstrate that HFTMl outperforms the state-of-the-art baselines in terms of both aspect extraction and document classification.
Author He, Jin
Li, Lei
Wang, Yan
Wu, Xindong
Author_xml – sequence: 1
  givenname: Jin
  surname: He
  fullname: He, Jin
  organization: , Hefei, Anhui
– sequence: 2
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  email: lilei@hfut.edu.cn
  organization: , Hefei, Anhui
– sequence: 3
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: , Sydney
– sequence: 4
  givenname: Xindong
  surname: Wu
  fullname: Wu, Xindong
  organization: MiningLamp Academy of Sciences, Mininglamp Techonologies, Beijing
BookMark eNptkM1Lw0AQxRdRsK1e_AsCHgQhOvuR3c2x1I9WCl4UvIUxma0pbVJ3t37896ZEEKSneYffm5n3huywaRti7IzDlRRSXs9uxinPVZ6JAzbgmeGp4sIedhqsTZU2L8dsGMISAJQANWAP05o8-vKtLnGVOMK49RTSVwxUJRH9gmInMGyojAl9RY9lrNsmcb5dJ22zqhtKPH3U9BlO2JHDVaDT3zliz3e3T5NpOn-8n03G87QUOY-pM1obAKm1Rk62yqyTKHPKeeYyJTShqFDk1iiOYF0lADQZk2ngoCQaOWLn_d6Nb9-3FGKxbLe-6U4WQtkMwHBjO-qyp0rfhuDJFRtfr9F_FxyKXVdF11XRd9XB8A8u64i7oF3gerXfctFbAi7o74M95A-BuHib
CitedBy_id crossref_primary_10_1108_EL_12_2023_0310
crossref_primary_10_30519_ahtr_1436175
crossref_primary_10_3390_app112110162
Cites_doi 10.1016/j.neucom.2018.01.030
10.1109/ICDM.2015.112
10.1007/978-3-030-16148-4_13
10.1162/tacl_a_00140
10.1007/s10994-017-5689-6
10.1073/pnas.0307752101
10.18653/v1/N16-1093
10.1109/TKDE.2014.2313872
10.1016/j.patcog.2018.04.013
10.1145/2998181.2998259
10.1007/978-3-319-77116-8_15
10.1007/s10115-017-1072-y
10.1109/HICSS.1998.649280
10.1007/s10115-018-1242-6
10.1007/s10916-019-1225-5
10.1145/3178876.3186069
10.3115/1699510.1699543
10.18653/v1/N19-1259
10.1145/3269206.3269273
10.1016/j.eswa.2017.03.020
10.1007/s10115-015-0857-0
10.1016/j.knosys.2018.01.019
10.1007/s10115-015-0832-9
10.1016/j.neucom.2015.12.136
10.1109/ACCESS.2019.2927281
10.1145/2983323.2983752
10.1007/s11280-018-0595-9
10.1109/ICDMW.2016.0150
10.1109/ICDMW.2016.0149
10.1007/978-3-319-16354-3_29
10.1145/2911451.2911499
10.1007/978-3-030-15719-7_21
10.1109/ICDM.2017.24
10.1145/2939672.2939743
10.1109/TASLP.2016.2626965
ContentType Journal Article
Copyright 2021 – IOS Press. All rights reserved.
Copyright IOS Press BV 2021
Copyright_xml – notice: 2021 – IOS Press. All rights reserved.
– notice: Copyright IOS Press BV 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/IDA-194952
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1571-4128
EndPage 223
ExternalDocumentID 10_3233_IDA_194952
10.3233_IDA-194952
GroupedDBID --K
0R~
1B1
29J
4.4
5GY
8VB
AAEDT
AAFNC
AAFWJ
AAGLT
AALRI
AAQXK
AAXUO
ABDBF
ABIVO
ABJNI
ABUBZ
ABUJY
ABWVN
ACGFS
ACPQW
ACRPL
ACUHS
ADEBD
ADMLS
ADMUD
ADNMO
ADZMO
AEMOZ
AENEX
AEUPX
AFPUW
AFRHK
AGIAB
AGQPQ
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARTOV
ASPBG
AVWKF
AZFZN
CAG
COF
CS3
E.-
EAD
EAP
EBA
EBR
EBS
EBU
EIS
EJD
EMK
EPL
EST
ESX
FDB
FEDTE
FGOYB
FIRID
HVGLF
HZ~
I-F
IHE
IL9
IOS
K1G
M41
MET
MIO
MK~
ML~
MV1
NGNOM
NQ-
O9-
OK1
P2P
PQQKQ
QWB
R2-
RIG
ROL
RPZ
SEW
TH9
TUS
UHS
ZL0
AAYXX
CITATION
7SC
8FD
H13
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f7667003666a1e8d58f3a39e915f5426ea2da298741a08fd2006e775601043a73
ISSN 1088-467X
IngestDate Fri Jul 25 10:07:34 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 05:27:57 EDT 2025
Tue Jun 17 22:30:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Topic modeling
aspect extraction
text mining
focused analysis
online reviews
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-f7667003666a1e8d58f3a39e915f5426ea2da298741a08fd2006e775601043a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2485007178
PQPubID 2046397
PageCount 19
ParticipantIDs proquest_journals_2485007178
crossref_primary_10_3233_IDA_194952
crossref_citationtrail_10_3233_IDA_194952
sage_journals_10_3233_IDA_194952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Intelligent data analysis
PublicationYear 2021
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Griffiths, Steyvers 2004; 101
Nguyen, Billingsley, Du, Johnson 2015; 3
Rida-E-Fatima, Javed, Banjar, Irtaza, Dawood, Dawood, Alamri 2019; 7
Pavlinek, Podgorelec 2017; 80
Zhu, Li, Zhou, Xiong, Yuan 2016; 46
Burkhardt, Kramer 2018; 107
Reihanian, Feizi-Derakhshi, Aghdasi 2018; 81
Nimala, Jebakumar 2019; 43
Wei, Luo, Pan, Wu, Zhang, Safi 2018; 285
Chen, Xie, Leung, Lu, Ma, Li 2016; 25
Yang, Yu, Liu, Nie, Wang 2016; 210
Wu, Wu, Wu, Yuan, Huang 2018; 148
Blei, Ng, Jordan 2003; 3
Agathangelou, Katakis, Koutoulakis, Kokkoras, Gunopulos 2018; 55
Cheng, Yan, Lan, Guo 2014; 26
Bagci, Karagoz 2016; 47
Toosinezhad, Mohamadpoor, Malazi 2019; 60
Song, Li, Jiang, Qin, Liao 2019; 22
Zhu (10.3233/IDA-194952_ref37) 2016; 46
Rida-E-Fatima (10.3233/IDA-194952_ref24) 2019; 7
Reihanian (10.3233/IDA-194952_ref23) 2018; 81
10.3233/IDA-194952_ref25
Bagci (10.3233/IDA-194952_ref3) 2016; 47
Chen (10.3233/IDA-194952_ref7) 2016; 25
Cheng (10.3233/IDA-194952_ref9) 2014; 26
10.3233/IDA-194952_ref29
10.3233/IDA-194952_ref28
Burkhardt (10.3233/IDA-194952_ref6) 2018; 107
Griffiths (10.3233/IDA-194952_ref12) 2004; 101
Agathangelou (10.3233/IDA-194952_ref1) 2018; 55
10.3233/IDA-194952_ref22
10.3233/IDA-194952_ref21
Nguyen (10.3233/IDA-194952_ref17) 2015; 3
10.3233/IDA-194952_ref8
Wei (10.3233/IDA-194952_ref31) 2018; 285
10.3233/IDA-194952_ref16
Song (10.3233/IDA-194952_ref26) 2019; 22
10.3233/IDA-194952_ref15
10.3233/IDA-194952_ref14
10.3233/IDA-194952_ref13
Yang (10.3233/IDA-194952_ref34) 2016; 210
10.3233/IDA-194952_ref35
Toosinezhad (10.3233/IDA-194952_ref27) 2019; 60
10.3233/IDA-194952_ref18
Wu (10.3233/IDA-194952_ref32) 2018; 148
10.3233/IDA-194952_ref30
Pavlinek (10.3233/IDA-194952_ref20) 2017; 80
10.3233/IDA-194952_ref2
Blei (10.3233/IDA-194952_ref5) 2003; 3
10.3233/IDA-194952_ref11
Nimala (10.3233/IDA-194952_ref19) 2019; 43
10.3233/IDA-194952_ref33
10.3233/IDA-194952_ref10
10.3233/IDA-194952_ref4
References_xml – volume: 107
  start-page: 859
  issue: 5
  year: 2018
  end-page: 886
  article-title: Online multi-label dependency topic models for text classification
  publication-title: Machine Learning
– volume: 80
  start-page: 83
  year: 2017
  end-page: 93
  article-title: Text classification method based on self-training and lda topic models
  publication-title: Expert Systems with Applications
– volume: 148
  start-page: 66
  year: 2018
  end-page: 73
  article-title: A hybrid unsupervised method for aspect term and opinion target extraction
  publication-title: Knowledge-Based Systems
– volume: 43
  start-page: 93
  issue: 4
  year: 2019
  article-title: A robust user sentiment biterm topic mixture model based on user aggregation strategy to avoid data sparsity for short text
  publication-title: Journal of Medical Systems
– volume: 26
  start-page: 2928
  issue: 12
  year: 2014
  end-page: 2941
  article-title: Btm: topic modeling over short texts
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 101
  start-page: 5228
  year: 2004
  end-page: 5235
  article-title: Finding scientific topics
  publication-title: Proceedings of the National academy of Sciences
– volume: 7
  start-page: 114795
  year: 2019
  end-page: 114807
  article-title: A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis
  publication-title: IEEE Access
– volume: 25
  start-page: 112
  issue: 1
  year: 2016
  end-page: 123
  article-title: Modeling latent topics and temporal distance for story segmentation of broadcast news
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 3
  start-page: 993
  year: 2003
  end-page: 1022
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– volume: 210
  start-page: 185
  year: 2016
  end-page: 196
  article-title: Collaborative filtering with weighted opinion aspects
  publication-title: Neurocomputing
– volume: 47
  start-page: 241
  issue: 2
  year: 2016
  end-page: 260
  article-title: Context-aware location recommendation by using a random walk-based approach
  publication-title: Knowledge and Information Systems
– volume: 46
  start-page: 33
  issue: 1
  year: 2016
  end-page: 58
  article-title: Privacy-preserving topic model for tagging recommender systems
  publication-title: Knowledge and Information Systems
– volume: 3
  start-page: 299
  year: 2015
  end-page: 313
  article-title: Improving topic models with latent feature word representations
  publication-title: Transactions of the Association for Computational Linguistics
– volume: 60
  start-page: 179
  issue: 1
  year: 2019
  end-page: 196
  article-title: Dynamic windowing mechanism to combine sentiment and n-gram analysis in detecting events from social media
  publication-title: Knowledge and Information Systems
– volume: 22
  start-page: 2105
  issue: 5
  year: 2019
  end-page: 2127
  article-title: A novel temporal and topic-aware recommender model
  publication-title: World Wide Web
– volume: 285
  start-page: 35
  year: 2018
  end-page: 50
  article-title: Locally weighted embedding topic modeling by markov random walk structure approximation and sparse regularization
  publication-title: Neurocomputing
– volume: 81
  start-page: 370
  year: 2018
  end-page: 387
  article-title: Overlapping community detection in rating-based social networks through analyzing topics, ratings and links
  publication-title: Pattern Recognition
– volume: 55
  start-page: 45
  issue: 1
  year: 2018
  end-page: 77
  article-title: Learning patterns for discovering domain-oriented opinion words
  publication-title: Knowledge and Information Systems
– volume: 285
  start-page: 35
  year: 2018
  ident: 10.3233/IDA-194952_ref31
  article-title: Locally weighted embedding topic modeling by markov random walk structure approximation and sparse regularization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.030
– ident: 10.3233/IDA-194952_ref29
  doi: 10.1109/ICDM.2015.112
– ident: 10.3233/IDA-194952_ref15
  doi: 10.1007/978-3-030-16148-4_13
– volume: 3
  start-page: 299
  year: 2015
  ident: 10.3233/IDA-194952_ref17
  article-title: Improving topic models with latent feature word representations
  publication-title: Transactions of the Association for Computational Linguistics
  doi: 10.1162/tacl_a_00140
– volume: 107
  start-page: 859
  issue: 5
  year: 2018
  ident: 10.3233/IDA-194952_ref6
  article-title: Online multi-label dependency topic models for text classification
  publication-title: Machine Learning
  doi: 10.1007/s10994-017-5689-6
– volume: 101
  start-page: 5228
  year: 2004
  ident: 10.3233/IDA-194952_ref12
  article-title: Finding scientific topics
  publication-title: Proceedings of the National academy of Sciences
  doi: 10.1073/pnas.0307752101
– volume: 3
  start-page: 993
  year: 2003
  ident: 10.3233/IDA-194952_ref5
  article-title: Latent dirichlet allocation
  publication-title: Journal of Machine Learning Research
– ident: 10.3233/IDA-194952_ref8
  doi: 10.18653/v1/N16-1093
– volume: 26
  start-page: 2928
  issue: 12
  year: 2014
  ident: 10.3233/IDA-194952_ref9
  article-title: Btm: topic modeling over short texts
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2014.2313872
– volume: 81
  start-page: 370
  year: 2018
  ident: 10.3233/IDA-194952_ref23
  article-title: Overlapping community detection in rating-based social networks through analyzing topics, ratings and links
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.04.013
– ident: 10.3233/IDA-194952_ref11
  doi: 10.1145/2998181.2998259
– ident: 10.3233/IDA-194952_ref33
  doi: 10.1007/978-3-319-77116-8_15
– volume: 55
  start-page: 45
  issue: 1
  year: 2018
  ident: 10.3233/IDA-194952_ref1
  article-title: Learning patterns for discovering domain-oriented opinion words
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-017-1072-y
– ident: 10.3233/IDA-194952_ref14
  doi: 10.1109/HICSS.1998.649280
– volume: 60
  start-page: 179
  issue: 1
  year: 2019
  ident: 10.3233/IDA-194952_ref27
  article-title: Dynamic windowing mechanism to combine sentiment and n-gram analysis in detecting events from social media
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-018-1242-6
– volume: 43
  start-page: 93
  issue: 4
  year: 2019
  ident: 10.3233/IDA-194952_ref19
  article-title: A robust user sentiment biterm topic mixture model based on user aggregation strategy to avoid data sparsity for short text
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-019-1225-5
– ident: 10.3233/IDA-194952_ref21
  doi: 10.1145/3178876.3186069
– ident: 10.3233/IDA-194952_ref22
  doi: 10.3115/1699510.1699543
– ident: 10.3233/IDA-194952_ref10
  doi: 10.18653/v1/N19-1259
– ident: 10.3233/IDA-194952_ref35
  doi: 10.1145/3269206.3269273
– volume: 80
  start-page: 83
  year: 2017
  ident: 10.3233/IDA-194952_ref20
  article-title: Text classification method based on self-training and lda topic models
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.03.020
– volume: 47
  start-page: 241
  issue: 2
  year: 2016
  ident: 10.3233/IDA-194952_ref3
  article-title: Context-aware location recommendation by using a random walk-based approach
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-015-0857-0
– volume: 148
  start-page: 66
  year: 2018
  ident: 10.3233/IDA-194952_ref32
  article-title: A hybrid unsupervised method for aspect term and opinion target extraction
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.01.019
– volume: 46
  start-page: 33
  issue: 1
  year: 2016
  ident: 10.3233/IDA-194952_ref37
  article-title: Privacy-preserving topic model for tagging recommender systems
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-015-0832-9
– volume: 210
  start-page: 185
  year: 2016
  ident: 10.3233/IDA-194952_ref34
  article-title: Collaborative filtering with weighted opinion aspects
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.136
– volume: 7
  start-page: 114795
  year: 2019
  ident: 10.3233/IDA-194952_ref24
  article-title: A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927281
– ident: 10.3233/IDA-194952_ref25
  doi: 10.1145/2983323.2983752
– volume: 22
  start-page: 2105
  issue: 5
  year: 2019
  ident: 10.3233/IDA-194952_ref26
  article-title: A novel temporal and topic-aware recommender model
  publication-title: World Wide Web
  doi: 10.1007/s11280-018-0595-9
– ident: 10.3233/IDA-194952_ref4
  doi: 10.1109/ICDMW.2016.0150
– ident: 10.3233/IDA-194952_ref2
  doi: 10.1109/ICDMW.2016.0149
– ident: 10.3233/IDA-194952_ref28
  doi: 10.1007/978-3-319-16354-3_29
– ident: 10.3233/IDA-194952_ref16
  doi: 10.1145/2911451.2911499
– ident: 10.3233/IDA-194952_ref18
  doi: 10.1007/978-3-030-15719-7_21
– ident: 10.3233/IDA-194952_ref13
  doi: 10.1109/ICDM.2017.24
– ident: 10.3233/IDA-194952_ref30
  doi: 10.1145/2939672.2939743
– volume: 25
  start-page: 112
  issue: 1
  year: 2016
  ident: 10.3233/IDA-194952_ref7
  article-title: Modeling latent topics and temporal distance for story segmentation of broadcast news
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2016.2626965
SSID ssj0004204
Score 2.2456129
Snippet With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms Feature extraction
Semantics
Websites
Title Hierarchical features-based targeted aspect extraction from online reviews
URI https://journals.sagepub.com/doi/full/10.3233/IDA-194952
https://www.proquest.com/docview/2485007178
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe28rI9MD6GKCuTpfGCIm-108TJY4FVBQmeQHRPkRvbqFLVTTS88Ndz_kicQiUGL1HkOFHk--V8d7nfHUJHucqllHlMaJpIMsiSjACU-wS0pC5TrvkgNeTky6t0fDO4mCSTkMpr2SXV9Gf5uJZX8h6pwhjI1bBk3yDZ5qEwAOcgXziChOH4XzIezwx92HYzmUda2RqdS2I2Jhm5FG84EZZMGYESvvd9wS2lxJXI8NSVZdtGPW-qdFaRSSCNhC9cEuKmVvazkM3jKNZqFsLzToX8Cdi7fTADk5npHnLXjjUw-izW4H5yrQ0nUtBWBJTuxO0rXply8E-pJ397betoziuo8qqzn7R2YeZYyM8VfMxMAHp0fjYkNAffjoVtrEku9NOKMOkj2mCcm7_4G8OTs5NRIM4y21-yeXlXv9bc_SvcvWqxBDeklflnjZHrLbTpvQg8dJDYRh_UYgd9qTt0YK-wd9Dny6Yq73IXXbTxglfxgmu8YIcXHPCCDV6wwwv2ePmKbka_r0_HxPfSICXLaUU0Tw0hKwZvVVCVySTTsYjhS6WJTsBKU4JJwfIMDEzRz7Q0kSbFufPXY8HjPdRZ_F2ofYTpVDGuY1XqDIxpKaYclP5AUSZYCsvFuui4Xq-i9IXmTb-TeQEOZy2Zwq1tF_1o5v5z5VXWzurVy174z29ZmFp8Nokk6yJsRBEuvXzCwetTvqFPAfI91KnuH9QhGJzV9LuHzRPIfnxe
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+features-based+targeted+aspect+extraction+from+online+reviews&rft.jtitle=Intelligent+data+analysis&rft.au=He%2C+Jin&rft.au=Li%2C+Lei&rft.au=Wang%2C+Yan&rft.au=Wu%2C+Xindong&rft.date=2021-01-01&rft.pub=SAGE+Publications&rft.issn=1088-467X&rft.eissn=1571-4128&rft.volume=25&rft.issue=1&rft.spage=205&rft.epage=223&rft_id=info:doi/10.3233%2FIDA-194952&rft.externalDocID=10.3233_IDA-194952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-467X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-467X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-467X&client=summon