Hierarchical features-based targeted aspect extraction from online reviews
With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad scope of the aspects of the various products makes this task overarching but challengi...
Saved in:
Published in | Intelligent data analysis Vol. 25; no. 1; pp. 205 - 223 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2021
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1088-467X 1571-4128 |
DOI | 10.3233/IDA-194952 |
Cover
Abstract | With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad scope of the aspects of the various products makes this task overarching but challenging. A commonly used solution is to modify the topic models with additional information to capture the features for a specific aspect (referred to as a targeted aspect). However, the existing topic models, either perform the full analysis to capture features as many as possible or estimate the similarity to capture features as coherent as possible, overlook the fine-grained semantic relations between the features, resulting in the captured features coarse and confusing. In this paper, we propose a novel Hierarchical Features-based Topic Model (HFTM) to extract targeted aspects from online reviews, then to capture the aspect-specific features. Specifically, our model can not only capture the direct features posing target-to-feature semantics but also capture the latent features posing feature-to-feature semantics. The experiments conducted on real-world datasets demonstrate that HFTMl outperforms the state-of-the-art baselines in terms of both aspect extraction and document classification. |
---|---|
AbstractList | With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is highly relevant to a specific aspect. However, the broad scope of the aspects of the various products makes this task overarching but challenging. A commonly used solution is to modify the topic models with additional information to capture the features for a specific aspect (referred to as a targeted aspect). However, the existing topic models, either perform the full analysis to capture features as many as possible or estimate the similarity to capture features as coherent as possible, overlook the fine-grained semantic relations between the features, resulting in the captured features coarse and confusing. In this paper, we propose a novel Hierarchical Features-based Topic Model (HFTM) to extract targeted aspects from online reviews, then to capture the aspect-specific features. Specifically, our model can not only capture the direct features posing target-to-feature semantics but also capture the latent features posing feature-to-feature semantics. The experiments conducted on real-world datasets demonstrate that HFTMl outperforms the state-of-the-art baselines in terms of both aspect extraction and document classification. |
Author | He, Jin Li, Lei Wang, Yan Wu, Xindong |
Author_xml | – sequence: 1 givenname: Jin surname: He fullname: He, Jin organization: , Hefei, Anhui – sequence: 2 givenname: Lei surname: Li fullname: Li, Lei email: lilei@hfut.edu.cn organization: , Hefei, Anhui – sequence: 3 givenname: Yan surname: Wang fullname: Wang, Yan organization: , Sydney – sequence: 4 givenname: Xindong surname: Wu fullname: Wu, Xindong organization: MiningLamp Academy of Sciences, Mininglamp Techonologies, Beijing |
BookMark | eNptkM1Lw0AQxRdRsK1e_AsCHgQhOvuR3c2x1I9WCl4UvIUxma0pbVJ3t37896ZEEKSneYffm5n3huywaRti7IzDlRRSXs9uxinPVZ6JAzbgmeGp4sIedhqsTZU2L8dsGMISAJQANWAP05o8-vKtLnGVOMK49RTSVwxUJRH9gmInMGyojAl9RY9lrNsmcb5dJ22zqhtKPH3U9BlO2JHDVaDT3zliz3e3T5NpOn-8n03G87QUOY-pM1obAKm1Rk62yqyTKHPKeeYyJTShqFDk1iiOYF0lADQZk2ngoCQaOWLn_d6Nb9-3FGKxbLe-6U4WQtkMwHBjO-qyp0rfhuDJFRtfr9F_FxyKXVdF11XRd9XB8A8u64i7oF3gerXfctFbAi7o74M95A-BuHib |
CitedBy_id | crossref_primary_10_1108_EL_12_2023_0310 crossref_primary_10_30519_ahtr_1436175 crossref_primary_10_3390_app112110162 |
Cites_doi | 10.1016/j.neucom.2018.01.030 10.1109/ICDM.2015.112 10.1007/978-3-030-16148-4_13 10.1162/tacl_a_00140 10.1007/s10994-017-5689-6 10.1073/pnas.0307752101 10.18653/v1/N16-1093 10.1109/TKDE.2014.2313872 10.1016/j.patcog.2018.04.013 10.1145/2998181.2998259 10.1007/978-3-319-77116-8_15 10.1007/s10115-017-1072-y 10.1109/HICSS.1998.649280 10.1007/s10115-018-1242-6 10.1007/s10916-019-1225-5 10.1145/3178876.3186069 10.3115/1699510.1699543 10.18653/v1/N19-1259 10.1145/3269206.3269273 10.1016/j.eswa.2017.03.020 10.1007/s10115-015-0857-0 10.1016/j.knosys.2018.01.019 10.1007/s10115-015-0832-9 10.1016/j.neucom.2015.12.136 10.1109/ACCESS.2019.2927281 10.1145/2983323.2983752 10.1007/s11280-018-0595-9 10.1109/ICDMW.2016.0150 10.1109/ICDMW.2016.0149 10.1007/978-3-319-16354-3_29 10.1145/2911451.2911499 10.1007/978-3-030-15719-7_21 10.1109/ICDM.2017.24 10.1145/2939672.2939743 10.1109/TASLP.2016.2626965 |
ContentType | Journal Article |
Copyright | 2021 – IOS Press. All rights reserved. Copyright IOS Press BV 2021 |
Copyright_xml | – notice: 2021 – IOS Press. All rights reserved. – notice: Copyright IOS Press BV 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/IDA-194952 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1571-4128 |
EndPage | 223 |
ExternalDocumentID | 10_3233_IDA_194952 10.3233_IDA-194952 |
GroupedDBID | --K 0R~ 1B1 29J 4.4 5GY 8VB AAEDT AAFNC AAFWJ AAGLT AALRI AAQXK AAXUO ABDBF ABIVO ABJNI ABUBZ ABUJY ABWVN ACGFS ACPQW ACRPL ACUHS ADEBD ADMLS ADMUD ADNMO ADZMO AEMOZ AENEX AEUPX AFPUW AFRHK AGIAB AGQPQ AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS ARTOV ASPBG AVWKF AZFZN CAG COF CS3 E.- EAD EAP EBA EBR EBS EBU EIS EJD EMK EPL EST ESX FDB FEDTE FGOYB FIRID HVGLF HZ~ I-F IHE IL9 IOS K1G M41 MET MIO MK~ ML~ MV1 NGNOM NQ- O9- OK1 P2P PQQKQ QWB R2- RIG ROL RPZ SEW TH9 TUS UHS ZL0 AAYXX CITATION 7SC 8FD H13 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-f7667003666a1e8d58f3a39e915f5426ea2da298741a08fd2006e775601043a73 |
ISSN | 1088-467X |
IngestDate | Fri Jul 25 10:07:34 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Jul 01 05:27:57 EDT 2025 Tue Jun 17 22:30:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Topic modeling aspect extraction text mining focused analysis online reviews |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-f7667003666a1e8d58f3a39e915f5426ea2da298741a08fd2006e775601043a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2485007178 |
PQPubID | 2046397 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2485007178 crossref_primary_10_3233_IDA_194952 crossref_citationtrail_10_3233_IDA_194952 sage_journals_10_3233_IDA_194952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London |
PublicationTitle | Intelligent data analysis |
PublicationYear | 2021 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Griffiths, Steyvers 2004; 101 Nguyen, Billingsley, Du, Johnson 2015; 3 Rida-E-Fatima, Javed, Banjar, Irtaza, Dawood, Dawood, Alamri 2019; 7 Pavlinek, Podgorelec 2017; 80 Zhu, Li, Zhou, Xiong, Yuan 2016; 46 Burkhardt, Kramer 2018; 107 Reihanian, Feizi-Derakhshi, Aghdasi 2018; 81 Nimala, Jebakumar 2019; 43 Wei, Luo, Pan, Wu, Zhang, Safi 2018; 285 Chen, Xie, Leung, Lu, Ma, Li 2016; 25 Yang, Yu, Liu, Nie, Wang 2016; 210 Wu, Wu, Wu, Yuan, Huang 2018; 148 Blei, Ng, Jordan 2003; 3 Agathangelou, Katakis, Koutoulakis, Kokkoras, Gunopulos 2018; 55 Cheng, Yan, Lan, Guo 2014; 26 Bagci, Karagoz 2016; 47 Toosinezhad, Mohamadpoor, Malazi 2019; 60 Song, Li, Jiang, Qin, Liao 2019; 22 Zhu (10.3233/IDA-194952_ref37) 2016; 46 Rida-E-Fatima (10.3233/IDA-194952_ref24) 2019; 7 Reihanian (10.3233/IDA-194952_ref23) 2018; 81 10.3233/IDA-194952_ref25 Bagci (10.3233/IDA-194952_ref3) 2016; 47 Chen (10.3233/IDA-194952_ref7) 2016; 25 Cheng (10.3233/IDA-194952_ref9) 2014; 26 10.3233/IDA-194952_ref29 10.3233/IDA-194952_ref28 Burkhardt (10.3233/IDA-194952_ref6) 2018; 107 Griffiths (10.3233/IDA-194952_ref12) 2004; 101 Agathangelou (10.3233/IDA-194952_ref1) 2018; 55 10.3233/IDA-194952_ref22 10.3233/IDA-194952_ref21 Nguyen (10.3233/IDA-194952_ref17) 2015; 3 10.3233/IDA-194952_ref8 Wei (10.3233/IDA-194952_ref31) 2018; 285 10.3233/IDA-194952_ref16 Song (10.3233/IDA-194952_ref26) 2019; 22 10.3233/IDA-194952_ref15 10.3233/IDA-194952_ref14 10.3233/IDA-194952_ref13 Yang (10.3233/IDA-194952_ref34) 2016; 210 10.3233/IDA-194952_ref35 Toosinezhad (10.3233/IDA-194952_ref27) 2019; 60 10.3233/IDA-194952_ref18 Wu (10.3233/IDA-194952_ref32) 2018; 148 10.3233/IDA-194952_ref30 Pavlinek (10.3233/IDA-194952_ref20) 2017; 80 10.3233/IDA-194952_ref2 Blei (10.3233/IDA-194952_ref5) 2003; 3 10.3233/IDA-194952_ref11 Nimala (10.3233/IDA-194952_ref19) 2019; 43 10.3233/IDA-194952_ref33 10.3233/IDA-194952_ref10 10.3233/IDA-194952_ref4 |
References_xml | – volume: 107 start-page: 859 issue: 5 year: 2018 end-page: 886 article-title: Online multi-label dependency topic models for text classification publication-title: Machine Learning – volume: 80 start-page: 83 year: 2017 end-page: 93 article-title: Text classification method based on self-training and lda topic models publication-title: Expert Systems with Applications – volume: 148 start-page: 66 year: 2018 end-page: 73 article-title: A hybrid unsupervised method for aspect term and opinion target extraction publication-title: Knowledge-Based Systems – volume: 43 start-page: 93 issue: 4 year: 2019 article-title: A robust user sentiment biterm topic mixture model based on user aggregation strategy to avoid data sparsity for short text publication-title: Journal of Medical Systems – volume: 26 start-page: 2928 issue: 12 year: 2014 end-page: 2941 article-title: Btm: topic modeling over short texts publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 101 start-page: 5228 year: 2004 end-page: 5235 article-title: Finding scientific topics publication-title: Proceedings of the National academy of Sciences – volume: 7 start-page: 114795 year: 2019 end-page: 114807 article-title: A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis publication-title: IEEE Access – volume: 25 start-page: 112 issue: 1 year: 2016 end-page: 123 article-title: Modeling latent topics and temporal distance for story segmentation of broadcast news publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – volume: 3 start-page: 993 year: 2003 end-page: 1022 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – volume: 210 start-page: 185 year: 2016 end-page: 196 article-title: Collaborative filtering with weighted opinion aspects publication-title: Neurocomputing – volume: 47 start-page: 241 issue: 2 year: 2016 end-page: 260 article-title: Context-aware location recommendation by using a random walk-based approach publication-title: Knowledge and Information Systems – volume: 46 start-page: 33 issue: 1 year: 2016 end-page: 58 article-title: Privacy-preserving topic model for tagging recommender systems publication-title: Knowledge and Information Systems – volume: 3 start-page: 299 year: 2015 end-page: 313 article-title: Improving topic models with latent feature word representations publication-title: Transactions of the Association for Computational Linguistics – volume: 60 start-page: 179 issue: 1 year: 2019 end-page: 196 article-title: Dynamic windowing mechanism to combine sentiment and n-gram analysis in detecting events from social media publication-title: Knowledge and Information Systems – volume: 22 start-page: 2105 issue: 5 year: 2019 end-page: 2127 article-title: A novel temporal and topic-aware recommender model publication-title: World Wide Web – volume: 285 start-page: 35 year: 2018 end-page: 50 article-title: Locally weighted embedding topic modeling by markov random walk structure approximation and sparse regularization publication-title: Neurocomputing – volume: 81 start-page: 370 year: 2018 end-page: 387 article-title: Overlapping community detection in rating-based social networks through analyzing topics, ratings and links publication-title: Pattern Recognition – volume: 55 start-page: 45 issue: 1 year: 2018 end-page: 77 article-title: Learning patterns for discovering domain-oriented opinion words publication-title: Knowledge and Information Systems – volume: 285 start-page: 35 year: 2018 ident: 10.3233/IDA-194952_ref31 article-title: Locally weighted embedding topic modeling by markov random walk structure approximation and sparse regularization publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.030 – ident: 10.3233/IDA-194952_ref29 doi: 10.1109/ICDM.2015.112 – ident: 10.3233/IDA-194952_ref15 doi: 10.1007/978-3-030-16148-4_13 – volume: 3 start-page: 299 year: 2015 ident: 10.3233/IDA-194952_ref17 article-title: Improving topic models with latent feature word representations publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00140 – volume: 107 start-page: 859 issue: 5 year: 2018 ident: 10.3233/IDA-194952_ref6 article-title: Online multi-label dependency topic models for text classification publication-title: Machine Learning doi: 10.1007/s10994-017-5689-6 – volume: 101 start-page: 5228 year: 2004 ident: 10.3233/IDA-194952_ref12 article-title: Finding scientific topics publication-title: Proceedings of the National academy of Sciences doi: 10.1073/pnas.0307752101 – volume: 3 start-page: 993 year: 2003 ident: 10.3233/IDA-194952_ref5 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research – ident: 10.3233/IDA-194952_ref8 doi: 10.18653/v1/N16-1093 – volume: 26 start-page: 2928 issue: 12 year: 2014 ident: 10.3233/IDA-194952_ref9 article-title: Btm: topic modeling over short texts publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2014.2313872 – volume: 81 start-page: 370 year: 2018 ident: 10.3233/IDA-194952_ref23 article-title: Overlapping community detection in rating-based social networks through analyzing topics, ratings and links publication-title: Pattern Recognition doi: 10.1016/j.patcog.2018.04.013 – ident: 10.3233/IDA-194952_ref11 doi: 10.1145/2998181.2998259 – ident: 10.3233/IDA-194952_ref33 doi: 10.1007/978-3-319-77116-8_15 – volume: 55 start-page: 45 issue: 1 year: 2018 ident: 10.3233/IDA-194952_ref1 article-title: Learning patterns for discovering domain-oriented opinion words publication-title: Knowledge and Information Systems doi: 10.1007/s10115-017-1072-y – ident: 10.3233/IDA-194952_ref14 doi: 10.1109/HICSS.1998.649280 – volume: 60 start-page: 179 issue: 1 year: 2019 ident: 10.3233/IDA-194952_ref27 article-title: Dynamic windowing mechanism to combine sentiment and n-gram analysis in detecting events from social media publication-title: Knowledge and Information Systems doi: 10.1007/s10115-018-1242-6 – volume: 43 start-page: 93 issue: 4 year: 2019 ident: 10.3233/IDA-194952_ref19 article-title: A robust user sentiment biterm topic mixture model based on user aggregation strategy to avoid data sparsity for short text publication-title: Journal of Medical Systems doi: 10.1007/s10916-019-1225-5 – ident: 10.3233/IDA-194952_ref21 doi: 10.1145/3178876.3186069 – ident: 10.3233/IDA-194952_ref22 doi: 10.3115/1699510.1699543 – ident: 10.3233/IDA-194952_ref10 doi: 10.18653/v1/N19-1259 – ident: 10.3233/IDA-194952_ref35 doi: 10.1145/3269206.3269273 – volume: 80 start-page: 83 year: 2017 ident: 10.3233/IDA-194952_ref20 article-title: Text classification method based on self-training and lda topic models publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.03.020 – volume: 47 start-page: 241 issue: 2 year: 2016 ident: 10.3233/IDA-194952_ref3 article-title: Context-aware location recommendation by using a random walk-based approach publication-title: Knowledge and Information Systems doi: 10.1007/s10115-015-0857-0 – volume: 148 start-page: 66 year: 2018 ident: 10.3233/IDA-194952_ref32 article-title: A hybrid unsupervised method for aspect term and opinion target extraction publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.01.019 – volume: 46 start-page: 33 issue: 1 year: 2016 ident: 10.3233/IDA-194952_ref37 article-title: Privacy-preserving topic model for tagging recommender systems publication-title: Knowledge and Information Systems doi: 10.1007/s10115-015-0832-9 – volume: 210 start-page: 185 year: 2016 ident: 10.3233/IDA-194952_ref34 article-title: Collaborative filtering with weighted opinion aspects publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.136 – volume: 7 start-page: 114795 year: 2019 ident: 10.3233/IDA-194952_ref24 article-title: A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927281 – ident: 10.3233/IDA-194952_ref25 doi: 10.1145/2983323.2983752 – volume: 22 start-page: 2105 issue: 5 year: 2019 ident: 10.3233/IDA-194952_ref26 article-title: A novel temporal and topic-aware recommender model publication-title: World Wide Web doi: 10.1007/s11280-018-0595-9 – ident: 10.3233/IDA-194952_ref4 doi: 10.1109/ICDMW.2016.0150 – ident: 10.3233/IDA-194952_ref2 doi: 10.1109/ICDMW.2016.0149 – ident: 10.3233/IDA-194952_ref28 doi: 10.1007/978-3-319-16354-3_29 – ident: 10.3233/IDA-194952_ref16 doi: 10.1145/2911451.2911499 – ident: 10.3233/IDA-194952_ref18 doi: 10.1007/978-3-030-15719-7_21 – ident: 10.3233/IDA-194952_ref13 doi: 10.1109/ICDM.2017.24 – ident: 10.3233/IDA-194952_ref30 doi: 10.1145/2939672.2939743 – volume: 25 start-page: 112 issue: 1 year: 2016 ident: 10.3233/IDA-194952_ref7 article-title: Modeling latent topics and temporal distance for story segmentation of broadcast news publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2016.2626965 |
SSID | ssj0004204 |
Score | 2.2456129 |
Snippet | With the prevalence of online review websites, large-scale data promote the necessity of focused analysis. This task aims to capture the information that is... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 205 |
SubjectTerms | Feature extraction Semantics Websites |
Title | Hierarchical features-based targeted aspect extraction from online reviews |
URI | https://journals.sagepub.com/doi/full/10.3233/IDA-194952 https://www.proquest.com/docview/2485007178 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELe28rI9MD6GKCuTpfGCIm-108TJY4FVBQmeQHRPkRvbqFLVTTS88Ndz_kicQiUGL1HkOFHk--V8d7nfHUJHucqllHlMaJpIMsiSjACU-wS0pC5TrvkgNeTky6t0fDO4mCSTkMpr2SXV9Gf5uJZX8h6pwhjI1bBk3yDZ5qEwAOcgXziChOH4XzIezwx92HYzmUda2RqdS2I2Jhm5FG84EZZMGYESvvd9wS2lxJXI8NSVZdtGPW-qdFaRSSCNhC9cEuKmVvazkM3jKNZqFsLzToX8Cdi7fTADk5npHnLXjjUw-izW4H5yrQ0nUtBWBJTuxO0rXply8E-pJ397betoziuo8qqzn7R2YeZYyM8VfMxMAHp0fjYkNAffjoVtrEku9NOKMOkj2mCcm7_4G8OTs5NRIM4y21-yeXlXv9bc_SvcvWqxBDeklflnjZHrLbTpvQg8dJDYRh_UYgd9qTt0YK-wd9Dny6Yq73IXXbTxglfxgmu8YIcXHPCCDV6wwwv2ePmKbka_r0_HxPfSICXLaUU0Tw0hKwZvVVCVySTTsYjhS6WJTsBKU4JJwfIMDEzRz7Q0kSbFufPXY8HjPdRZ_F2ofYTpVDGuY1XqDIxpKaYclP5AUSZYCsvFuui4Xq-i9IXmTb-TeQEOZy2Zwq1tF_1o5v5z5VXWzurVy174z29ZmFp8Nokk6yJsRBEuvXzCwetTvqFPAfI91KnuH9QhGJzV9LuHzRPIfnxe |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+features-based+targeted+aspect+extraction+from+online+reviews&rft.jtitle=Intelligent+data+analysis&rft.au=He%2C+Jin&rft.au=Li%2C+Lei&rft.au=Wang%2C+Yan&rft.au=Wu%2C+Xindong&rft.date=2021-01-01&rft.pub=SAGE+Publications&rft.issn=1088-467X&rft.eissn=1571-4128&rft.volume=25&rft.issue=1&rft.spage=205&rft.epage=223&rft_id=info:doi/10.3233%2FIDA-194952&rft.externalDocID=10.3233_IDA-194952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-467X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-467X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-467X&client=summon |