Sequential-Knowledge-Aware Next POI Recommendation: A Meta-Learning Approach

Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on information systems Vol. 40; no. 2; pp. 1 - 22
Main Authors Cui, Yue, Sun, Hao, Zhao, Yan, Yin, Hongzhi, Zheng, Kai
Format Journal Article
LanguageEnglish
Published 01.04.2022
Online AccessGet full text

Cover

Loading…
Abstract Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models are known to be primary in leveraging these problems. However, as most knowledge graphs are constructed statically, sequential information is yet integrated. In this work, we propose a meta-learned sequential-knowledge-aware recommender (Meta-SKR), which utilizes sequential, spatio-temporal, and social knowledge to recommend the next POI for a location-based social network user. The framework mainly contains four modules. First, in the graph construction module, a novel type of knowledge graph—the sequential knowledge graph, which is sensitive to the check-in order of POIs—is built to model users’ check-in patterns. To deal with the problem of data sparsity, a meta-learning module based on latent embedding optimization is then introduced to generate user-conditioned parameters of the subsequent sequential-knowledge-aware embedding module, where representation vectors of entities (nodes) and relations (edges) are learned. In this embedding module, gated recurrent units are adapted to distill intra- and inter-sequential knowledge graph information. We also design a novel knowledge-aware attention mechanism to capture information surrounding a given node. Finally, POI recommendation is provided by inferring potential links of knowledge graphs in the prediction module. Evaluations on three real-world check-in datasets show that Meta-SKR can achieve high recommendation accuracy even with sparse data.
AbstractList Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models are known to be primary in leveraging these problems. However, as most knowledge graphs are constructed statically, sequential information is yet integrated. In this work, we propose a meta-learned sequential-knowledge-aware recommender (Meta-SKR), which utilizes sequential, spatio-temporal, and social knowledge to recommend the next POI for a location-based social network user. The framework mainly contains four modules. First, in the graph construction module, a novel type of knowledge graph—the sequential knowledge graph, which is sensitive to the check-in order of POIs—is built to model users’ check-in patterns. To deal with the problem of data sparsity, a meta-learning module based on latent embedding optimization is then introduced to generate user-conditioned parameters of the subsequent sequential-knowledge-aware embedding module, where representation vectors of entities (nodes) and relations (edges) are learned. In this embedding module, gated recurrent units are adapted to distill intra- and inter-sequential knowledge graph information. We also design a novel knowledge-aware attention mechanism to capture information surrounding a given node. Finally, POI recommendation is provided by inferring potential links of knowledge graphs in the prediction module. Evaluations on three real-world check-in datasets show that Meta-SKR can achieve high recommendation accuracy even with sparse data.
Author Yin, Hongzhi
Sun, Hao
Zhao, Yan
Cui, Yue
Zheng, Kai
Author_xml – sequence: 1
  givenname: Yue
  surname: Cui
  fullname: Cui, Yue
  organization: University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 3
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  organization: Aalborg University, Denmark
– sequence: 4
  givenname: Hongzhi
  orcidid: 0000-0003-1395-261X
  surname: Yin
  fullname: Yin, Hongzhi
  organization: The University of Queensland, Brisbane, Queensland, Australia
– sequence: 5
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
  organization: University of Electronic Science and Technology of China, Chengdu, Sichuan, China
BookMark eNplkMtOwzAURC1UJNqC-IXsWBmuHcdx2UUVj4pAEY915Ng3JShxgmNU-HsCdAWrmZGORpqZkYnrHBJyzOCUMZGcxUICW6g9MmVJoihXUk1GD0JSxZQ6ILNheAUYs4QpyR_x7R1dqHVDb1y3bdBukGZb7TG6w48Q3a9X0QOarm3RWR3qzp1HWXSLQdMctXe120RZ3_tOm5dDsl_pZsCjnc7J8-XF0_Ka5uur1TLLqeELFmjFUqisqFIjELUCDgpQCJkwKC03iRCp5TZFaaUtrYQqjq0y2pRpKS1P43hOTn57je-GwWNV9L5utf8sGBTfJxS7E0aS_iFNHX5WBK_r5h__BT_tXtc
CitedBy_id crossref_primary_10_1109_TKDE_2023_3240832
crossref_primary_10_1016_j_eswa_2024_126204
crossref_primary_10_1016_j_ipm_2024_103751
crossref_primary_10_1145_3617827
crossref_primary_10_1016_j_knosys_2023_110579
crossref_primary_10_1145_3597930
crossref_primary_10_1007_s10489_022_03858_w
crossref_primary_10_1007_s11280_024_01279_y
crossref_primary_10_1007_s00521_024_09711_0
crossref_primary_10_1145_3592789
crossref_primary_10_1145_3627824
crossref_primary_10_1145_3649311
crossref_primary_10_1007_s11042_023_17948_5
crossref_primary_10_1016_j_eswa_2023_121931
crossref_primary_10_1145_3597458
crossref_primary_10_1016_j_ins_2022_12_024
crossref_primary_10_1145_3605554
crossref_primary_10_1016_j_knosys_2023_110884
crossref_primary_10_1016_j_knosys_2024_111674
crossref_primary_10_1145_3477596
crossref_primary_10_7717_peerj_cs_2284
crossref_primary_10_1016_j_entcom_2024_100660
crossref_primary_10_1145_3649436
crossref_primary_10_1007_s11227_023_05278_0
crossref_primary_10_1007_s00521_022_07825_x
crossref_primary_10_3390_electronics12183939
crossref_primary_10_1109_ACCESS_2023_3310816
crossref_primary_10_1109_TCSS_2024_3396506
crossref_primary_10_1109_ACCESS_2022_3194536
crossref_primary_10_1109_ACCESS_2024_3480215
crossref_primary_10_1109_TKDE_2022_3218851
crossref_primary_10_1145_3709137
crossref_primary_10_1016_j_future_2023_03_003
crossref_primary_10_1109_TCSS_2024_3411043
crossref_primary_10_1016_j_knosys_2024_112475
crossref_primary_10_1109_TKDE_2024_3509480
Cites_doi 10.1609/aaai.v34i01.5353
10.1145/3357384.3358171
10.1109/IJCNN.2019.8852100
10.1145/3159652.3170459
10.5555/3294996.3295163
10.5555/2999792.2999923
10.1145/3159652.3159656
10.1145/3295499
10.1007/s11704-018-8011-2
10.1109/TKDE.2018.2833443
10.1145/3109859.3109889
10.1145/2983323.2983711
10.1145/2009916.2009962
10.5555/3305381.3305498
10.1145/3397271.3401049
10.1145/2939672.2939673
10.1145/2661829.2662002
10.3115/v1/D14-1179
10.1145/3292500.3330884
10.1145/2507157.2507182
10.1145/3340531.3411876
10.5555/3015812.3015841
10.1145/3292500.3330989
10.1016/j.neucom.2019.12.122
10.5555/3045390.3045585
10.5555/3157382.3157504
10.1145/3314578
10.1145/3308558.3313607
10.1109/TKDE.2018.2831682
10.1145/3308558.3313577
10.1145/2666310.2666400
10.14778/3115404.3115407
10.18653/v1/N18-2053
10.1145/3292500.3330859
10.1145/3178876.3186058
10.1145/2939672.2939773
10.5555/3304222.3304315
10.18653/v1/P19-1466
10.24963/ijcai.2020/445
10.1145/3340531.3411947
10.1145/3292500.3330726
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1145/3460198
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1558-2868
EndPage 22
ExternalDocumentID 10_1145_3460198
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
77K
85S
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
IAO
ICD
IOF
LHSKQ
MK~
ML~
MS~
P1C
P2P
PQQKQ
RNS
ROL
RXW
TAE
TUS
U5U
UHB
UPT
WH7
X6Y
XH6
XSW
YR2
ZCA
ID FETCH-LOGICAL-c291t-f170fd4f7c4eea802080e446510bd2c5447d2d7e6d6dbd60f33d8cacb7b6d2733
ISSN 1046-8188
IngestDate Thu Jul 03 08:24:23 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-f170fd4f7c4eea802080e446510bd2c5447d2d7e6d6dbd60f33d8cacb7b6d2733
ORCID 0000-0003-1395-261X
PageCount 22
ParticipantIDs crossref_primary_10_1145_3460198
crossref_citationtrail_10_1145_3460198
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationTitle ACM transactions on information systems
PublicationYear 2022
References e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
Chen Junkun (e_1_2_1_3_1) 2018
e_1_2_1_28_1
Wei Tianxin (e_1_2_1_42_1) 2020
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Kang Wangcheng (e_1_2_1_13_1) 2018
Kim Jongmin (e_1_2_1_14_1) 2019
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
Sung Flood (e_1_2_1_36_1) 2018
e_1_2_1_37_1
e_1_2_1_18_1
Thomas (e_1_2_1_15_1) 2017
Dettmers Tim (e_1_2_1_5_1) 2018
e_1_2_1_40_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
Luo Yadan (e_1_2_1_23_1) 2020
e_1_2_1_29_1
Wu Shu (e_1_2_1_43_1) 2018
Rusu Andrei A. (e_1_2_1_30_1) 2019
Higgins Irina (e_1_2_1_12_1) 2017
Velickovic Petar (e_1_2_1_39_1) 2018
e_1_2_1_7_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – ident: e_1_2_1_34_1
  doi: 10.1609/aaai.v34i01.5353
– volume-title: Proceedings of ICLR
  year: 2017
  ident: e_1_2_1_12_1
– ident: e_1_2_1_44_1
  doi: 10.1145/3357384.3358171
– ident: e_1_2_1_1_1
  doi: 10.1109/IJCNN.2019.8852100
– volume-title: Proceedings of AAAI
  year: 2018
  ident: e_1_2_1_5_1
– volume-title: ProceedingsofICDM
  year: 2020
  ident: e_1_2_1_42_1
– volume-title: Proceedings of CVPR
  year: 2019
  ident: e_1_2_1_14_1
– ident: e_1_2_1_48_1
  doi: 10.1145/3159652.3170459
– ident: e_1_2_1_33_1
  doi: 10.5555/3294996.3295163
– ident: e_1_2_1_2_1
  doi: 10.5555/2999792.2999923
– ident: e_1_2_1_37_1
  doi: 10.1145/3159652.3159656
– ident: e_1_2_1_38_1
  doi: 10.1145/3159652.3159656
– ident: e_1_2_1_29_1
  doi: 10.1145/3295499
– ident: e_1_2_1_53_1
  doi: 10.1007/s11704-018-8011-2
– ident: e_1_2_1_32_1
  doi: 10.1109/TKDE.2018.2833443
– ident: e_1_2_1_27_1
  doi: 10.1145/3109859.3109889
– ident: e_1_2_1_45_1
  doi: 10.1145/2983323.2983711
– ident: e_1_2_1_49_1
  doi: 10.1145/2009916.2009962
– volume-title: Proceedings of ICLR
  year: 2018
  ident: e_1_2_1_39_1
– ident: e_1_2_1_9_1
  doi: 10.5555/3305381.3305498
– ident: e_1_2_1_8_1
  doi: 10.1145/3397271.3401049
– ident: e_1_2_1_51_1
  doi: 10.1145/2939672.2939673
– ident: e_1_2_1_22_1
  doi: 10.1145/2661829.2662002
– ident: e_1_2_1_4_1
  doi: 10.3115/v1/D14-1179
– ident: e_1_2_1_28_1
  doi: 10.1145/3292500.3330884
– volume-title: Proceedings of AAAI
  year: 2018
  ident: e_1_2_1_3_1
– ident: e_1_2_1_10_1
  doi: 10.1145/2507157.2507182
– ident: e_1_2_1_17_1
  doi: 10.1145/3340531.3411876
– ident: e_1_2_1_18_1
  doi: 10.5555/3015812.3015841
– ident: e_1_2_1_41_1
  doi: 10.1145/3292500.3330989
– volume-title: McAuley
  year: 2018
  ident: e_1_2_1_13_1
– ident: e_1_2_1_19_1
  doi: 10.1016/j.neucom.2019.12.122
– ident: e_1_2_1_31_1
  doi: 10.5555/3045390.3045585
– ident: e_1_2_1_40_1
  doi: 10.5555/3157382.3157504
– ident: e_1_2_1_46_1
  doi: 10.1145/3314578
– ident: e_1_2_1_24_1
  doi: 10.1145/3308558.3313607
– volume-title: Proceedings of ICLR
  year: 2017
  ident: e_1_2_1_15_1
– volume-title: Proceedings of AAAI
  year: 2020
  ident: e_1_2_1_23_1
– volume-title: Proceedings of AAAI
  year: 2018
  ident: e_1_2_1_43_1
– volume-title: Proceedings of ICLR
  year: 2019
  ident: e_1_2_1_30_1
– ident: e_1_2_1_11_1
  doi: 10.1109/TKDE.2018.2831682
– ident: e_1_2_1_47_1
  doi: 10.1145/3308558.3313577
– ident: e_1_2_1_52_1
  doi: 10.1145/2666310.2666400
– volume-title: Proceedings of CVPR
  year: 2018
  ident: e_1_2_1_36_1
– ident: e_1_2_1_21_1
  doi: 10.14778/3115404.3115407
– ident: e_1_2_1_26_1
  doi: 10.18653/v1/N18-2053
– ident: e_1_2_1_16_1
  doi: 10.1145/3292500.3330859
– ident: e_1_2_1_7_1
  doi: 10.1145/3178876.3186058
– ident: e_1_2_1_20_1
  doi: 10.1145/2939672.2939773
– ident: e_1_2_1_50_1
  doi: 10.5555/3304222.3304315
– ident: e_1_2_1_25_1
  doi: 10.18653/v1/P19-1466
– ident: e_1_2_1_54_1
  doi: 10.24963/ijcai.2020/445
– ident: e_1_2_1_35_1
  doi: 10.1145/3340531.3411947
– ident: e_1_2_1_6_1
  doi: 10.1145/3292500.3330726
SSID ssj0004660
Score 2.532085
Snippet Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However,...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1
Title Sequential-Knowledge-Aware Next POI Recommendation: A Meta-Learning Approach
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc6kKa9THxN6wbID4gXZJbEjp3yFvGhAi2bVJDoU5XYDiBBi1gqJP56zrGTmm6IjZcoiuxI8f1yvjvf_Q6hrUx3dAxmNFhunBGwwE03wFASmnCeUZkFTJni5P4Z716wk8v4stUqvKylaZnvyqe_1pW8R6rwDORqqmT_Q7LNS-EB3IN84QoShus_yXhQ5UHDP3pLTuvYGEkfTTLXGSjdnV8_j41dOLm70653ki1E7-syI70mKOJoxX07Nd3vm-4RdSvx6kzBcaxWgPntEZ1XCdZVUsBw2sBkMK3UWTebeKHpKiw7nOFxaAkMupPx1dP1jR-AAN91lrdidSa42AT2fatGtdOjMYgqsR1zakVreZkcoCJPa4be9murlP9U7MxwYFAG_mMnme1d9Xn93JbWJBrasut45CZ-QIsRuBOgDxfTg35v4FXQcsdbYT_FllebqT_cVM9u8QyQ8yX02XkOOLUwWEYtPV5BH-vChVXUex0N2KABAxrwSzTs4RS_wAKusbCGLo4Oz_e7xPXKIDLqhCUpQhEUihVCMq2zxLReDbQhwwuDXEUyZkyoSAnNTQMxxYOCUpXITOYi5wpMWPoFLYwnY_0V4SLIWZgnhplOwrrQTiCEFDTngVaxKGgbbdcrMZKOSN70M7kdza12G-Fm4L3lTpkf8u3tId_Rpxnq1tFC-TDVG2AIlvmmk-Izx6ZcIw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential-Knowledge-Aware+Next+POI+Recommendation%3A+A+Meta-Learning+Approach&rft.jtitle=ACM+transactions+on+information+systems&rft.au=Cui%2C+Yue&rft.au=Sun%2C+Hao&rft.au=Zhao%2C+Yan&rft.au=Yin%2C+Hongzhi&rft.date=2022-04-01&rft.issn=1046-8188&rft.eissn=1558-2868&rft.volume=40&rft.issue=2&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1145%2F3460198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3460198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-8188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-8188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-8188&client=summon