Sequential-Knowledge-Aware Next POI Recommendation: A Meta-Learning Approach
Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models...
Saved in:
Published in | ACM transactions on information systems Vol. 40; no. 2; pp. 1 - 22 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models are known to be primary in leveraging these problems. However, as most knowledge graphs are constructed statically, sequential information is yet integrated. In this work, we propose a meta-learned sequential-knowledge-aware recommender (Meta-SKR), which utilizes sequential, spatio-temporal, and social knowledge to recommend the next POI for a location-based social network user. The framework mainly contains four modules. First, in the graph construction module, a novel type of knowledge graph—the sequential knowledge graph, which is sensitive to the check-in order of POIs—is built to model users’ check-in patterns. To deal with the problem of data sparsity, a meta-learning module based on latent embedding optimization is then introduced to generate user-conditioned parameters of the subsequent sequential-knowledge-aware embedding module, where representation vectors of entities (nodes) and relations (edges) are learned. In this embedding module, gated recurrent units are adapted to distill intra- and inter-sequential knowledge graph information. We also design a novel knowledge-aware attention mechanism to capture information surrounding a given node. Finally, POI recommendation is provided by inferring potential links of knowledge graphs in the prediction module. Evaluations on three real-world check-in datasets show that Meta-SKR can achieve high recommendation accuracy even with sparse data. |
---|---|
AbstractList | Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However, sparse, imbalanced check-in data and diverse user check-in patterns pose severe challenges for POI recommendation tasks. Knowledge-aware models are known to be primary in leveraging these problems. However, as most knowledge graphs are constructed statically, sequential information is yet integrated. In this work, we propose a meta-learned sequential-knowledge-aware recommender (Meta-SKR), which utilizes sequential, spatio-temporal, and social knowledge to recommend the next POI for a location-based social network user. The framework mainly contains four modules. First, in the graph construction module, a novel type of knowledge graph—the sequential knowledge graph, which is sensitive to the check-in order of POIs—is built to model users’ check-in patterns. To deal with the problem of data sparsity, a meta-learning module based on latent embedding optimization is then introduced to generate user-conditioned parameters of the subsequent sequential-knowledge-aware embedding module, where representation vectors of entities (nodes) and relations (edges) are learned. In this embedding module, gated recurrent units are adapted to distill intra- and inter-sequential knowledge graph information. We also design a novel knowledge-aware attention mechanism to capture information surrounding a given node. Finally, POI recommendation is provided by inferring potential links of knowledge graphs in the prediction module. Evaluations on three real-world check-in datasets show that Meta-SKR can achieve high recommendation accuracy even with sparse data. |
Author | Yin, Hongzhi Sun, Hao Zhao, Yan Cui, Yue Zheng, Kai |
Author_xml | – sequence: 1 givenname: Yue surname: Cui fullname: Cui, Yue organization: University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Hao surname: Sun fullname: Sun, Hao organization: University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 3 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: Aalborg University, Denmark – sequence: 4 givenname: Hongzhi orcidid: 0000-0003-1395-261X surname: Yin fullname: Yin, Hongzhi organization: The University of Queensland, Brisbane, Queensland, Australia – sequence: 5 givenname: Kai surname: Zheng fullname: Zheng, Kai organization: University of Electronic Science and Technology of China, Chengdu, Sichuan, China |
BookMark | eNplkMtOwzAURC1UJNqC-IXsWBmuHcdx2UUVj4pAEY915Ng3JShxgmNU-HsCdAWrmZGORpqZkYnrHBJyzOCUMZGcxUICW6g9MmVJoihXUk1GD0JSxZQ6ILNheAUYs4QpyR_x7R1dqHVDb1y3bdBukGZb7TG6w48Q3a9X0QOarm3RWR3qzp1HWXSLQdMctXe120RZ3_tOm5dDsl_pZsCjnc7J8-XF0_Ka5uur1TLLqeELFmjFUqisqFIjELUCDgpQCJkwKC03iRCp5TZFaaUtrYQqjq0y2pRpKS1P43hOTn57je-GwWNV9L5utf8sGBTfJxS7E0aS_iFNHX5WBK_r5h__BT_tXtc |
CitedBy_id | crossref_primary_10_1109_TKDE_2023_3240832 crossref_primary_10_1016_j_eswa_2024_126204 crossref_primary_10_1016_j_ipm_2024_103751 crossref_primary_10_1145_3617827 crossref_primary_10_1016_j_knosys_2023_110579 crossref_primary_10_1145_3597930 crossref_primary_10_1007_s10489_022_03858_w crossref_primary_10_1007_s11280_024_01279_y crossref_primary_10_1007_s00521_024_09711_0 crossref_primary_10_1145_3592789 crossref_primary_10_1145_3627824 crossref_primary_10_1145_3649311 crossref_primary_10_1007_s11042_023_17948_5 crossref_primary_10_1016_j_eswa_2023_121931 crossref_primary_10_1145_3597458 crossref_primary_10_1016_j_ins_2022_12_024 crossref_primary_10_1145_3605554 crossref_primary_10_1016_j_knosys_2023_110884 crossref_primary_10_1016_j_knosys_2024_111674 crossref_primary_10_1145_3477596 crossref_primary_10_7717_peerj_cs_2284 crossref_primary_10_1016_j_entcom_2024_100660 crossref_primary_10_1145_3649436 crossref_primary_10_1007_s11227_023_05278_0 crossref_primary_10_1007_s00521_022_07825_x crossref_primary_10_3390_electronics12183939 crossref_primary_10_1109_ACCESS_2023_3310816 crossref_primary_10_1109_TCSS_2024_3396506 crossref_primary_10_1109_ACCESS_2022_3194536 crossref_primary_10_1109_ACCESS_2024_3480215 crossref_primary_10_1109_TKDE_2022_3218851 crossref_primary_10_1145_3709137 crossref_primary_10_1016_j_future_2023_03_003 crossref_primary_10_1109_TCSS_2024_3411043 crossref_primary_10_1016_j_knosys_2024_112475 crossref_primary_10_1109_TKDE_2024_3509480 |
Cites_doi | 10.1609/aaai.v34i01.5353 10.1145/3357384.3358171 10.1109/IJCNN.2019.8852100 10.1145/3159652.3170459 10.5555/3294996.3295163 10.5555/2999792.2999923 10.1145/3159652.3159656 10.1145/3295499 10.1007/s11704-018-8011-2 10.1109/TKDE.2018.2833443 10.1145/3109859.3109889 10.1145/2983323.2983711 10.1145/2009916.2009962 10.5555/3305381.3305498 10.1145/3397271.3401049 10.1145/2939672.2939673 10.1145/2661829.2662002 10.3115/v1/D14-1179 10.1145/3292500.3330884 10.1145/2507157.2507182 10.1145/3340531.3411876 10.5555/3015812.3015841 10.1145/3292500.3330989 10.1016/j.neucom.2019.12.122 10.5555/3045390.3045585 10.5555/3157382.3157504 10.1145/3314578 10.1145/3308558.3313607 10.1109/TKDE.2018.2831682 10.1145/3308558.3313577 10.1145/2666310.2666400 10.14778/3115404.3115407 10.18653/v1/N18-2053 10.1145/3292500.3330859 10.1145/3178876.3186058 10.1145/2939672.2939773 10.5555/3304222.3304315 10.18653/v1/P19-1466 10.24963/ijcai.2020/445 10.1145/3340531.3411947 10.1145/3292500.3330726 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1145/3460198 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1558-2868 |
EndPage | 22 |
ExternalDocumentID | 10_1145_3460198 |
GroupedDBID | --Z -DZ -~X .4S .DC 23M 4.4 5GY 5VS 6J9 77K 85S 8US AAKMM AALFJ AAYFX AAYXX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS AEBYY AEFXT AEGXH AEJOY AENEX AENSD AETEA AFWIH AFWXC AIAGR AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CITATION CS3 D0L EBS EDO FEDTE GUFHI HGAVV H~9 I07 IAO ICD IOF LHSKQ MK~ ML~ MS~ P1C P2P PQQKQ RNS ROL RXW TAE TUS U5U UHB UPT WH7 X6Y XH6 XSW YR2 ZCA |
ID | FETCH-LOGICAL-c291t-f170fd4f7c4eea802080e446510bd2c5447d2d7e6d6dbd60f33d8cacb7b6d2733 |
ISSN | 1046-8188 |
IngestDate | Thu Jul 03 08:24:23 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-f170fd4f7c4eea802080e446510bd2c5447d2d7e6d6dbd60f33d8cacb7b6d2733 |
ORCID | 0000-0003-1395-261X |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1145_3460198 crossref_citationtrail_10_1145_3460198 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | ACM transactions on information systems |
PublicationYear | 2022 |
References | e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 Chen Junkun (e_1_2_1_3_1) 2018 e_1_2_1_28_1 Wei Tianxin (e_1_2_1_42_1) 2020 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 Kang Wangcheng (e_1_2_1_13_1) 2018 Kim Jongmin (e_1_2_1_14_1) 2019 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 Sung Flood (e_1_2_1_36_1) 2018 e_1_2_1_37_1 e_1_2_1_18_1 Thomas (e_1_2_1_15_1) 2017 Dettmers Tim (e_1_2_1_5_1) 2018 e_1_2_1_40_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 Luo Yadan (e_1_2_1_23_1) 2020 e_1_2_1_29_1 Wu Shu (e_1_2_1_43_1) 2018 Rusu Andrei A. (e_1_2_1_30_1) 2019 Higgins Irina (e_1_2_1_12_1) 2017 Velickovic Petar (e_1_2_1_39_1) 2018 e_1_2_1_7_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – ident: e_1_2_1_34_1 doi: 10.1609/aaai.v34i01.5353 – volume-title: Proceedings of ICLR year: 2017 ident: e_1_2_1_12_1 – ident: e_1_2_1_44_1 doi: 10.1145/3357384.3358171 – ident: e_1_2_1_1_1 doi: 10.1109/IJCNN.2019.8852100 – volume-title: Proceedings of AAAI year: 2018 ident: e_1_2_1_5_1 – volume-title: ProceedingsofICDM year: 2020 ident: e_1_2_1_42_1 – volume-title: Proceedings of CVPR year: 2019 ident: e_1_2_1_14_1 – ident: e_1_2_1_48_1 doi: 10.1145/3159652.3170459 – ident: e_1_2_1_33_1 doi: 10.5555/3294996.3295163 – ident: e_1_2_1_2_1 doi: 10.5555/2999792.2999923 – ident: e_1_2_1_37_1 doi: 10.1145/3159652.3159656 – ident: e_1_2_1_38_1 doi: 10.1145/3159652.3159656 – ident: e_1_2_1_29_1 doi: 10.1145/3295499 – ident: e_1_2_1_53_1 doi: 10.1007/s11704-018-8011-2 – ident: e_1_2_1_32_1 doi: 10.1109/TKDE.2018.2833443 – ident: e_1_2_1_27_1 doi: 10.1145/3109859.3109889 – ident: e_1_2_1_45_1 doi: 10.1145/2983323.2983711 – ident: e_1_2_1_49_1 doi: 10.1145/2009916.2009962 – volume-title: Proceedings of ICLR year: 2018 ident: e_1_2_1_39_1 – ident: e_1_2_1_9_1 doi: 10.5555/3305381.3305498 – ident: e_1_2_1_8_1 doi: 10.1145/3397271.3401049 – ident: e_1_2_1_51_1 doi: 10.1145/2939672.2939673 – ident: e_1_2_1_22_1 doi: 10.1145/2661829.2662002 – ident: e_1_2_1_4_1 doi: 10.3115/v1/D14-1179 – ident: e_1_2_1_28_1 doi: 10.1145/3292500.3330884 – volume-title: Proceedings of AAAI year: 2018 ident: e_1_2_1_3_1 – ident: e_1_2_1_10_1 doi: 10.1145/2507157.2507182 – ident: e_1_2_1_17_1 doi: 10.1145/3340531.3411876 – ident: e_1_2_1_18_1 doi: 10.5555/3015812.3015841 – ident: e_1_2_1_41_1 doi: 10.1145/3292500.3330989 – volume-title: McAuley year: 2018 ident: e_1_2_1_13_1 – ident: e_1_2_1_19_1 doi: 10.1016/j.neucom.2019.12.122 – ident: e_1_2_1_31_1 doi: 10.5555/3045390.3045585 – ident: e_1_2_1_40_1 doi: 10.5555/3157382.3157504 – ident: e_1_2_1_46_1 doi: 10.1145/3314578 – ident: e_1_2_1_24_1 doi: 10.1145/3308558.3313607 – volume-title: Proceedings of ICLR year: 2017 ident: e_1_2_1_15_1 – volume-title: Proceedings of AAAI year: 2020 ident: e_1_2_1_23_1 – volume-title: Proceedings of AAAI year: 2018 ident: e_1_2_1_43_1 – volume-title: Proceedings of ICLR year: 2019 ident: e_1_2_1_30_1 – ident: e_1_2_1_11_1 doi: 10.1109/TKDE.2018.2831682 – ident: e_1_2_1_47_1 doi: 10.1145/3308558.3313577 – ident: e_1_2_1_52_1 doi: 10.1145/2666310.2666400 – volume-title: Proceedings of CVPR year: 2018 ident: e_1_2_1_36_1 – ident: e_1_2_1_21_1 doi: 10.14778/3115404.3115407 – ident: e_1_2_1_26_1 doi: 10.18653/v1/N18-2053 – ident: e_1_2_1_16_1 doi: 10.1145/3292500.3330859 – ident: e_1_2_1_7_1 doi: 10.1145/3178876.3186058 – ident: e_1_2_1_20_1 doi: 10.1145/2939672.2939773 – ident: e_1_2_1_50_1 doi: 10.5555/3304222.3304315 – ident: e_1_2_1_25_1 doi: 10.18653/v1/P19-1466 – ident: e_1_2_1_54_1 doi: 10.24963/ijcai.2020/445 – ident: e_1_2_1_35_1 doi: 10.1145/3340531.3411947 – ident: e_1_2_1_6_1 doi: 10.1145/3292500.3330726 |
SSID | ssj0004660 |
Score | 2.532085 |
Snippet | Accurately recommending the next point of interest (POI) has become a fundamental problem with the rapid growth of location-based social networks. However,... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 1 |
Title | Sequential-Knowledge-Aware Next POI Recommendation: A Meta-Learning Approach |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc6kKa9THxN6wbID4gXZJbEjp3yFvGhAi2bVJDoU5XYDiBBi1gqJP56zrGTmm6IjZcoiuxI8f1yvjvf_Q6hrUx3dAxmNFhunBGwwE03wFASmnCeUZkFTJni5P4Z716wk8v4stUqvKylaZnvyqe_1pW8R6rwDORqqmT_Q7LNS-EB3IN84QoShus_yXhQ5UHDP3pLTuvYGEkfTTLXGSjdnV8_j41dOLm70653ki1E7-syI70mKOJoxX07Nd3vm-4RdSvx6kzBcaxWgPntEZ1XCdZVUsBw2sBkMK3UWTebeKHpKiw7nOFxaAkMupPx1dP1jR-AAN91lrdidSa42AT2fatGtdOjMYgqsR1zakVreZkcoCJPa4be9murlP9U7MxwYFAG_mMnme1d9Xn93JbWJBrasut45CZ-QIsRuBOgDxfTg35v4FXQcsdbYT_FllebqT_cVM9u8QyQ8yX02XkOOLUwWEYtPV5BH-vChVXUex0N2KABAxrwSzTs4RS_wAKusbCGLo4Oz_e7xPXKIDLqhCUpQhEUihVCMq2zxLReDbQhwwuDXEUyZkyoSAnNTQMxxYOCUpXITOYi5wpMWPoFLYwnY_0V4SLIWZgnhplOwrrQTiCEFDTngVaxKGgbbdcrMZKOSN70M7kdza12G-Fm4L3lTpkf8u3tId_Rpxnq1tFC-TDVG2AIlvmmk-Izx6ZcIw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential-Knowledge-Aware+Next+POI+Recommendation%3A+A+Meta-Learning+Approach&rft.jtitle=ACM+transactions+on+information+systems&rft.au=Cui%2C+Yue&rft.au=Sun%2C+Hao&rft.au=Zhao%2C+Yan&rft.au=Yin%2C+Hongzhi&rft.date=2022-04-01&rft.issn=1046-8188&rft.eissn=1558-2868&rft.volume=40&rft.issue=2&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1145%2F3460198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3460198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-8188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-8188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-8188&client=summon |