Optimal Design of High-Power Modular Multilevel Active Front-End Converter Using an Innovative Analytical Model
Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state model is generally used as the analytical circuit model that neglects the switching frequency and harmonic values. Also, most of the researc...
Saved in:
Published in | IEEE transactions on plasma science Vol. 46; no. 10; pp. 3417 - 3426 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0093-3813 1939-9375 |
DOI | 10.1109/TPS.2018.2844352 |
Cover
Abstract | Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state model is generally used as the analytical circuit model that neglects the switching frequency and harmonic values. Also, most of the researchers neglect the saturation effect of inductor core to simplify the analytical model. Contrary to the transformers, choosing the maximum flux density of inductance core is a sensitive issue, in order to design and minimize the inductors. Increasing the flux density reduces the inductor size, but getting close to the saturation region might alter the performance of the converter. This paper presents a systematic optimization approach to minimize high-power MMCs with saturable arm inductance considering technical, thermal, and manufacturing constraints. An accurate steady-state analytical model of MMC converter has been proposed and verified. A combination of converter circuit model and inductance electromagnetic model is employed to find the optimal arm inductances and capacitor values. The effect of nonideal inductance core on converter outputs has been investigated. A dimensioning model of inductor consisting of electromagnetic and thermal models is presented. To compute the optimal inductor size, a novel hybrid optimization loop is proposed including the analytical model of the converter and the inductor in which circuit, electromagnetic, and thermal properties are taken into consideration. In order to increase the accuracy of the dimensioning model, an internal verification loop is employed to verify and correct the analytical model using finite-element analysis. The proposed optimization loop aims to find the minimum inductor size considering technical and manufacturing constraints. Finally, the converter mass sensitivity of MMC converter versus some important constraints, such as temperature rise and capacitor ripple, has been investigated. |
---|---|
AbstractList | Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state model is generally used as the analytical circuit model that neglects the switching frequency and harmonic values. Also, most of the researchers neglect the saturation effect of inductor core to simplify the analytical model. Contrary to the transformers, choosing the maximum flux density of inductance core is a sensitive issue, in order to design and minimize the inductors. Increasing the flux density reduces the inductor size, but getting close to the saturation region might alter the performance of the converter. This paper presents a systematic optimization approach to minimize high-power MMCs with saturable arm inductance considering technical, thermal, and manufacturing constraints. An accurate steady-state analytical model of MMC converter has been proposed and verified. A combination of converter circuit model and inductance electromagnetic model is employed to find the optimal arm inductances and capacitor values. The effect of nonideal inductance core on converter outputs has been investigated. A dimensioning model of inductor consisting of electromagnetic and thermal models is presented. To compute the optimal inductor size, a novel hybrid optimization loop is proposed including the analytical model of the converter and the inductor in which circuit, electromagnetic, and thermal properties are taken into consideration. In order to increase the accuracy of the dimensioning model, an internal verification loop is employed to verify and correct the analytical model using finite-element analysis. The proposed optimization loop aims to find the minimum inductor size considering technical and manufacturing constraints. Finally, the converter mass sensitivity of MMC converter versus some important constraints, such as temperature rise and capacitor ripple, has been investigated. |
Author | Zabihinejad, Amin Viarouge, Philippe |
Author_xml | – sequence: 1 givenname: Amin orcidid: 0000-0003-1138-2879 surname: Zabihinejad fullname: Zabihinejad, Amin email: amin.zabihinejad.1@ulaval.ca organization: Universite Laval, Quebec, QC, Canada – sequence: 2 givenname: Philippe surname: Viarouge fullname: Viarouge, Philippe email: philippe.viarouge@gel.ulaval.ca organization: Universite Laval, Quebec, QC, Canada |
BookMark | eNp9kE1LAzEQhoMoWKt3wUvA89ZMku1mj6V-VFAU1POyzc7WlJjUJK347422ePDgaS7P-87Mc0T2nXdIyCmwEQCrL54fn0acgRpxJaUo-R4ZQC3qohZVuU8GjNWiEArEITmKcckYyJLxAfEPq2TeWksvMZqFo76nM7N4LR79BwZ677u1bfNc22QsbtDSiU5mg_Q6eJeKK9fRqXcbDCnTL9G4BW0dvXXOb9ofbuJa-5mMzhtyGdpjctC3NuLJbg7Jy_XV83RW3D3c3E4nd4XmNaSiB96zMSiEUkuo1FzIMW8FSNnNtYAONEDZKc71mM1R1or3QvSi1Kzsqq5HMSTn295V8O9rjKlZ-nXIx8SGA1SgqrqCTI23lA4-xoB9o03Kh-ffQmtsA6z5lttkuc233GYnNwfZn-AqZI3h87_I2TZiEPEXV0KpSpbiC1mghq4 |
CODEN | ITPSBD |
CitedBy_id | crossref_primary_10_1109_TEC_2022_3209553 crossref_primary_10_1007_s00202_023_02016_w crossref_primary_10_1109_TPS_2020_2967412 crossref_primary_10_1109_TPEL_2020_2977977 |
Cites_doi | 10.1109/EPEC.2011.6070261 10.1109/TPS.2015.2423234 10.1109/APEC.2013.6520470 10.1002/tee.21697 10.1109/EPE.2013.6634660 10.1109/TPEL.2012.2227818 10.1109/TDEI.2015.005047 10.1109/TPEL.2011.2159809 10.1017/S0962492904000248 10.1109/TPWRD.2012.2188911 10.1109/TPEL.2015.2438952 10.1109/JESTPE.2016.2623794 10.1049/iet-pel.2014.0328 10.1109/TIE.2011.2159349 10.1109/TPEL.2011.2155671 10.1109/TPEL.2009.2014236 10.1109/ECCE-Asia.2013.6579166 10.1109/PESC.2008.4591920 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TPS.2018.2844352 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1939-9375 |
EndPage | 3426 |
ExternalDocumentID | 10_1109_TPS_2018_2844352 8388745 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 TWZ VH1 AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-f12f0618e15c4178b3462a3144dbc31d1c115d822c60be4982f33f35c05d7dfe3 |
IEDL.DBID | RIE |
ISSN | 0093-3813 |
IngestDate | Mon Jun 30 02:26:53 EDT 2025 Tue Jul 01 02:30:19 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Wed Aug 27 02:52:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-f12f0618e15c4178b3462a3144dbc31d1c115d822c60be4982f33f35c05d7dfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1138-2879 |
PQID | 2117187971 |
PQPubID | 36903 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8388745 crossref_citationtrail_10_1109_TPS_2018_2844352 proquest_journals_2117187971 crossref_primary_10_1109_TPS_2018_2844352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on plasma science |
PublicationTitleAbbrev | TPS |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 d’arco (ref9) 2012 nez (ref4) 2013; 5 ref10 ref2 ref1 ref17 ref16 ref18 asimakopoulos (ref11) 2014 (ref26) 0 aguglia (ref25) 2014 ref24 candolfi (ref20) 2015 ref23 xu (ref19) 2012; 36 ref22 ref21 li (ref12) 2016 ref28 ref27 ref7 ref3 ref6 ilves (ref14) 2012 ref5 serbia (ref8) 2014 |
References_xml | – year: 2016 ident: ref12 article-title: Design, control and protection of modular multilevel converter (MMC)-based multi-terminal HVDC system – ident: ref5 doi: 10.1109/EPEC.2011.6070261 – ident: ref22 doi: 10.1109/TPS.2015.2423234 – ident: ref16 doi: 10.1109/APEC.2013.6520470 – ident: ref24 doi: 10.1002/tee.21697 – ident: ref13 doi: 10.1109/EPE.2013.6634660 – ident: ref28 doi: 10.1109/TPEL.2012.2227818 – ident: ref21 doi: 10.1109/TDEI.2015.005047 – volume: 5 year: 2013 ident: ref4 article-title: Multilevel topologies: Can new inverters improve. Solar farm output? publication-title: Sol Ind – start-page: 1 year: 2015 ident: ref20 article-title: FEA identification of high order generalized equivalent circuits for MF high voltage transformers publication-title: Proc 17th Eur Conf Power Electron Appl (EPE ECCE-Eur ) – ident: ref15 doi: 10.1109/TPEL.2011.2159809 – ident: ref27 doi: 10.1017/S0962492904000248 – volume: 36 start-page: 256 year: 2012 ident: ref19 article-title: An optimized capacitance voltage balancing algorithm for modularized multilevel converter publication-title: Power Syst Technol – start-page: 1 year: 2014 ident: ref11 article-title: Design of a modular multilevel converter as an active front-end for a magnet supply application publication-title: Proc 16th Eur Conf Power Electron Appl (EPE-ECCE Eur ) – year: 2014 ident: ref25 article-title: Grid interface challenges and candidate solutions for the Compact Linear Collider's (CLIC) klystron modulators – ident: ref2 doi: 10.1109/TPWRD.2012.2188911 – start-page: 1 year: 2012 ident: ref9 article-title: A modular converter with embedded battery cell balancing for electric vehicles publication-title: Proc Elect Syst Aircr Railway Ship Propuls (ESARS) – ident: ref23 doi: 10.1109/TPEL.2015.2438952 – ident: ref10 doi: 10.1109/JESTPE.2016.2623794 – start-page: 1 year: 2012 ident: ref14 article-title: Analysis of arm current harmonics in modular multilevel converters with main-circuit filters publication-title: Proc 9th Int Multi-Conf Systems Signals and Devices (SSD) – year: 0 ident: ref26 – ident: ref18 doi: 10.1049/iet-pel.2014.0328 – year: 2014 ident: ref8 article-title: Modular multilevel converters for HVDC power stations – ident: ref3 doi: 10.1109/TIE.2011.2159349 – ident: ref7 doi: 10.1109/TPEL.2011.2155671 – ident: ref1 doi: 10.1109/TPEL.2009.2014236 – ident: ref17 doi: 10.1109/ECCE-Asia.2013.6579166 – ident: ref6 doi: 10.1109/PESC.2008.4591920 |
SSID | ssj0014502 |
Score | 2.2499218 |
Snippet | Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3417 |
SubjectTerms | Analytical models Capacitors Circuits Constraint modelling Converters Design Design optimization Finite element method Flux density Global optimization Inductance Inductors Integrated circuit modeling Manufacturing Mathematical analysis Metal matrix composites Model accuracy Modular design modular multilevel converter (MMC) nonideal inductor core Optimization Saturation Steady state models Steady-state Thermal analysis Thermal properties Thermodynamic properties volume minimization |
Title | Optimal Design of High-Power Modular Multilevel Active Front-End Converter Using an Innovative Analytical Model |
URI | https://ieeexplore.ieee.org/document/8388745 https://www.proquest.com/docview/2117187971 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BJSQudHmJ7rLIBy5IpHViJ3GOiG0FSN1FAqTeoviRCyVZbdvL_vqdcdxqBQhxiXKwLUsznof9zTcA59oqmxnMTlQhE0xQ8KRraS1-dJ7lwuiipmrk6c_s5knezdLZFlxuamGccx585ob069_ybWtWdFU2UkIRO_s2bKOadbVamxcDmfKOGbwQEXohsX6S5MXo8f6BMFxqiKZY-hKj_1yQ76nyxhB77zLpw3S9rw5U8jxcLfXQ_H1F2fjZjX-BvRBmsqtOL_ZhyzUH0A8hJwsHenEAOx4BahaH0P5C4_GCc354TAdra0YYkOie2qixaWsJr8p8ve6cgEbsyltKNiEGhGjcWHZNAHZCiDKPQ2BVw25Dz1Uc59lP_MU5LebmR_A0GT9e30ShG0NkkiJeRnWc1Oj8lYtTI-NcaSGzpBKYkFltRGxjg8GlxXjDZFw7WaikFqIWqeGpzW3txDH0mrZxJ8B4VRVOp8Ji_CctzzFEU7xOhKxUrhMuBzBaC6g0gaqcOmbMS5-y8KJEkZYk0jKIdAAXmxm_O5qOD8YekoQ244JwBnC61oEynONFielxTv3Y8_jr-7O-wS6t3cH7TqG3_LNy3zFMWeozr5__ABJp4tM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6lQVV7odCHCBTYA5dKOFl71_b6WJVGCTSlUlOpN8v78KXBrkhy4dczs95EiKKKi-XDrr3S7M5j55tvAD5pq2xmMDpRhUwwQMGTrqW1-NB5lguji5qqkWfX2eROfr1P73vweVsL45zz4DM3pFefy7etWdNV2UgJRezsO_AC7b5Mu2qtbc5AprzjBi9EhHZIbJKSvBjNb24JxaWGqIylLzL6wwj5ripPVLG3L-MDmG1W1sFKHobrlR6aX3-RNv7v0l_By-BosvNuZ7yGnmsO4SA4nSwc6eUh7HoMqFkeQfsd1ccPnPPFozpYWzNCgUQ31EiNzVpLiFXmK3YXBDVi515XsjFxIESXjWUXBGEnjCjzSARWNWwauq7iOM9_4q_O6WNucQx348v5xSQK_RgikxTxKqrjpEbzr1ycGhnnSguZJZXAkMxqI2IbG3QvLXocJuPayUIltRC1SA1PbW5rJ06g37SNewOMV1XhdCoseoDS8hydNMXrRMhK5TrhcgCjjYBKE8jKqWfGovRBCy9KFGlJIi2DSAdwtp3x2BF1PDP2iCS0HReEM4DTzR4ow0lelhgg59SRPY_f_nvWR9ibzGdX5dX0-ts72Kf_dGC_U-ivfq7de3RaVvqD36u_ARsY5iA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Design+of+High-Power+Modular+Multilevel+Active+Front-End+Converter+Using+an+Innovative+Analytical+Model&rft.jtitle=IEEE+transactions+on+plasma+science&rft.au=Zabihinejad%2C+Amin&rft.au=Viarouge%2C+Philippe&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=0093-3813&rft.volume=46&rft.issue=10&rft.spage=3417&rft.epage=3426&rft_id=info:doi/10.1109%2FTPS.2018.2844352&rft.externalDocID=8388745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-3813&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-3813&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-3813&client=summon |