Optimal Design of High-Power Modular Multilevel Active Front-End Converter Using an Innovative Analytical Model

Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state model is generally used as the analytical circuit model that neglects the switching frequency and harmonic values. Also, most of the researc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on plasma science Vol. 46; no. 10; pp. 3417 - 3426
Main Authors Zabihinejad, Amin, Viarouge, Philippe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0093-3813
1939-9375
DOI10.1109/TPS.2018.2844352

Cover

Abstract Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state model is generally used as the analytical circuit model that neglects the switching frequency and harmonic values. Also, most of the researchers neglect the saturation effect of inductor core to simplify the analytical model. Contrary to the transformers, choosing the maximum flux density of inductance core is a sensitive issue, in order to design and minimize the inductors. Increasing the flux density reduces the inductor size, but getting close to the saturation region might alter the performance of the converter. This paper presents a systematic optimization approach to minimize high-power MMCs with saturable arm inductance considering technical, thermal, and manufacturing constraints. An accurate steady-state analytical model of MMC converter has been proposed and verified. A combination of converter circuit model and inductance electromagnetic model is employed to find the optimal arm inductances and capacitor values. The effect of nonideal inductance core on converter outputs has been investigated. A dimensioning model of inductor consisting of electromagnetic and thermal models is presented. To compute the optimal inductor size, a novel hybrid optimization loop is proposed including the analytical model of the converter and the inductor in which circuit, electromagnetic, and thermal properties are taken into consideration. In order to increase the accuracy of the dimensioning model, an internal verification loop is employed to verify and correct the analytical model using finite-element analysis. The proposed optimization loop aims to find the minimum inductor size considering technical and manufacturing constraints. Finally, the converter mass sensitivity of MMC converter versus some important constraints, such as temperature rise and capacitor ripple, has been investigated.
AbstractList Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state model is generally used as the analytical circuit model that neglects the switching frequency and harmonic values. Also, most of the researchers neglect the saturation effect of inductor core to simplify the analytical model. Contrary to the transformers, choosing the maximum flux density of inductance core is a sensitive issue, in order to design and minimize the inductors. Increasing the flux density reduces the inductor size, but getting close to the saturation region might alter the performance of the converter. This paper presents a systematic optimization approach to minimize high-power MMCs with saturable arm inductance considering technical, thermal, and manufacturing constraints. An accurate steady-state analytical model of MMC converter has been proposed and verified. A combination of converter circuit model and inductance electromagnetic model is employed to find the optimal arm inductances and capacitor values. The effect of nonideal inductance core on converter outputs has been investigated. A dimensioning model of inductor consisting of electromagnetic and thermal models is presented. To compute the optimal inductor size, a novel hybrid optimization loop is proposed including the analytical model of the converter and the inductor in which circuit, electromagnetic, and thermal properties are taken into consideration. In order to increase the accuracy of the dimensioning model, an internal verification loop is employed to verify and correct the analytical model using finite-element analysis. The proposed optimization loop aims to find the minimum inductor size considering technical and manufacturing constraints. Finally, the converter mass sensitivity of MMC converter versus some important constraints, such as temperature rise and capacitor ripple, has been investigated.
Author Zabihinejad, Amin
Viarouge, Philippe
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0003-1138-2879
  surname: Zabihinejad
  fullname: Zabihinejad, Amin
  email: amin.zabihinejad.1@ulaval.ca
  organization: Universite Laval, Quebec, QC, Canada
– sequence: 2
  givenname: Philippe
  surname: Viarouge
  fullname: Viarouge, Philippe
  email: philippe.viarouge@gel.ulaval.ca
  organization: Universite Laval, Quebec, QC, Canada
BookMark eNp9kE1LAzEQhoMoWKt3wUvA89ZMku1mj6V-VFAU1POyzc7WlJjUJK347422ePDgaS7P-87Mc0T2nXdIyCmwEQCrL54fn0acgRpxJaUo-R4ZQC3qohZVuU8GjNWiEArEITmKcckYyJLxAfEPq2TeWksvMZqFo76nM7N4LR79BwZ677u1bfNc22QsbtDSiU5mg_Q6eJeKK9fRqXcbDCnTL9G4BW0dvXXOb9ofbuJa-5mMzhtyGdpjctC3NuLJbg7Jy_XV83RW3D3c3E4nd4XmNaSiB96zMSiEUkuo1FzIMW8FSNnNtYAONEDZKc71mM1R1or3QvSi1Kzsqq5HMSTn295V8O9rjKlZ-nXIx8SGA1SgqrqCTI23lA4-xoB9o03Kh-ffQmtsA6z5lttkuc233GYnNwfZn-AqZI3h87_I2TZiEPEXV0KpSpbiC1mghq4
CODEN ITPSBD
CitedBy_id crossref_primary_10_1109_TEC_2022_3209553
crossref_primary_10_1007_s00202_023_02016_w
crossref_primary_10_1109_TPS_2020_2967412
crossref_primary_10_1109_TPEL_2020_2977977
Cites_doi 10.1109/EPEC.2011.6070261
10.1109/TPS.2015.2423234
10.1109/APEC.2013.6520470
10.1002/tee.21697
10.1109/EPE.2013.6634660
10.1109/TPEL.2012.2227818
10.1109/TDEI.2015.005047
10.1109/TPEL.2011.2159809
10.1017/S0962492904000248
10.1109/TPWRD.2012.2188911
10.1109/TPEL.2015.2438952
10.1109/JESTPE.2016.2623794
10.1049/iet-pel.2014.0328
10.1109/TIE.2011.2159349
10.1109/TPEL.2011.2155671
10.1109/TPEL.2009.2014236
10.1109/ECCE-Asia.2013.6579166
10.1109/PESC.2008.4591920
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TPS.2018.2844352
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1939-9375
EndPage 3426
ExternalDocumentID 10_1109_TPS_2018_2844352
8388745
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-f12f0618e15c4178b3462a3144dbc31d1c115d822c60be4982f33f35c05d7dfe3
IEDL.DBID RIE
ISSN 0093-3813
IngestDate Mon Jun 30 02:26:53 EDT 2025
Tue Jul 01 02:30:19 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
Wed Aug 27 02:52:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f12f0618e15c4178b3462a3144dbc31d1c115d822c60be4982f33f35c05d7dfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1138-2879
PQID 2117187971
PQPubID 36903
PageCount 10
ParticipantIDs ieee_primary_8388745
crossref_citationtrail_10_1109_TPS_2018_2844352
proquest_journals_2117187971
crossref_primary_10_1109_TPS_2018_2844352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on plasma science
PublicationTitleAbbrev TPS
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
d’arco (ref9) 2012
nez (ref4) 2013; 5
ref10
ref2
ref1
ref17
ref16
ref18
asimakopoulos (ref11) 2014
(ref26) 0
aguglia (ref25) 2014
ref24
candolfi (ref20) 2015
ref23
xu (ref19) 2012; 36
ref22
ref21
li (ref12) 2016
ref28
ref27
ref7
ref3
ref6
ilves (ref14) 2012
ref5
serbia (ref8) 2014
References_xml – year: 2016
  ident: ref12
  article-title: Design, control and protection of modular multilevel converter (MMC)-based multi-terminal HVDC system
– ident: ref5
  doi: 10.1109/EPEC.2011.6070261
– ident: ref22
  doi: 10.1109/TPS.2015.2423234
– ident: ref16
  doi: 10.1109/APEC.2013.6520470
– ident: ref24
  doi: 10.1002/tee.21697
– ident: ref13
  doi: 10.1109/EPE.2013.6634660
– ident: ref28
  doi: 10.1109/TPEL.2012.2227818
– ident: ref21
  doi: 10.1109/TDEI.2015.005047
– volume: 5
  year: 2013
  ident: ref4
  article-title: Multilevel topologies: Can new inverters improve. Solar farm output?
  publication-title: Sol Ind
– start-page: 1
  year: 2015
  ident: ref20
  article-title: FEA identification of high order generalized equivalent circuits for MF high voltage transformers
  publication-title: Proc 17th Eur Conf Power Electron Appl (EPE ECCE-Eur )
– ident: ref15
  doi: 10.1109/TPEL.2011.2159809
– ident: ref27
  doi: 10.1017/S0962492904000248
– volume: 36
  start-page: 256
  year: 2012
  ident: ref19
  article-title: An optimized capacitance voltage balancing algorithm for modularized multilevel converter
  publication-title: Power Syst Technol
– start-page: 1
  year: 2014
  ident: ref11
  article-title: Design of a modular multilevel converter as an active front-end for a magnet supply application
  publication-title: Proc 16th Eur Conf Power Electron Appl (EPE-ECCE Eur )
– year: 2014
  ident: ref25
  article-title: Grid interface challenges and candidate solutions for the Compact Linear Collider's (CLIC) klystron modulators
– ident: ref2
  doi: 10.1109/TPWRD.2012.2188911
– start-page: 1
  year: 2012
  ident: ref9
  article-title: A modular converter with embedded battery cell balancing for electric vehicles
  publication-title: Proc Elect Syst Aircr Railway Ship Propuls (ESARS)
– ident: ref23
  doi: 10.1109/TPEL.2015.2438952
– ident: ref10
  doi: 10.1109/JESTPE.2016.2623794
– start-page: 1
  year: 2012
  ident: ref14
  article-title: Analysis of arm current harmonics in modular multilevel converters with main-circuit filters
  publication-title: Proc 9th Int Multi-Conf Systems Signals and Devices (SSD)
– year: 0
  ident: ref26
– ident: ref18
  doi: 10.1049/iet-pel.2014.0328
– year: 2014
  ident: ref8
  article-title: Modular multilevel converters for HVDC power stations
– ident: ref3
  doi: 10.1109/TIE.2011.2159349
– ident: ref7
  doi: 10.1109/TPEL.2011.2155671
– ident: ref1
  doi: 10.1109/TPEL.2009.2014236
– ident: ref17
  doi: 10.1109/ECCE-Asia.2013.6579166
– ident: ref6
  doi: 10.1109/PESC.2008.4591920
SSID ssj0014502
Score 2.2499218
Snippet Optimal design and selection of arm inductances have been as a challenging subject in the field of modular multilevel converter (MMC). The average steady-state...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3417
SubjectTerms Analytical models
Capacitors
Circuits
Constraint modelling
Converters
Design
Design optimization
Finite element method
Flux density
Global optimization
Inductance
Inductors
Integrated circuit modeling
Manufacturing
Mathematical analysis
Metal matrix composites
Model accuracy
Modular design
modular multilevel converter (MMC)
nonideal inductor core
Optimization
Saturation
Steady state models
Steady-state
Thermal analysis
Thermal properties
Thermodynamic properties
volume minimization
Title Optimal Design of High-Power Modular Multilevel Active Front-End Converter Using an Innovative Analytical Model
URI https://ieeexplore.ieee.org/document/8388745
https://www.proquest.com/docview/2117187971
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BJSQudHmJ7rLIBy5IpHViJ3GOiG0FSN1FAqTeoviRCyVZbdvL_vqdcdxqBQhxiXKwLUsznof9zTcA59oqmxnMTlQhE0xQ8KRraS1-dJ7lwuiipmrk6c_s5knezdLZFlxuamGccx585ob069_ybWtWdFU2UkIRO_s2bKOadbVamxcDmfKOGbwQEXohsX6S5MXo8f6BMFxqiKZY-hKj_1yQ76nyxhB77zLpw3S9rw5U8jxcLfXQ_H1F2fjZjX-BvRBmsqtOL_ZhyzUH0A8hJwsHenEAOx4BahaH0P5C4_GCc354TAdra0YYkOie2qixaWsJr8p8ve6cgEbsyltKNiEGhGjcWHZNAHZCiDKPQ2BVw25Dz1Uc59lP_MU5LebmR_A0GT9e30ShG0NkkiJeRnWc1Oj8lYtTI-NcaSGzpBKYkFltRGxjg8GlxXjDZFw7WaikFqIWqeGpzW3txDH0mrZxJ8B4VRVOp8Ji_CctzzFEU7xOhKxUrhMuBzBaC6g0gaqcOmbMS5-y8KJEkZYk0jKIdAAXmxm_O5qOD8YekoQ244JwBnC61oEynONFielxTv3Y8_jr-7O-wS6t3cH7TqG3_LNy3zFMWeozr5__ABJp4tM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6lQVV7odCHCBTYA5dKOFl71_b6WJVGCTSlUlOpN8v78KXBrkhy4dczs95EiKKKi-XDrr3S7M5j55tvAD5pq2xmMDpRhUwwQMGTrqW1-NB5lguji5qqkWfX2eROfr1P73vweVsL45zz4DM3pFefy7etWdNV2UgJRezsO_AC7b5Mu2qtbc5AprzjBi9EhHZIbJKSvBjNb24JxaWGqIylLzL6wwj5ripPVLG3L-MDmG1W1sFKHobrlR6aX3-RNv7v0l_By-BosvNuZ7yGnmsO4SA4nSwc6eUh7HoMqFkeQfsd1ccPnPPFozpYWzNCgUQ31EiNzVpLiFXmK3YXBDVi515XsjFxIESXjWUXBGEnjCjzSARWNWwauq7iOM9_4q_O6WNucQx348v5xSQK_RgikxTxKqrjpEbzr1ycGhnnSguZJZXAkMxqI2IbG3QvLXocJuPayUIltRC1SA1PbW5rJ06g37SNewOMV1XhdCoseoDS8hydNMXrRMhK5TrhcgCjjYBKE8jKqWfGovRBCy9KFGlJIi2DSAdwtp3x2BF1PDP2iCS0HReEM4DTzR4ow0lelhgg59SRPY_f_nvWR9ibzGdX5dX0-ts72Kf_dGC_U-ivfq7de3RaVvqD36u_ARsY5iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Design+of+High-Power+Modular+Multilevel+Active+Front-End+Converter+Using+an+Innovative+Analytical+Model&rft.jtitle=IEEE+transactions+on+plasma+science&rft.au=Zabihinejad%2C+Amin&rft.au=Viarouge%2C+Philippe&rft.date=2018-10-01&rft.pub=IEEE&rft.issn=0093-3813&rft.volume=46&rft.issue=10&rft.spage=3417&rft.epage=3426&rft_id=info:doi/10.1109%2FTPS.2018.2844352&rft.externalDocID=8388745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-3813&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-3813&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-3813&client=summon