Distributed Proximal Algorithms for Multiagent Optimization With Coupled Inequality Constraints
This article aims to address distributed optimization problems over directed and time-varying networks, where the global objective function consists of a sum of locally accessible convex objective functions subject to a feasible set constraint and coupled inequality constraints whose information is...
Saved in:
Published in | IEEE transactions on automatic control Vol. 66; no. 3; pp. 1223 - 1230 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2020.2989282 |
Cover
Loading…
Abstract | This article aims to address distributed optimization problems over directed and time-varying networks, where the global objective function consists of a sum of locally accessible convex objective functions subject to a feasible set constraint and coupled inequality constraints whose information is only partially accessible to each agent. For this problem, a distributed proximal-based algorithm, called distributed proximal primal-dual algorithm, is proposed based on the celebrated centralized proximal point algorithm. It is shown that the proposed algorithm can lead to the global optimal solution with a general step size, which is diminishing and nonsummable, but not necessarily square summable, and the saddle-point running evaluation error vanishes proportionally to <inline-formula><tex-math notation="LaTeX">O(1/\sqrt{k})</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">k>0</tex-math></inline-formula> is the iteration number. Finally, a simulation example is presented to corroborate the effectiveness of the proposed algorithm. |
---|---|
AbstractList | This article aims to address distributed optimization problems over directed and time-varying networks, where the global objective function consists of a sum of locally accessible convex objective functions subject to a feasible set constraint and coupled inequality constraints whose information is only partially accessible to each agent. For this problem, a distributed proximal-based algorithm, called distributed proximal primal-dual algorithm, is proposed based on the celebrated centralized proximal point algorithm. It is shown that the proposed algorithm can lead to the global optimal solution with a general step size, which is diminishing and nonsummable, but not necessarily square summable, and the saddle-point running evaluation error vanishes proportionally to [Formula Omitted], where [Formula Omitted] is the iteration number. Finally, a simulation example is presented to corroborate the effectiveness of the proposed algorithm. This article aims to address distributed optimization problems over directed and time-varying networks, where the global objective function consists of a sum of locally accessible convex objective functions subject to a feasible set constraint and coupled inequality constraints whose information is only partially accessible to each agent. For this problem, a distributed proximal-based algorithm, called distributed proximal primal-dual algorithm, is proposed based on the celebrated centralized proximal point algorithm. It is shown that the proposed algorithm can lead to the global optimal solution with a general step size, which is diminishing and nonsummable, but not necessarily square summable, and the saddle-point running evaluation error vanishes proportionally to <inline-formula><tex-math notation="LaTeX">O(1/\sqrt{k})</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">k>0</tex-math></inline-formula> is the iteration number. Finally, a simulation example is presented to corroborate the effectiveness of the proposed algorithm. |
Author | Li, Xiuxian Feng, Gang Xie, Lihua |
Author_xml | – sequence: 1 givenname: Xiuxian orcidid: 0000-0002-4938-0468 surname: Li fullname: Li, Xiuxian email: xxli@ieee.org organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong – sequence: 2 givenname: Gang orcidid: 0000-0001-8508-8416 surname: Feng fullname: Feng, Gang email: megfeng@cityu.edu.hk organization: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong – sequence: 3 givenname: Lihua orcidid: 0000-0002-7137-4136 surname: Xie fullname: Xie, Lihua email: elhxie@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
BookMark | eNp9kM9PwyAUx4mZidv0buKliedOoNDCcZm_lszMw4xHQls6WTrogCbOv17mFg8ePL3w8v289_iMwMBYowC4RnCCEOR3q-lsgiGGE8wZxwyfgSGilKWY4mwAhhAilsZ-fgFG3m_iMycEDYG41z44XfZB1cmrs596K9tk2q6t0-Fj65PGuuSlb4OWa2VCsuyC3uovGbQ1yXuMJDPbd22E50btetnqsI8tE4dKbYK_BOeNbL26OtUxeHt8WM2e08XyaT6bLtIKcxRS1RQMSgIppRKjkjCJK1xSSTCXGW3KpmpQzXNV55xnNSVZIRlDkuImJ6XEMBuD2-Pcztldr3wQG9s7E1cKTHjMFySnMZUfU5Wz3jvViEqHn78czm0FguIgU0SZ4iBTnGRGEP4BOxdNuf1_yM0R0Uqp3ziHBc0Yyb4BKReCsA |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_automatica_2022_110551 crossref_primary_10_1109_LCSYS_2021_3084883 crossref_primary_10_1016_j_automatica_2023_111501 crossref_primary_10_1007_s11768_021_00061_z crossref_primary_10_1016_j_jfranklin_2024_107405 crossref_primary_10_1109_TNNLS_2022_3201711 crossref_primary_10_1016_j_neunet_2024_107085 crossref_primary_10_1109_TAC_2021_3095456 crossref_primary_10_1109_TCNS_2023_3237496 crossref_primary_10_1007_s10957_024_02393_7 crossref_primary_10_1016_j_ins_2023_120078 crossref_primary_10_1109_TAC_2022_3169955 crossref_primary_10_1109_ACCESS_2021_3082537 crossref_primary_10_1109_TAC_2023_3301957 crossref_primary_10_1016_j_knosys_2022_109443 crossref_primary_10_1007_s11432_020_3275_3 crossref_primary_10_1109_TAC_2023_3327319 crossref_primary_10_1016_j_ins_2022_02_055 crossref_primary_10_1109_TII_2024_3390567 crossref_primary_10_1109_TAC_2023_3347328 crossref_primary_10_1016_j_automatica_2024_111877 crossref_primary_10_1109_TAC_2020_3021011 crossref_primary_10_1109_TAC_2024_3360287 crossref_primary_10_1007_s11424_024_3413_8 crossref_primary_10_1109_TCYB_2021_3093076 crossref_primary_10_1109_TCYB_2021_3086183 crossref_primary_10_1109_TCYB_2023_3284822 crossref_primary_10_1007_s11042_024_19158_z crossref_primary_10_1016_j_automatica_2023_110919 crossref_primary_10_1016_j_cam_2024_116250 crossref_primary_10_1007_s12190_023_01908_1 crossref_primary_10_1109_TII_2022_3151913 |
Cites_doi | 10.1109/TAC.2017.2730481 10.1137/0329022 10.1016/j.automatica.2017.07.003 10.1007/s10107-011-0472-0 10.1109/TSP.2012.2198470 10.1109/TAC.2008.2009515 10.1109/TAC.2017.2713046 10.1109/TAC.2011.2161027 10.1109/TAC.2018.2816104 10.1109/TCNS.2019.2915626 10.1109/TAC.2016.2615066 10.1109/TAC.2016.2616646 10.1109/TAC.2018.2805260 10.1137/14096668X 10.1109/TSP.2015.2461520 10.1109/TAC.2017.2672698 10.1016/j.automatica.2017.12.053 10.1109/TAC.2014.2363299 10.1109/TAC.2016.2607023 10.1109/TAC.2016.2529285 10.1016/j.automatica.2018.11.056 10.1109/TAC.2018.2797164 10.1109/TSP.2017.2673815 10.1109/TAC.2014.2298712 10.1109/TAC.2014.2308612 10.1515/9781400831470 10.1137/070708111 10.1109/TAC.2017.2747505 10.1002/rnc.4040 10.1109/TAC.2011.2167817 10.1016/j.automatica.2017.06.011 10.1016/j.ifacol.2017.08.1874 10.1109/TAC.2018.2849616 10.1109/CDC.2015.7402401 10.1109/TAC.2014.2364096 10.1109/TAC.2017.2763782 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2020.2989282 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 1230 |
ExternalDocumentID | 10_1109_TAC_2020_2989282 9075384 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Education - Singapore grantid: MoE Tier 1 RG72/19 funderid: 10.13039/501100001459 – fundername: Research Grants Council of Hong Kong grantid: CityU-11207817 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-ef780a40555a21b48a2c2b5a429a35fbfcf1d96ed6993d5437a881a52f64ba203 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:16:16 EDT 2025 Tue Jul 01 03:36:34 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Wed Aug 27 02:43:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ef780a40555a21b48a2c2b5a429a35fbfcf1d96ed6993d5437a881a52f64ba203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4938-0468 0000-0001-8508-8416 0000-0002-7137-4136 |
PQID | 2494377465 |
PQPubID | 85475 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2494377465 crossref_primary_10_1109_TAC_2020_2989282 ieee_primary_9075384 crossref_citationtrail_10_1109_TAC_2020_2989282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 bertsekas (ref33) 2003 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref39 ref38 ref16 ref19 ref18 zanella (ref6) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 zhu (ref3) 2012; 57 ref5 bertsekas (ref17) 1989 |
References_xml | – ident: ref5 doi: 10.1109/TAC.2017.2730481 – ident: ref15 doi: 10.1137/0329022 – ident: ref36 doi: 10.1016/j.automatica.2017.07.003 – ident: ref18 doi: 10.1007/s10107-011-0472-0 – ident: ref8 doi: 10.1109/TSP.2012.2198470 – ident: ref2 doi: 10.1109/TAC.2008.2009515 – ident: ref19 doi: 10.1109/TAC.2017.2713046 – ident: ref7 doi: 10.1109/TAC.2011.2161027 – ident: ref29 doi: 10.1109/TAC.2018.2816104 – ident: ref34 doi: 10.1109/TCNS.2019.2915626 – year: 1989 ident: ref17 publication-title: Parallel and Distributed Computation Numerical Methods – ident: ref26 doi: 10.1109/TAC.2016.2615066 – year: 2003 ident: ref33 publication-title: Convex Analysis and Optimization – ident: ref38 doi: 10.1109/TAC.2016.2616646 – ident: ref14 doi: 10.1109/TAC.2018.2805260 – ident: ref13 doi: 10.1137/14096668X – ident: ref21 doi: 10.1109/TSP.2015.2461520 – ident: ref24 doi: 10.1109/TAC.2017.2672698 – ident: ref10 doi: 10.1016/j.automatica.2017.12.053 – ident: ref11 doi: 10.1109/TAC.2014.2363299 – ident: ref12 doi: 10.1109/TAC.2016.2607023 – ident: ref23 doi: 10.1109/TAC.2016.2529285 – ident: ref4 doi: 10.1016/j.automatica.2018.11.056 – ident: ref27 doi: 10.1109/TAC.2018.2797164 – start-page: 5917 year: 0 ident: ref6 article-title: Newton-Raphson consensus for distributed convex optimization publication-title: Proc IEEE Conf Decis Control Eur Control Conf – ident: ref20 doi: 10.1109/TSP.2017.2673815 – ident: ref9 doi: 10.1109/TAC.2014.2298712 – ident: ref35 doi: 10.1109/TAC.2014.2308612 – ident: ref1 doi: 10.1515/9781400831470 – ident: ref39 doi: 10.1137/070708111 – ident: ref16 doi: 10.1109/TAC.2017.2747505 – ident: ref31 doi: 10.1002/rnc.4040 – volume: 57 start-page: 151 year: 2012 ident: ref3 article-title: On distributed convex optimization under inequality and equality constraints publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2167817 – ident: ref30 doi: 10.1016/j.automatica.2017.06.011 – ident: ref37 doi: 10.1016/j.ifacol.2017.08.1874 – ident: ref28 doi: 10.1109/TAC.2018.2849616 – ident: ref25 doi: 10.1109/CDC.2015.7402401 – ident: ref22 doi: 10.1109/TAC.2014.2364096 – ident: ref32 doi: 10.1109/TAC.2017.2763782 |
SSID | ssj0016441 |
Score | 2.5657327 |
Snippet | This article aims to address distributed optimization problems over directed and time-varying networks, where the global objective function consists of a sum... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1223 |
SubjectTerms | Accessibility Algorithms Convergence Convex functions Coupled inequality constraints Distributed algorithms distributed optimization Iterative methods Linear programming Machine learning algorithms Minimization multiagent networks Multiagent systems Optimization proximal point algorithm (PPA) Saddle points |
Title | Distributed Proximal Algorithms for Multiagent Optimization With Coupled Inequality Constraints |
URI | https://ieeexplore.ieee.org/document/9075384 https://www.proquest.com/docview/2494377465 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJz34QiOKZg9eTCy0y3bbHglK0AT1AJFbs-1ulQiUQHvQX-9sWxpfMd562Gm3_XZ2Zjr7zQBcUO3ncmEaQRh5Bmpix3AVFwZaFsuRlAlpaqLw8J4PxuxuYk8qcFVyYZRS2eEz1dKXWS5fxmGqf5W1MZBD_WRVqGLglnO1yoyBtuv5rosKTN0yJWl67VG3h4EgNVu62jh16RcTlPVU-bERZ9alvwvDzbzyQyWvrTQJWuH7t5KN_534HuwUbibp5utiHypqcQDbn4oP1sG_1jVzdbsrJckjPng61xKz53g1TV7ma4LuLMn4uULTr8gDbi7zgrVJnnAI6cXpcobCtwuVczPfiO7_mXWdSNaHMO7fjHoDo2i3YITUsxJDRY5rCqYrgAlqBcwVNKSBLdBiiY4dBVEYWdLjSnL0aaTNOo5wXUvYNOIsENTsHEFtES_UMRCFTocdOSGjjKOHgIhLj3JbCkvhfaXbgPYGAT8sapHryc38LCYxPR8x8zVmfoFZAy5LiWVeh-OPsXUNQTmu-PoNaG5A9gtFXfsYfeKLOIzbJ79LncKWXs_5sbMm1JJVqs7QD0mC82wBfgBrqtnx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0R5emBBIm3iOk4yVgXUAgWGVnSznNiBij4QTQf49ZyTNOIlxJbBlzj5fL67nO87gBNq_FwubSuM4sBCTaxbvubSQsvieIoyqWxTKNy55a0eu-q7_RKcFbUwWuv08Jmumss0l68m0cz8KqthIIf6yRZgEe0-C7JqrSJnYCx7tu-iClO_SEraQa3baGIoSO2q4RunPv1ihNKuKj-24tS-XK5BZz6z7FjJc3WWhNXo_Rtp43-nvg6ruaNJGtnK2ICSHm_Cyif6wS0Q54Y11zS80orc44MHIyMxfJy8DpKn0ZSgQ0vSCl1pCrDIHW4vo7xukzzgENKczF6GKNwe66w6842YDqBp34lkug29y4tus2XlDResiAZOYunY823JDAeYpE7IfEkjGroSbZasu3EYR7GjAq4VR69GuazuSd93pEtjzkJJ7foOlMeTsd4FotHtcGMvYpRx9BEQcxVQ7irpaLyv8itQmyMgopyN3ExuKNKoxA4EYiYMZiLHrAKnhcRLxsTxx9gtA0ExLv_6FTiYgyxyVZ0KjD_xRTzG3b3fpY5hqdXt3Iib9u31Piyb1Z0dQjuAcvI604folSThUboYPwAEYt1B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Proximal+Algorithms+for+Multiagent+Optimization+With+Coupled+Inequality+Constraints&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Li%2C+Xiuxian&rft.au=Feng%2C+Gang&rft.au=Xie%2C+Lihua&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=66&rft.issue=3&rft.spage=1223&rft.epage=1230&rft_id=info:doi/10.1109%2FTAC.2020.2989282&rft.externalDocID=9075384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |