Energy-Constrained UAV Flight Scheduling for IoT Data Collection With 60 GHz Communication
In recent years, the data from Internet of Things (IoT) devices is growing at a rapid pace, and the data collection issues have attracted more and more attention. Distinct from existing solutions which usually adopted traditional wireless technologies achieving low-bandwidth data connections towards...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 71; no. 10; pp. 10991 - 11005 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the data from Internet of Things (IoT) devices is growing at a rapid pace, and the data collection issues have attracted more and more attention. Distinct from existing solutions which usually adopted traditional wireless technologies achieving low-bandwidth data connections towards IoT devices, this paper adopts the 60 GHz communication technology which is with increasing maturity, providing high-bandwidth wireless transmission for data-intensive IoT devices, such as high-definition (HD) cameras. However, 60 GHz links are subject to line-of-sight short communication range, therefore, we propose to use unmanned aerial vehicles (UAVs) to fly over data-intensive IoT devices and achieve short-range high-throughput 60 GHz transmission in this paper. Moreover, for a set of HD cameras deployed in the linear scenario, multiple UAV flights are assigned to collect data by 60 GHz communication. To this end, we investigate the UAV flight scheduling (UFS) problem which aims to minimize the number of UAV flights while satisfying the data requirements of all ground cameras (GCs) with limitations of UAV's energy and data storage. We prove that the UFS problem is NP-hard and design efficient algorithms with constant theoretical approximation ratios. Specifically, we first study a special case of the UFS problem where all the cameras are on the same direction of the UAV ground station, and propose two algorithms NF_SUFS and FF_SUFS, whose approximation ratios are both proved to be 2 by theoretical analysis. Then, we extend the algorithms to a more general case with the cameras on both directions of the ground station along the road, and put forward the FF_UFS algorithm that achieves an approximation ratio of 3. Finally, we conduct experiments to validate the effectiveness and efficiency of our algorithms. |
---|---|
AbstractList | In recent years, the data from Internet of Things (IoT) devices is growing at a rapid pace, and the data collection issues have attracted more and more attention. Distinct from existing solutions which usually adopted traditional wireless technologies achieving low-bandwidth data connections towards IoT devices, this paper adopts the 60 GHz communication technology which is with increasing maturity, providing high-bandwidth wireless transmission for data-intensive IoT devices, such as high-definition (HD) cameras. However, 60 GHz links are subject to line-of-sight short communication range, therefore, we propose to use unmanned aerial vehicles (UAVs) to fly over data-intensive IoT devices and achieve short-range high-throughput 60 GHz transmission in this paper. Moreover, for a set of HD cameras deployed in the linear scenario, multiple UAV flights are assigned to collect data by 60 GHz communication. To this end, we investigate the UAV flight scheduling (UFS) problem which aims to minimize the number of UAV flights while satisfying the data requirements of all ground cameras (GCs) with limitations of UAV’s energy and data storage. We prove that the UFS problem is NP-hard and design efficient algorithms with constant theoretical approximation ratios. Specifically, we first study a special case of the UFS problem where all the cameras are on the same direction of the UAV ground station, and propose two algorithms NF_SUFS and FF_SUFS, whose approximation ratios are both proved to be 2 by theoretical analysis. Then, we extend the algorithms to a more general case with the cameras on both directions of the ground station along the road, and put forward the FF_UFS algorithm that achieves an approximation ratio of 3. Finally, we conduct experiments to validate the effectiveness and efficiency of our algorithms. |
Author | Sun, Shengyu Luo, Junzhou Wu, Wenjia Shan, Feng Yang, Ming |
Author_xml | – sequence: 1 givenname: Wenjia orcidid: 0000-0002-4437-0850 surname: Wu fullname: Wu, Wenjia email: wjwu@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Shengyu surname: Sun fullname: Sun, Shengyu email: shengyusun@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Feng orcidid: 0000-0001-7398-8265 surname: Shan fullname: Shan, Feng email: shanfeng@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Ming orcidid: 0000-0002-8209-1000 surname: Yang fullname: Yang, Ming email: yangming2002@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Junzhou surname: Luo fullname: Luo, Junzhou email: jluo@seu.edu.cn organization: School of Computer Science and Engineering, Southeast University, Nanjing, China |
BookMark | eNp9kLtPwzAQxi1UJNrCjsRiiTnF5zwaj1XpS6rEQFoklsjxo3WV2sVJBvjrSWjFwMB0urvvu0_3G6CedVYhdA9kBEDYU7bNRpRQOgohjdKEXaE-sJAFLIxZD_UJgTRgcRTfoEFVHdo2ihj00fvMKr_7DKbOVrXnxiqJN5Mtnpdmt6_xq9gr2ZTG7rB2Hq9chp95zfHUlaUStXEWv5l6jxOCF8uvdnw8NtYI3m1u0bXmZaXuLnWINvNZNl0G65fFajpZB4IyqAOlpNYUtJQ8LAqIqeDJmHJJEyWgSKAAKHSoUxkBi7mUbS2I0JTRNFRyLMIhejzfPXn30aiqzg-u8baNzOmYJtDhgVZFzirhXVV5pfOTN0fuP3MgeSfJW4J5RzC_EGwtyR-LMPXPax2p8j_jw9lolFK_OSwlNElp-A1XCoAd |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_LWC_2024_3376774 crossref_primary_10_1109_TNSE_2024_3409695 crossref_primary_10_1016_j_phycom_2025_102650 |
Cites_doi | 10.1109/OJCOMS.2020.3042257 10.1109/TWC.2019.2930190 10.1109/MASS.2019.00027 10.1109/ICUAS.2013.6564725 10.1109/TII.2014.2300753 10.1109/WoWMoM.2018.8449795 10.1109/tmc.2011.22 10.1109/TWC.2019.2902559 10.1109/ICNP.2017.8117571 10.1109/ICCCNT45670.2019.8944417 10.1109/JSAC.2018.2864420 10.1109/MCOM.2006.1668382 10.1016/S0305-0548(96)00082-2 10.1109/MCOM.2016.7470933 10.1016/j.comcom.2020.01.023 10.1007/s11276-018-1765-5 10.1016/j.comnet.2018.10.018 10.1109/MWC.001.1900028 10.1109/TCOMM.2018.2857461 10.1007/3-540-36978-3_9 10.1109/INFOCOM42981.2021.9488887 10.1109/SAHCN.2018.8397123 10.1109/ICPP.2013.53 10.1109/ACCESS.2020.2984204 10.1016/j.comnet.2019.03.019 10.1109/MIC.2016.124 10.1109/JIOT.2018.2878834 10.1109/ISCC.2017.8024501 10.1109/WiSPNET.2017.8300064 10.1109/TMC.2010.193 10.1109/comst.2015.2388779 10.1109/COMSNETS.2018.8328195 10.1016/j.comnet.2010.05.010 10.1109/COMST.2018.2844322 10.1109/MOBHOC.2009.5336979 10.1109/CompComm.2018.8781025 10.1109/JPROC.2014.2299397 10.1007/s10586-018-1754-6 10.1145/1993042.1993049 10.1109/INFOCOM.2014.6848000 10.1109/TGCN.2019.2927619 10.1007/s11276-015-0942-z 10.1109/ACCESS.2021.3056701 10.1109/lwc.2017.2776922 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2022.3184869 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 11005 |
ExternalDocumentID | 10_1109_TVT_2022_3184869 9802682 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Laboratory of Computer Network and Information Integration funderid: 10.13039/501100011151 – fundername: National Natural Science Foundation of China grantid: 62072102; 62132009; 62072101; 62072103 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2242022k30029 funderid: 10.13039/501100012226 – fundername: Jiangsu Provincial Key Laboratory of Network and Information Security grantid: BM2003201 – fundername: Ministry of Education of China grantid: 93K-9 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-eedff21fdda3bb152ca672ad26ec1b61b11bf3f8d4195addd41b0cf29283ed7c3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:16:30 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Tue Jul 01 01:44:17 EDT 2025 Wed Aug 27 02:18:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-eedff21fdda3bb152ca672ad26ec1b61b11bf3f8d4195addd41b0cf29283ed7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7398-8265 0000-0002-4437-0850 0000-0002-8209-1000 |
PQID | 2726111091 |
PQPubID | 85454 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TVT_2022_3184869 proquest_journals_2726111091 ieee_primary_9802682 crossref_citationtrail_10_1109_TVT_2022_3184869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Optimization (ref47) 2021 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 Cormen (ref46) 2009 ref5 Vasisht (ref3) 2017 ref40 |
References_xml | – ident: ref17 doi: 10.1109/OJCOMS.2020.3042257 – ident: ref40 doi: 10.1109/TWC.2019.2930190 – ident: ref34 doi: 10.1109/MASS.2019.00027 – year: 2021 ident: ref47 article-title: Gurobi optimizer reference manual – ident: ref18 doi: 10.1109/ICUAS.2013.6564725 – ident: ref4 doi: 10.1109/TII.2014.2300753 – ident: ref11 doi: 10.1109/WoWMoM.2018.8449795 – start-page: 515 volume-title: Proc. 14th USENIX Symp. Networked Syst. Des. Implementation year: 2017 ident: ref3 article-title: FarmBeats: An IoT platform for data-driven agriculture – ident: ref22 doi: 10.1109/tmc.2011.22 – ident: ref39 doi: 10.1109/TWC.2019.2902559 – ident: ref44 doi: 10.1109/ICNP.2017.8117571 – ident: ref12 doi: 10.1109/ICCCNT45670.2019.8944417 – ident: ref20 doi: 10.1109/JSAC.2018.2864420 – ident: ref24 doi: 10.1109/MCOM.2006.1668382 – ident: ref45 doi: 10.1016/S0305-0548(96)00082-2 – ident: ref14 doi: 10.1109/MCOM.2016.7470933 – ident: ref16 doi: 10.1016/j.comcom.2020.01.023 – ident: ref30 doi: 10.1007/s11276-018-1765-5 – ident: ref26 doi: 10.1016/j.comnet.2018.10.018 – ident: ref15 doi: 10.1109/MWC.001.1900028 – ident: ref33 doi: 10.1109/TCOMM.2018.2857461 – ident: ref23 doi: 10.1007/3-540-36978-3_9 – ident: ref32 doi: 10.1109/INFOCOM42981.2021.9488887 – ident: ref10 doi: 10.1109/SAHCN.2018.8397123 – ident: ref19 doi: 10.1109/ICPP.2013.53 – ident: ref7 doi: 10.1109/ACCESS.2020.2984204 – ident: ref21 doi: 10.1016/j.comnet.2019.03.019 – ident: ref2 doi: 10.1109/MIC.2016.124 – ident: ref35 doi: 10.1109/JIOT.2018.2878834 – ident: ref29 doi: 10.1109/ISCC.2017.8024501 – ident: ref42 doi: 10.1109/WiSPNET.2017.8300064 – ident: ref27 doi: 10.1109/TMC.2010.193 – ident: ref13 doi: 10.1109/comst.2015.2388779 – ident: ref43 doi: 10.1109/COMSNETS.2018.8328195 – ident: ref1 doi: 10.1016/j.comnet.2010.05.010 – ident: ref5 doi: 10.1109/COMST.2018.2844322 – ident: ref8 doi: 10.1109/MOBHOC.2009.5336979 – ident: ref38 doi: 10.1109/CompComm.2018.8781025 – ident: ref41 doi: 10.1109/JPROC.2014.2299397 – ident: ref9 doi: 10.1007/s10586-018-1754-6 – volume-title: Introduction to Algorithms year: 2009 ident: ref46 – ident: ref25 doi: 10.1145/1993042.1993049 – ident: ref28 doi: 10.1109/INFOCOM.2014.6848000 – ident: ref36 doi: 10.1109/TGCN.2019.2927619 – ident: ref6 doi: 10.1007/s11276-015-0942-z – ident: ref31 doi: 10.1109/ACCESS.2021.3056701 – ident: ref37 doi: 10.1109/lwc.2017.2776922 |
SSID | ssj0014491 |
Score | 2.4213276 |
Snippet | In recent years, the data from Internet of Things (IoT) devices is growing at a rapid pace, and the data collection issues have attracted more and more... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10991 |
SubjectTerms | 60 GHz communica- tion Algorithms Approximation Approximation algorithms Autonomous aerial vehicles Bandwidths Cameras Communication Data collection Data storage Electronic devices energy constraint Energy consumption Energy storage flight scheduling Ground stations High definition Internet of Things Line of sight communication Mathematical analysis Scheduling Sensors UAV-aided data collection Unmanned aerial vehicles |
Title | Energy-Constrained UAV Flight Scheduling for IoT Data Collection With 60 GHz Communication |
URI | https://ieeexplore.ieee.org/document/9802682 https://www.proquest.com/docview/2726111091 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8CqK85IEFibSx4yT2iIBSkMpCWyqWyK8AomoRpEt_PWcnrXgJMcWDbTl3tu8-3wuhY2kBGxtqAmtsGrBUyYALYgJOmVEq1oL7YhPd26TTZzfDeLiEThexMNZa73xmm67pbflmoqfuqawlOCAGDhfuMgC3MlZrYTFgrKqOR-AAg1owN0mGotUb9AAIUgr4lDPuXJs_iSBfU-XHReylS3sddefrKp1KXprTQjX17FvKxv8ufAOtVWomPiv3xSZasuMttPop-WAdPVz6sL_Alez0hSKswf2zAW6PHF7Hd8BN49zUHzHotfh60sMXspDYvzT4YAh8_1w84STEV50Z_hJoso367cveeSeoKi0EmgpSBCAo85yS3BgZKQUiXcskpdLQxGqiEqIIUXmUc8OIiOFGhK8KdU4FKCfWpDraQbXxZGx3EdZxSGwMsNOGkkVRKHJOTSq1iLgNecoaqDUnfqarNOTuJ0eZhyOhyIBdmWNXVrGrgU4WI17LFBx_9K076i_6VYRvoIM5f7PqjL5nNAX06GYhe7-P2kcrbu7Sde8A1Yq3qT0EFaRQR37vfQDlede3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQcgEIRW14-cKnU7MaOk9hHBCxLy3JpFlAvkV8BBNqt2uyFX8_Yya4oRYhTchgntseemc-eB8CBcoiNLbORsy6PeK5VJCS1kWDcap0aKUKxieFFNhjx79fp9QJ8m8fCOOeC85nr-tdwl28nZuqPynpSIGIQKHCXUO-nrInWmt8ZcN7Wx6O4hZFgdikZy15xWSAUZAwRquDCOzc_U0Khqsp_ojjol_4qDGc9a9xK7rvTWnfN44ukje_t-hqstIYmOWxWxidYcON1WH6WfnADfp2EwL_IF-0MpSKcJaPDS9J_8Iid_ER-Wu-ofkPQsiVnk4Icq1qRcNYQwiHI1V19S7KYnA4eyT-hJp9h1D8pjgZRW2shMkzSOkJVWVWMVtaqRGtU6kZlOVOWZc5QnVFNqa6SSlhOZYoyEZ86NhWTaJ44m5tkExbHk7HbAmLSmLoUgaeLFU-SWFaC2VwZmQgXi5x3oDeb_NK0icj9IB_KAEhiWSK7Ss-usmVXB77OW_xuknC8QbvhZ39O1058B3Zm_C3bXfq3ZDniR_8V-uX1VvvwYVAMz8vzs4sf2_DR_6dx5NuBxfrP1O2iQVLrvbAOnwBTytsB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Constrained+UAV+Flight+Scheduling+for+IoT+Data+Collection+With+60+GHz+Communication&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wu%2C+Wenjia&rft.au=Sun%2C+Shengyu&rft.au=Feng%2C+Shan&rft.au=Yang%2C+Ming&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=10&rft.spage=10991&rft_id=info:doi/10.1109%2FTVT.2022.3184869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |