Teaching and Learning in Uncertainty
We investigate a simple model for social learning with two agents: a teacher and a student. The teacher's goal is to teach the student the state of the world; however, the teacher himself is not certain about the state of the world and needs to simultaneously learn this parameter and teach it t...
Saved in:
Published in | IEEE transactions on information theory Vol. 67; no. 1; pp. 598 - 615 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate a simple model for social learning with two agents: a teacher and a student. The teacher's goal is to teach the student the state of the world; however, the teacher himself is not certain about the state of the world and needs to simultaneously learn this parameter and teach it to the student. We model the teacher's and student's uncertainties via noisy transmission channels, and employ two simple decoding strategies for the student. We focus on two teaching strategies: a "low-effort" strategy of simply forwarding information, and a "high-effort" strategy of communicating the teacher's current best estimate of the world at each time instant, based on his own cumulative learning. Using tools from large deviation theory, we calculate the exact learning rates for these strategies and demonstrate regimes where the low-effort strategy outperforms the high-effort strategy. Finally, we present a conjecture concerning the optimal learning rate for the student over all joint strategies between the student and the teacher. |
---|---|
AbstractList | We investigate a simple model for social learning with two agents: a teacher and a student. The teacher’s goal is to teach the student the state of the world; however, the teacher himself is not certain about the state of the world and needs to simultaneously learn this parameter and teach it to the student. We model the teacher’s and student’s uncertainties via noisy transmission channels, and employ two simple decoding strategies for the student. We focus on two teaching strategies: a “low-effort” strategy of simply forwarding information, and a “high-effort” strategy of communicating the teacher’s current best estimate of the world at each time instant, based on his own cumulative learning. Using tools from large deviation theory, we calculate the exact learning rates for these strategies and demonstrate regimes where the low-effort strategy outperforms the high-effort strategy. Finally, we present a conjecture concerning the optimal learning rate for the student over all joint strategies between the student and the teacher. |
Author | Loh, Po-Ling Jog, Varun |
Author_xml | – sequence: 1 givenname: Varun orcidid: 0000-0003-4159-0900 surname: Jog fullname: Jog, Varun email: vjog@wisc.edu organization: Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA – sequence: 2 givenname: Po-Ling orcidid: 0000-0002-6514-7834 surname: Loh fullname: Loh, Po-Ling email: ploh@stat.wisc.edu organization: Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA |
BookMark | eNo9kE1LAzEQhoNUsK3eBS8Fve46mcxuk6MUq4WCl-05pNlZ3aLZmt0e-u9NafE0vMz7Ac9EjEIXWIh7CbmUYJ6rVZUjIOQKFGjCKzGWRTHPTFnQSIwBpM4Mkb4Rk77fJUmFxLF4qtj5rzZ8zlyoZ2t2MZxEG2ab4DkOrg3D8VZcN-6757vLnYrN8rVavGfrj7fV4mWdeTRyyNi7LfkGS2hcvUUlAWsyhSsV1B7I6KbWRLJhpefKG2nKmiR6LiVvmRHUVDyee_ex-z1wP9hdd4ghTVqkeSrUqCi54Ozysev7yI3dx_bHxaOVYE8sbGJhTyzshUWKPJwjLTP_2w0ipr_6A3nbWkA |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2023_3292356 crossref_primary_10_1109_TIT_2023_3247829 crossref_primary_10_1109_TIT_2023_3335933 crossref_primary_10_1109_TIT_2021_3107733 crossref_primary_10_2478_amns_2023_2_00516 crossref_primary_10_1109_TIT_2023_3283802 crossref_primary_10_1109_TIT_2022_3180001 |
Cites_doi | 10.1137/0306011 10.2307/1426252 10.1007/s00440-013-0479-y 10.1007/978-3-540-77200-2_1 10.1016/0022-0531(82)90099-0 10.2307/2298060 10.1214/14-PS230 10.1109/JSAC.2013.130412 10.1109/ISIT.2019.8849298 10.1086/261849 10.1111/1467-937X.00059 10.1016/S0899-8256(03)00144-1 10.2139/ssrn.2266979 10.1017/9781108591034 10.1093/qje/qjaa026 10.1146/annurev-economics-120213-012609 10.2307/2285509 10.2307/2118364 10.1109/PROC.1980.11718 10.1111/1468-0262.00113 10.1214/aos/1176343654 10.1017/CBO9781139871495 10.1086/261890 10.1073/pnas.35.10.605 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2020.3030842 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Education Computer Science |
EISSN | 1557-9654 |
EndPage | 615 |
ExternalDocumentID | 10_1109_TIT_2020_3030842 9222308 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF grantid: CCF-1841190 funderid: 10.13039/100000001 – fundername: NSF grantid: DMS-1749857 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RIG RNS RXW TAE TN5 VH1 VJK XFK AAYXX AGSQL CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-ecab4cf260fadb23102d495a630dc0498fd8441fe3873c9196d412ce61ebee203 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Thu Oct 10 17:59:03 EDT 2024 Fri Dec 06 01:26:01 EST 2024 Wed Jun 26 19:26:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ecab4cf260fadb23102d495a630dc0498fd8441fe3873c9196d412ce61ebee203 |
ORCID | 0000-0003-4159-0900 0000-0002-6514-7834 |
PQID | 2472318234 |
PQPubID | 36024 |
PageCount | 18 |
ParticipantIDs | ieee_primary_9222308 proquest_journals_2472318234 crossref_primary_10_1109_TIT_2020_3030842 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan. 2021-1-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref17 ref16 molavi (ref5) 2017 chamley (ref1) 2004 haz?a (ref19) 0 zhu (ref32) 2015 lévy (ref27) 1940; 7 ref24 ref23 ref25 ref20 ref22 amin rahimian (ref18) 2016 ref28 ref29 ref8 ref7 ref9 ref4 ref3 andersen (ref26) 1955; 2 ref6 dupuis (ref31) 2011; 902 ho (ref21) 1980; 68 |
References_xml | – ident: ref22 doi: 10.1137/0306011 – ident: ref23 doi: 10.2307/1426252 – ident: ref14 doi: 10.1007/s00440-013-0479-y – year: 2004 ident: ref1 publication-title: Rational Herds Economic Models of Social Learning contributor: fullname: chamley – ident: ref24 doi: 10.1007/978-3-540-77200-2_1 – ident: ref9 doi: 10.1016/0022-0531(82)90099-0 – ident: ref3 doi: 10.2307/2298060 – year: 2017 ident: ref5 article-title: Foundations of non-Bayesian social learning contributor: fullname: molavi – ident: ref2 doi: 10.1214/14-PS230 – ident: ref20 doi: 10.1109/JSAC.2013.130412 – volume: 7 start-page: 283 year: 1940 ident: ref27 article-title: Sur certains processus stochastiques homogènes publication-title: Compositio Math contributor: fullname: lévy – ident: ref29 doi: 10.1109/ISIT.2019.8849298 – ident: ref11 doi: 10.1086/261849 – ident: ref17 doi: 10.1111/1467-937X.00059 – volume: 902 year: 2011 ident: ref31 publication-title: A Weak Convergence Approach to the Theory of Large Deviations contributor: fullname: dupuis – ident: ref13 doi: 10.1016/S0899-8256(03)00144-1 – ident: ref4 doi: 10.2139/ssrn.2266979 – year: 0 ident: ref19 article-title: Bayesian decision making in groups is hard publication-title: Oper Res contributor: fullname: haz?a – ident: ref28 doi: 10.1017/9781108591034 – volume: 2 start-page: 195 year: 1955 ident: ref26 article-title: On the fluctuations of sums of random variables II publication-title: Math Scandinavica contributor: fullname: andersen – ident: ref6 doi: 10.1093/qje/qjaa026 – ident: ref7 doi: 10.1146/annurev-economics-120213-012609 – ident: ref15 doi: 10.2307/2285509 – ident: ref10 doi: 10.2307/2118364 – volume: 68 start-page: 644 year: 1980 ident: ref21 article-title: Team decision theory and information structures publication-title: Proc IEEE doi: 10.1109/PROC.1980.11718 contributor: fullname: ho – ident: ref12 doi: 10.1111/1468-0262.00113 – ident: ref8 doi: 10.1214/aos/1176343654 – ident: ref30 doi: 10.1017/CBO9781139871495 – start-page: 4083 year: 2015 ident: ref32 article-title: Machine teaching: An inverse problem to machine learning and an approach toward optimal education publication-title: Proc 29th AAAI Conf Artif Intell contributor: fullname: zhu – year: 2016 ident: ref18 article-title: Bayesian heuristics for group decisions publication-title: arXiv 1611 01006 contributor: fullname: amin rahimian – ident: ref16 doi: 10.1086/261890 – ident: ref25 doi: 10.1073/pnas.35.10.605 |
SSID | ssj0014512 |
Score | 2.475062 |
Snippet | We investigate a simple model for social learning with two agents: a teacher and a student. The teacher's goal is to teach the student the state of the world;... We investigate a simple model for social learning with two agents: a teacher and a student. The teacher’s goal is to teach the student the state of the world;... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 598 |
SubjectTerms | Analytical models Communication Computational modeling Decoding Education Large deviations theory Learning Mathematical model Noise measurement Random variables random walks social learning Strategy Teachers Teaching Uncertainty |
Title | Teaching and Learning in Uncertainty |
URI | https://ieeexplore.ieee.org/document/9222308 https://www.proquest.com/docview/2472318234 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTjBQaEEUCsrQBYm08cVO4hEhqoJUplTqFiW2gxBSiiAd4NdjO07F18CWIZZOPp_vnu_dHcBYcCLKHIkfKsx9ypjJ78rQp0SgKBUyaQuFFw_RfEnvV2zVgattLYxSypLP1MR82ly-XIuNeSqbcuPMTGXvTsyjplZrmzGgjDSdwYk2YI052pRkwKfpXaqBIGp8apqzUPzmguxMlV8XsfUusx4sWrkaUsnzZFMXE_Hxo2XjfwU_gH0XZnrXzbk4hI6q-tBrRzh4zqL7ZmizI3j0Ye9Lb8IBjFPHs_TySnquDeuj91R5S73S8gjq9yNYzm7Tm7nvRir4AjmpfSXygopSg5gyl4WJ7VBqiJRHYSCFBgtJKRMdIJUqTOJQ65FHkhIUKiJa2QqD8Bi61bpSJ-CxELlEDbiKWNAcWWEcnSwLboipQrEhXLa7nL00nTMyizgCnmmNZEYjmdPIEAZm07b_uf0awqhVS-ZM6y1DGmu5Ewzp6d-rzmAXDfHEvpOMoFu_btS5jhzq4sIemU-Blr16 |
link.rule.ids | 314,780,784,796,27924,27925,54758 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VMAADhRZEoUCGLkikjV9pPCJE1ULbKZW6RYntIISUIkgH-PXYjlPxGtgyxNLJ5_Pd5_vuDqAnOBJ5ipFPFE59ypjJ70riUySwyBVm0hYKz-bheEHvl2zZgOtNLYxSypLPVN982ly-XIm1eSobcOPMTGXvNqM6zq2qtTY5A8pQ1RscaRPWqKNOSgZ8EE9iDQWxRqimPQvF35yQnary6yq2_mXUhFktWUUree6vy6wvPn40bfyv6Aew7wJN76Y6GYfQUEULmvUQB8_ZdMuMbXYUjxbsfelO2IZe7JiWXlpIzzViffSeCm-hV1omQfl-BIvRXXw79t1QBV9gjkpfiTSjItcwJk9lZqI7LDVISkMSSKHhQpTLSIdIuSLRkGhN8lBShIUKkVa3wgE5hq1iVagT8BjBXGINubKhoClmmXF1Ms-4oaYKxTpwVe9y8lL1zkgs5gh4ojWSGI0kTiMdaJtN2_zn9qsD3VotiTOutwTToZY7woSe_r3qEnbG8WyaTCfzhzPYxYaGYl9NurBVvq7VuY4jyuzCHp9PrXLAzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Teaching+and+Learning+in+Uncertainty&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Jog%2C+Varun&rft.au=Loh%2C+Po-Ling&rft.date=2021-01-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=67&rft.issue=1&rft.spage=598&rft.epage=615&rft_id=info:doi/10.1109%2FTIT.2020.3030842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2020_3030842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |