Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy

Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on database systems Vol. 40; no. 2; pp. 1 - 47
Main Authors Yuan, Ganzhao, Zhang, Zhenjie, Winslett, Marianne, Xiao, Xiaokui, Yang, Yin, Hao, Zhifeng
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN0362-5915
1557-4644
DOI10.1145/2699501

Cover

Abstract Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results while satisfying the privacy guarantees. Previous work, notably Li et al. [2010], has suggested that, with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose a low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., ϵ-) and approximate (i.e., (ϵ, δ)-) differential privacy definitions. We derive the utility guarantees of LRM and provide guidance on how to set the privacy parameters, given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.
AbstractList Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results while satisfying the privacy guarantees. Previous work, notably Li et al. [2010], has suggested that, with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose a low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., ϵ-) and approximate (i.e., (ϵ, δ)-) differential privacy definitions. We derive the utility guarantees of LRM and provide guidance on how to set the privacy parameters, given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.
Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results while satisfying the privacy guarantees. Previous work, notably Li et al. [2010], has suggested that, with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose a low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., epsilon -) and approximate (i.e., ( epsilon , delta )-) differential privacy definitions. We derive the utility guarantees of LRM and provide guidance on how to set the privacy parameters, given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.
Author Yang, Yin
Winslett, Marianne
Xiao, Xiaokui
Hao, Zhifeng
Yuan, Ganzhao
Zhang, Zhenjie
Author_xml – sequence: 1
  givenname: Ganzhao
  surname: Yuan
  fullname: Yuan, Ganzhao
  organization: South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhenjie
  surname: Zhang
  fullname: Zhang, Zhenjie
  organization: Advanced Digital Sciences Center, Singapore
– sequence: 3
  givenname: Marianne
  surname: Winslett
  fullname: Winslett, Marianne
  organization: Advanced Digital Sciences Center and University of Illinois at Urbana-Champaign, IL
– sequence: 4
  givenname: Xiaokui
  surname: Xiao
  fullname: Xiao, Xiaokui
  organization: Nanyang Technological University, Singapore
– sequence: 5
  givenname: Yin
  surname: Yang
  fullname: Yang, Yin
  organization: Hamad Bin Khalifa University, Qatar
– sequence: 6
  givenname: Zhifeng
  surname: Hao
  fullname: Hao, Zhifeng
  organization: South China University of Technology and Guangdong University of Technology, China
BookMark eNpl0L1OwzAUBWALFYm2IF7BGywBO7FjZyyl_EiVWiSYI8e5BqPUCbZTtTw9Qe0E01k-Hd17JmjkWgcIXVJyQynjt2leFJzQEzSmnIuE5YyN0JhkeZrwgvIzNAnhkxDCZCHGaL3qot3Yb-ve8Z2K-gMvrQPl8UsP3kLAvavB48VO6YiVq_Gs63y7sxsVAd9bY8CDi1Y1eO3tVun9OTo1qglwccwpentYvM6fkuXq8Xk-WyY6LWhMoKqU4kzJHAhJNUha1BIMoyBoBTzjsjJppoyoGSe8NowIIJkwktBKSiiyKbo-9A7nfPUQYrmxQUPTKAdtH0oqGBMkozIb6NWBat-G4MGUnR8e8PuSkvJ3s_K42SCTP1LbqKJtXfTKNv_8D3bfbsY
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125279
crossref_primary_10_1109_TKDE_2017_2697856
crossref_primary_10_1109_JIOT_2021_3052978
crossref_primary_10_1109_TBDATA_2017_2715334
crossref_primary_10_1016_j_future_2018_04_016
crossref_primary_10_1145_3589268
crossref_primary_10_1145_3626725
crossref_primary_10_14778_3594512_3594519
crossref_primary_10_1016_j_cose_2021_102529
crossref_primary_10_1007_s10619_018_07255_6
crossref_primary_10_1145_3299887_3299900
crossref_primary_10_14778_3467861_3467864
Cites_doi 10.1145/1835804.1835868
10.1137/S1052623497330963
10.5555/1953048.2021036
10.1137/040616413
10.1145/1989323.1989347
10.1145/773153.773173
10.14778/2350229.2350251
10.1137/050645506
10.1145/2213836.2213972
10.1016/j.dam.2007.02.013
10.1109/ICDE.2013.6544900
10.14778/1920841.1920970
10.1145/2448496.2448529
10.1145/2488608.2488652
10.1007/11761679_29
10.1088/0266-5611/28/11/115010
10.14778/2350229.2350252
10.1090/S0025-5718-97-00777-1
10.1145/1807085.1807104
10.1145/1807167.1807247
10.1007/s10208-009-9045-5
10.1007/11681878_14
10.1007/s00778-013-0309-y
10.1145/1374376.1374464
10.1145/1559795.1559812
10.1007/978-3-642-28914-9_18
10.1145/2213836.2213910
10.1016/S0167-6377(99)00074-7
10.1145/1835804.1835869
10.1137/09076828X
10.1109/FOCS.2010.85
10.1145/2463676.2465330
10.1137/080716542
10.1109/FOCS.2007.41
10.1109/ICDM.2009.11
10.14778/2350229.2350253
10.1109/FOCS.2010.12
10.1145/2046556.2046581
10.1145/1557019.1557090
10.1007/s12532-012-0044-1
10.1145/2213977.2214088
10.1093/imanum/drp035
10.1145/2068816.2068825
10.1145/1989323.1989348
10.1145/1390156.1390191
10.1145/102782.102783
10.14778/2168651.2168653
10.1109/ICDE.2012.48
10.1145/1806689.1806786
10.1145/1851182.1851199
10.29012/jpc.v4i1.612
10.1109/ICDE.2012.16
10.1145/2020408.2020487
10.1145/1806689.1806794
ContentType Journal Article
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/2699501
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 1557-4644
EndPage 47
ExternalDocumentID 10_1145_2699501
GroupedDBID --Z
-DZ
-~X
.DC
23M
4.4
5GY
5VS
6J9
8US
8VB
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AEMOZ
AENEX
AENSD
AETEA
AFWIH
AFWXC
AHQJS
AIAGR
AIKLT
AKRVB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EJD
FEDTE
GUFHI
HGAVV
H~9
I07
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UPT
WH7
X6Y
XH6
XSW
ZCA
ZL0
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-ebbaa54a86e002ce819d8ef41e71be5358bf23af7d4505df407e037f801b88e93
ISSN 0362-5915
IngestDate Thu Jul 10 19:20:54 EDT 2025
Thu Jul 03 08:15:38 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-ebbaa54a86e002ce819d8ef41e71be5358bf23af7d4505df407e037f801b88e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/81387/1/Optimizing%20Batch%20Linear%20Queries%20under%20Exact%20and%20Approximate%20Differential%20Privacy.pdf
PQID 1744703183
PQPubID 23500
PageCount 47
ParticipantIDs proquest_miscellaneous_1744703183
crossref_primary_10_1145_2699501
crossref_citationtrail_10_1145_2699501
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle ACM transactions on database systems
PublicationYear 2015
References e_1_2_1_60_1
Hardt M. (e_1_2_1_28_1)
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_64_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Srebro N. (e_1_2_1_53_1); 17
Fiacco A. V. (e_1_2_1_24_1) 1968
Xiao X. (e_1_2_1_58_1)
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Ball K. (e_1_2_1_1_1) 1997; 31
e_1_2_1_42_1
Bertsekas D. P. (e_1_2_1_4_1)
Billingsley P. (e_1_2_1_6_1)
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_63_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
Nesterov Y. E. (e_1_2_1_44_1)
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume-title: Nonlinear Programming: Sequential Unconstrained Minimization Techniques
  year: 1968
  ident: e_1_2_1_24_1
– volume-title: Nonlinear Programming
  ident: e_1_2_1_4_1
– ident: e_1_2_1_25_1
  doi: 10.1145/1835804.1835868
– ident: e_1_2_1_7_1
  doi: 10.1137/S1052623497330963
– ident: e_1_2_1_10_1
  doi: 10.5555/1953048.2021036
– ident: e_1_2_1_11_1
  doi: 10.1137/040616413
– ident: e_1_2_1_16_1
  doi: 10.1145/1989323.1989347
– ident: e_1_2_1_17_1
  doi: 10.1145/773153.773173
– ident: e_1_2_1_37_1
  doi: 10.14778/2350229.2350251
– volume-title: Proceedings of the IEEE International Conference on Data Engineering (ICDE'10)
  ident: e_1_2_1_58_1
– ident: e_1_2_1_14_1
  doi: 10.1137/050645506
– ident: e_1_2_1_46_1
  doi: 10.1145/2213836.2213972
– ident: e_1_2_1_54_1
  doi: 10.1016/j.dam.2007.02.013
– ident: e_1_2_1_47_1
  doi: 10.1109/ICDE.2013.6544900
– ident: e_1_2_1_33_1
  doi: 10.14778/1920841.1920970
– ident: e_1_2_1_36_1
  doi: 10.1145/2448496.2448529
– ident: e_1_2_1_45_1
  doi: 10.1145/2488608.2488652
– ident: e_1_2_1_19_1
  doi: 10.1007/11761679_29
– ident: e_1_2_1_55_1
  doi: 10.1088/0266-5611/28/11/115010
– ident: e_1_2_1_62_1
  doi: 10.14778/2350229.2350252
– volume: 31
  start-page: 1
  year: 1997
  ident: e_1_2_1_1_1
  article-title: An elementary introduction to modern convex geometry
  publication-title: Flavors Geom.
– ident: e_1_2_1_12_1
  doi: 10.1090/S0025-5718-97-00777-1
– ident: e_1_2_1_34_1
  doi: 10.1145/1807085.1807104
– ident: e_1_2_1_49_1
  doi: 10.1145/1807167.1807247
– ident: e_1_2_1_9_1
  doi: 10.1007/s10208-009-9045-5
– ident: e_1_2_1_21_1
  doi: 10.1007/11681878_14
– ident: e_1_2_1_60_1
  doi: 10.1007/s00778-013-0309-y
– ident: e_1_2_1_8_1
  doi: 10.1145/1374376.1374464
– ident: e_1_2_1_48_1
  doi: 10.1145/1559795.1559812
– volume: 17
  volume-title: Proceedings of the Conference on Advances Neural Information Processing Systems (NIPS'04)
  ident: e_1_2_1_53_1
– ident: e_1_2_1_15_1
  doi: 10.1007/978-3-642-28914-9_18
– ident: e_1_2_1_61_1
  doi: 10.1145/2213836.2213910
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  ident: e_1_2_1_44_1
– ident: e_1_2_1_27_1
  doi: 10.1016/S0167-6377(99)00074-7
– ident: e_1_2_1_5_1
  doi: 10.1145/1835804.1835869
– ident: e_1_2_1_26_1
  doi: 10.1137/09076828X
– ident: e_1_2_1_30_1
  doi: 10.1109/FOCS.2010.85
– ident: e_1_2_1_63_1
  doi: 10.1145/2463676.2465330
– ident: e_1_2_1_2_1
  doi: 10.1137/080716542
– ident: e_1_2_1_42_1
  doi: 10.1109/FOCS.2007.41
– ident: e_1_2_1_32_1
  doi: 10.1109/ICDM.2009.11
– ident: e_1_2_1_64_1
  doi: 10.14778/2350229.2350253
– ident: e_1_2_1_22_1
  doi: 10.1109/FOCS.2010.12
– volume-title: Probability and Measure
  ident: e_1_2_1_6_1
– ident: e_1_2_1_38_1
  doi: 10.1145/2046556.2046581
– ident: e_1_2_1_41_1
  doi: 10.1145/1557019.1557090
– ident: e_1_2_1_56_1
  doi: 10.1007/s12532-012-0044-1
– ident: e_1_2_1_29_1
  doi: 10.1145/2213977.2214088
– ident: e_1_2_1_3_1
  doi: 10.1093/imanum/drp035
– ident: e_1_2_1_52_1
  doi: 10.1145/2068816.2068825
– ident: e_1_2_1_57_1
  doi: 10.1145/1989323.1989348
– ident: e_1_2_1_18_1
  doi: 10.1145/1390156.1390191
– ident: e_1_2_1_23_1
  doi: 10.1145/102782.102783
– ident: e_1_2_1_35_1
  doi: 10.14778/2168651.2168653
– ident: e_1_2_1_39_1
– ident: e_1_2_1_59_1
  doi: 10.1109/ICDE.2012.48
– ident: e_1_2_1_31_1
  doi: 10.1145/1806689.1806786
– ident: e_1_2_1_40_1
  doi: 10.1145/1851182.1851199
– ident: e_1_2_1_51_1
  doi: 10.29012/jpc.v4i1.612
– ident: e_1_2_1_13_1
  doi: 10.1109/ICDE.2012.16
– ident: e_1_2_1_43_1
  doi: 10.1145/2020408.2020487
– volume-title: Proceedings of the Conference on Neural Information Processing Systems (NIPS'12)
  ident: e_1_2_1_28_1
– ident: e_1_2_1_20_1
  doi: 10.1007/11761679_29
– ident: e_1_2_1_50_1
  doi: 10.1145/1806689.1806794
SSID ssj0004897
Score 2.238895
Snippet Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Accuracy
Approximation
Privacy
Queries
Query processing
Strategy
Utilities
Title Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy
URI https://www.proquest.com/docview/1744703183
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFaAFRCshICIFQSp3YeRyXUqgQC0W00sIlspOJGmizaDdB1f56xo88tovE45K1ojjRZr7MjGc83xDyJIhFLgoIPMU4eJzlPo4i6YEqZJgUQcYNl97kQ3h0yt9NxXQ0Wg6rS2q1ly1_W1fyP1LFcyhXXSX7D5LtbooncIzyxSNKGI9_JeOP-L1flEu92n-FKlVTYFSamOdTo-mLF6bH7fzF4aWug9QB8rEmEL8s0UkF1HW2M0qtQ-bH8_KnzFYyvOODie4f0TYTN1kFvZ1Umz3H_9y5418aG0Z9i47mmZytBaO_nkH1reyzQGW1OHf7gye4VpdVn9ufltIEb_Xv96YcBiWY6DdPDYqxRGIrNffA6VYReTy0dI-t8rVcTQ5k_kCTsoFJtpyc68qea14MP0wS4Z69Qqd9xcx1mw9tKbZI3cRrZNOPIp3i3xy_nrz_3FfVxqY1T_dXbMm1nvrSTV31ZVZNufFPTm6RG25hQccWJVtkBNU2udk27aBOh2-TLTda0GeOcvz5bXLcI4kaJFGLJOqQRA2SqEESRSTRAZLoEEnUIekOOX1zeHJw5LleG17mJ6zGb1NJKbiMQ0AbmQE6inkMBWcQMQUiELEq_EAWUc7RZ84Lvh_BfhAV6OCoOIYkuEs2qlkF9whVOStEFsagJDrjwPCWyvdVjGsDQIPCdsjT9q2lmSOi1_1QztMrktkhtLvwh-VeWb_kcfvaU9SLOtklK5g1ixRX2jwyFuv-n2-zS673KH5ANup5Aw_R2azVI4eKXwLJgiA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Batch+Linear+Queries+under+Exact+and+Approximate+Differential+Privacy&rft.jtitle=ACM+transactions+on+database+systems&rft.au=Yuan%2C+Ganzhao&rft.au=Zhang%2C+Zhenjie&rft.au=Winslett%2C+Marianne&rft.au=Xiao%2C+Xiaokui&rft.date=2015-06-01&rft.issn=0362-5915&rft.eissn=1557-4644&rft.volume=40&rft.issue=2&rft.spage=1&rft.epage=47&rft_id=info:doi/10.1145%2F2699501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_2699501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-5915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-5915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-5915&client=summon