Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming
Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are use...
Saved in:
Published in | IEEE transactions on information theory Vol. 61; no. 10; pp. 5295 - 5305 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2015.2466598 |
Cover
Loading…
Abstract | Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases, the BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This paper deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering linear programmings (LPs). We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding LP relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the minsum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudopolynomial time. Our results unify and extend recent results for the maximum weight matching problem and for the maximum weight independent set problem. |
---|---|
AbstractList | Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases, the BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This paper deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering linear programmings (LPs). We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding LP relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the minsum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudopolynomial time. Our results unify and extend recent results for the maximum weight matching problem and for the maximum weight independent set problem. Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases, the BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This paper deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering linear programmings (LPs). We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding LP relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the min-sum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudopolynomial time. Our results unify and extend recent results for the maximum weight matching problem and for the maximum weight independent set problem. |
Author | Halabi, Nissim Even, Guy |
Author_xml | – sequence: 1 givenname: Guy surname: Even fullname: Even, Guy email: guy@eng.tau.ac.il organization: Sch. of Electr. Eng., Tel-Aviv Univ., Tel Aviv, Israel – sequence: 2 givenname: Nissim surname: Halabi fullname: Halabi, Nissim email: nissimh@eng.tau.ac.il organization: Sch. of Electr. Eng., Tel-Aviv Univ., Tel Aviv, Israel |
BookMark | eNp9kM1rAjEQxUOxULW9F3oJ9Lw2H5vd5CjSD8FSofbSS4i7E43d3dhkFfzvu6L00ENPw5t5b4b5DVCv8Q0gdEvJiFKiHhbTxYgRKkYszTKh5AXqUyHyRGUi7aE-IVQmKk3lFRrEuOlkKijro89xY6pDdBF7i9s14FfXJO-7Go-rlQ-uXdfY-oDnpvhyzQqbpsQTv4dwFPPglxXUEe-dwTPXgAnH3iqYuu7m1-jSmirCzbkO0cfT42LykszenqeT8SwpmKJtAoawslA5V2ClJaLMl4qWShkO1hpueWGhlNbQfMkEVzaFHKzKck5NIZkhfIjuT3u3wX_vILZ643eheytqmlOhBJOKdi5ychXBxxjA6m1wtQkHTYk-EtQdQX0kqM8Eu0j2J1K41rTON20wrvoveHcKOgD4vZNTKVLO-Q_u_oCM |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2022_3145232 crossref_primary_10_1016_j_jpdc_2023_04_007 crossref_primary_10_1016_j_compeleceng_2022_107755 crossref_primary_10_1007_s10898_019_00749_2 crossref_primary_10_1142_S0217595922500373 |
Cites_doi | 10.7551/mitpress/4347.001.0001 10.1109/TIT.2013.2259576 10.1109/TIT.1967.1054010 10.1109/18.910572 10.1109/TIT.2012.2208584 10.1109/TIT.2007.915695 10.1109/TIT.2004.842696 10.1109/ALLERTON.2008.4797655 10.1137/090753115 10.1007/s10955-011-0384-7 10.1007/978-3-642-36065-7_18 10.1109/TIT.2011.2110170 10.1287/opre.1110.1025 10.1109/TIT.2009.2030448 10.1109/TIT.2013.2284912 10.1007/s004930200000 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2015.2466598 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 5305 |
ExternalDocumentID | 3816429371 10_1109_TIT_2015_2466598 7185433 |
Genre | orig-research Feature |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-ea02dc9739ef8f05d7b91d99a3effa3f3cfed8fa17b2539f4e7ef96731ac82a03 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Mon Jun 30 05:06:01 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 02:16:05 EDT 2025 Tue Aug 26 16:50:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | max-product algorithm combinatorial optimization graph cover Belief propagation (BP) min-sum algorithm dynamic programming factor graphs covering problems linear programming (LP) message-passing algorithms packing problems |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ea02dc9739ef8f05d7b91d99a3effa3f3cfed8fa17b2539f4e7ef96731ac82a03 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1715952891 |
PQPubID | 36024 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1715952891 ieee_primary_7185433 crossref_citationtrail_10_1109_TIT_2015_2466598 crossref_primary_10_1109_TIT_2015_2466598 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Oct. 2015-10-00 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-Oct. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | vontobel (ref10) 2005 ref13 schrijver (ref2) 1998 ref12 ref15 cramton (ref18) 2006 ref14 wiberg (ref9) 1996 ref20 ref11 ref22 ref21 ref17 pearl (ref5) 1988 ref16 ref19 ref8 gallager (ref6) 1963 ref7 bertsimas (ref1) 1997 ref4 ref3 |
References_xml | – year: 1963 ident: ref6 publication-title: Low-Density Parity-Check Codes doi: 10.7551/mitpress/4347.001.0001 – ident: ref20 doi: 10.1109/TIT.2013.2259576 – year: 1988 ident: ref5 publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference – year: 1998 ident: ref2 publication-title: Theory of Linear and Integer Programming – year: 1996 ident: ref9 article-title: Codes and decoding on general graphs – ident: ref7 doi: 10.1109/TIT.1967.1054010 – ident: ref21 doi: 10.1109/18.910572 – ident: ref4 doi: 10.1109/TIT.2012.2208584 – year: 1997 ident: ref1 publication-title: Introduction to Linear Optimization – ident: ref11 doi: 10.1109/TIT.2007.915695 – ident: ref3 doi: 10.1109/TIT.2004.842696 – ident: ref15 doi: 10.1109/ALLERTON.2008.4797655 – ident: ref12 doi: 10.1137/090753115 – year: 2005 ident: ref10 publication-title: Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes – ident: ref8 doi: 10.1007/s10955-011-0384-7 – ident: ref17 doi: 10.1007/978-3-642-36065-7_18 – ident: ref13 doi: 10.1109/TIT.2011.2110170 – ident: ref16 doi: 10.1287/opre.1110.1025 – ident: ref14 doi: 10.1109/TIT.2009.2030448 – ident: ref19 doi: 10.1109/TIT.2013.2284912 – ident: ref22 doi: 10.1007/s004930200000 – year: 2006 ident: ref18 publication-title: Combinatorial Auctions |
SSID | ssj0014512 |
Score | 2.199835 |
Snippet | Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5295 |
SubjectTerms | Algorithms belief propagation (BP) Bipartite graph combinatorial optimization covering problems Dynamic programming Errors factor graphs graph cover Heuristic algorithms Inference algorithms Linear programming linear programming (LP) Matrix max-product algorithm message-passing algorithms min-sum algorithm Optimization Oscillators packing problems Variables Vector space |
Title | Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming |
URI | https://ieeexplore.ieee.org/document/7185433 https://www.proquest.com/docview/1715952891 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz1YtYrVKjl4Edx2s0l2N8dSLCpUBCuIlyWbhxbbrejWg7_eZB_FF-JtH0kIfJlkJjPzDcBxKlTga195oTbEo5KkXswU9WiKQ-kLR7DikpNHV-H5Lb28Y3crcLrMhdFaF8FnuuseC1--msuFuyrr2X2UUUJWYdUabmWu1tJjQBkumcGxFWBrc9QuSZ_3xhdjF8PFugENQ8bjL0dQUVPlx0ZcnC7DJozqeZVBJU_dRZ525fs3ysb_TnwTNio1E_XLdbEFKzrbhmZdwgFVEr0N65_4CFtwX1OUoLlBVjNEo0nm3SxmqD99mL9M8scZsjouuhbSXbAjkSk0cCGg7uW6rEzzit4mAlkL10qQ--aCv2b2_w7cDs_Gg3OvKr7gyYDj3NPCD5TkEeHaxMZnKko5VpwLoo0RxBBptIqNwFEaMMIN1ZE2PIwIFjIOhE92oZHNM70HyI4kQ64UNYRTaVzjGLMYE6lCncamDb0aj0RWzOSuQMY0KSwUnycWwcQhmFQItuFk2eO5ZOX4o23LAbJsV2HRhk4NeVKJ7WuCI6vdMWuD4v3fex3Amhu7jObrQCN_WehDq5Xk6VGxHD8AHT3fIg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHdkRZfeCCRNo4tpP4iBCoLEVIFAlxiRwvUEFTRFMOfD12lopNiFuWcWLpeTwz9vgNwH4qVOBrX3mhNsSjkqRezBT1aIpD6QtHsOIOJ3evws4tPb9jd1NwODkLo7Uuks90y10We_lqKMduqaxt51FGCZmGGWv3GS5Pa032DCjDJTc4tipso456U9Ln7d5Zz2VxsVZAw5Dx-IsRKqqq_JiKC_tyugjdumdlWslTa5ynLfn-jbTxv11fgoXK0URH5chYhimdrcBiXcQBVTq9AvOfGAlX4b4mKUFDg6xviLr9zLsZD9DR88PwtZ8_DpD1ctG1kG6JHYlMoWOXBOpursvaNCP01hfIxrhWh9wzl_41sO_X4Pb0pHfc8aryC54MOM49LfxASR4Rrk1sfKailGPFuSDaGEEMkUar2AgcpQEj3FAdacPDiGAh40D4ZB0a2TDTG4Dsl2TIlaKGcCqNE44xizGRKtRpbJrQrvFIZMVN7kpkPCdFjOLzxCKYOASTCsEmHExavJS8HH_IrjpAJnIVFk3YriFPKsUdJTiy_h2zUSje_L3VHsx2et3L5PLs6mIL5tx_yty-bWjkr2O9Y32UPN0thuYH6Kniaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Min-Sum+Algorithm+for+Packing+and+Covering+Problems+via+Linear+Programming&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Even%2C+Guy&rft.au=Halabi%2C+Nissim&rft.date=2015-10-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=61&rft.issue=10&rft.spage=5295&rft.epage=5305&rft_id=info:doi/10.1109%2FTIT.2015.2466598&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2015_2466598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |