Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming

Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are use...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 61; no. 10; pp. 5295 - 5305
Main Authors Even, Guy, Halabi, Nissim
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2015.2466598

Cover

Loading…
Abstract Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases, the BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This paper deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering linear programmings (LPs). We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding LP relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the minsum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudopolynomial time. Our results unify and extend recent results for the maximum weight matching problem and for the maximum weight independent set problem.
AbstractList Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases, the BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This paper deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering linear programmings (LPs). We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding LP relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the minsum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudopolynomial time. Our results unify and extend recent results for the maximum weight matching problem and for the maximum weight independent set problem.
Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving constraint satisfaction and inference problems. The BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases, the BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This paper deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering linear programmings (LPs). We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding LP relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the min-sum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudopolynomial time. Our results unify and extend recent results for the maximum weight matching problem and for the maximum weight independent set problem.
Author Halabi, Nissim
Even, Guy
Author_xml – sequence: 1
  givenname: Guy
  surname: Even
  fullname: Even, Guy
  email: guy@eng.tau.ac.il
  organization: Sch. of Electr. Eng., Tel-Aviv Univ., Tel Aviv, Israel
– sequence: 2
  givenname: Nissim
  surname: Halabi
  fullname: Halabi, Nissim
  email: nissimh@eng.tau.ac.il
  organization: Sch. of Electr. Eng., Tel-Aviv Univ., Tel Aviv, Israel
BookMark eNp9kM1rAjEQxUOxULW9F3oJ9Lw2H5vd5CjSD8FSofbSS4i7E43d3dhkFfzvu6L00ENPw5t5b4b5DVCv8Q0gdEvJiFKiHhbTxYgRKkYszTKh5AXqUyHyRGUi7aE-IVQmKk3lFRrEuOlkKijro89xY6pDdBF7i9s14FfXJO-7Go-rlQ-uXdfY-oDnpvhyzQqbpsQTv4dwFPPglxXUEe-dwTPXgAnH3iqYuu7m1-jSmirCzbkO0cfT42LykszenqeT8SwpmKJtAoawslA5V2ClJaLMl4qWShkO1hpueWGhlNbQfMkEVzaFHKzKck5NIZkhfIjuT3u3wX_vILZ643eheytqmlOhBJOKdi5ychXBxxjA6m1wtQkHTYk-EtQdQX0kqM8Eu0j2J1K41rTON20wrvoveHcKOgD4vZNTKVLO-Q_u_oCM
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2022_3145232
crossref_primary_10_1016_j_jpdc_2023_04_007
crossref_primary_10_1016_j_compeleceng_2022_107755
crossref_primary_10_1007_s10898_019_00749_2
crossref_primary_10_1142_S0217595922500373
Cites_doi 10.7551/mitpress/4347.001.0001
10.1109/TIT.2013.2259576
10.1109/TIT.1967.1054010
10.1109/18.910572
10.1109/TIT.2012.2208584
10.1109/TIT.2007.915695
10.1109/TIT.2004.842696
10.1109/ALLERTON.2008.4797655
10.1137/090753115
10.1007/s10955-011-0384-7
10.1007/978-3-642-36065-7_18
10.1109/TIT.2011.2110170
10.1287/opre.1110.1025
10.1109/TIT.2009.2030448
10.1109/TIT.2013.2284912
10.1007/s004930200000
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2015.2466598
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5305
ExternalDocumentID 3816429371
10_1109_TIT_2015_2466598
7185433
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-ea02dc9739ef8f05d7b91d99a3effa3f3cfed8fa17b2539f4e7ef96731ac82a03
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 05:06:01 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 02:16:05 EDT 2025
Tue Aug 26 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords max-product algorithm
combinatorial optimization
graph cover
Belief propagation (BP)
min-sum algorithm
dynamic programming
factor graphs
covering problems
linear programming (LP)
message-passing algorithms
packing problems
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ea02dc9739ef8f05d7b91d99a3effa3f3cfed8fa17b2539f4e7ef96731ac82a03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1715952891
PQPubID 36024
PageCount 11
ParticipantIDs proquest_journals_1715952891
ieee_primary_7185433
crossref_citationtrail_10_1109_TIT_2015_2466598
crossref_primary_10_1109_TIT_2015_2466598
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Oct.
2015-10-00
20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References vontobel (ref10) 2005
ref13
schrijver (ref2) 1998
ref12
ref15
cramton (ref18) 2006
ref14
wiberg (ref9) 1996
ref20
ref11
ref22
ref21
ref17
pearl (ref5) 1988
ref16
ref19
ref8
gallager (ref6) 1963
ref7
bertsimas (ref1) 1997
ref4
ref3
References_xml – year: 1963
  ident: ref6
  publication-title: Low-Density Parity-Check Codes
  doi: 10.7551/mitpress/4347.001.0001
– ident: ref20
  doi: 10.1109/TIT.2013.2259576
– year: 1988
  ident: ref5
  publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference
– year: 1998
  ident: ref2
  publication-title: Theory of Linear and Integer Programming
– year: 1996
  ident: ref9
  article-title: Codes and decoding on general graphs
– ident: ref7
  doi: 10.1109/TIT.1967.1054010
– ident: ref21
  doi: 10.1109/18.910572
– ident: ref4
  doi: 10.1109/TIT.2012.2208584
– year: 1997
  ident: ref1
  publication-title: Introduction to Linear Optimization
– ident: ref11
  doi: 10.1109/TIT.2007.915695
– ident: ref3
  doi: 10.1109/TIT.2004.842696
– ident: ref15
  doi: 10.1109/ALLERTON.2008.4797655
– ident: ref12
  doi: 10.1137/090753115
– year: 2005
  ident: ref10
  publication-title: Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes
– ident: ref8
  doi: 10.1007/s10955-011-0384-7
– ident: ref17
  doi: 10.1007/978-3-642-36065-7_18
– ident: ref13
  doi: 10.1109/TIT.2011.2110170
– ident: ref16
  doi: 10.1287/opre.1110.1025
– ident: ref14
  doi: 10.1109/TIT.2009.2030448
– ident: ref19
  doi: 10.1109/TIT.2013.2284912
– ident: ref22
  doi: 10.1007/s004930200000
– year: 2006
  ident: ref18
  publication-title: Combinatorial Auctions
SSID ssj0014512
Score 2.199835
Snippet Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications, including decoding error correcting codes and solving...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5295
SubjectTerms Algorithms
belief propagation (BP)
Bipartite graph
combinatorial optimization
covering problems
Dynamic programming
Errors
factor graphs
graph cover
Heuristic algorithms
Inference algorithms
Linear programming
linear programming (LP)
Matrix
max-product algorithm
message-passing algorithms
min-sum algorithm
Optimization
Oscillators
packing problems
Variables
Vector space
Title Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming
URI https://ieeexplore.ieee.org/document/7185433
https://www.proquest.com/docview/1715952891
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60Jz1YtYrVKjl4Edx2s0l2N8dSLCpUBCuIlyWbhxbbrejWg7_eZB_FF-JtH0kIfJlkJjPzDcBxKlTga195oTbEo5KkXswU9WiKQ-kLR7DikpNHV-H5Lb28Y3crcLrMhdFaF8FnuuseC1--msuFuyrr2X2UUUJWYdUabmWu1tJjQBkumcGxFWBrc9QuSZ_3xhdjF8PFugENQ8bjL0dQUVPlx0ZcnC7DJozqeZVBJU_dRZ525fs3ysb_TnwTNio1E_XLdbEFKzrbhmZdwgFVEr0N65_4CFtwX1OUoLlBVjNEo0nm3SxmqD99mL9M8scZsjouuhbSXbAjkSk0cCGg7uW6rEzzit4mAlkL10qQ--aCv2b2_w7cDs_Gg3OvKr7gyYDj3NPCD5TkEeHaxMZnKko5VpwLoo0RxBBptIqNwFEaMMIN1ZE2PIwIFjIOhE92oZHNM70HyI4kQ64UNYRTaVzjGLMYE6lCncamDb0aj0RWzOSuQMY0KSwUnycWwcQhmFQItuFk2eO5ZOX4o23LAbJsV2HRhk4NeVKJ7WuCI6vdMWuD4v3fex3Amhu7jObrQCN_WehDq5Xk6VGxHD8AHT3fIg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1BOQAHdkRZfeCCRNo4tpP4iBCoLEVIFAlxiRwvUEFTRFMOfD12lopNiFuWcWLpeTwz9vgNwH4qVOBrX3mhNsSjkqRezBT1aIpD6QtHsOIOJ3evws4tPb9jd1NwODkLo7Uuks90y10We_lqKMduqaxt51FGCZmGGWv3GS5Pa032DCjDJTc4tipso456U9Ln7d5Zz2VxsVZAw5Dx-IsRKqqq_JiKC_tyugjdumdlWslTa5ynLfn-jbTxv11fgoXK0URH5chYhimdrcBiXcQBVTq9AvOfGAlX4b4mKUFDg6xviLr9zLsZD9DR88PwtZ8_DpD1ctG1kG6JHYlMoWOXBOpursvaNCP01hfIxrhWh9wzl_41sO_X4Pb0pHfc8aryC54MOM49LfxASR4Rrk1sfKailGPFuSDaGEEMkUar2AgcpQEj3FAdacPDiGAh40D4ZB0a2TDTG4Dsl2TIlaKGcCqNE44xizGRKtRpbJrQrvFIZMVN7kpkPCdFjOLzxCKYOASTCsEmHExavJS8HH_IrjpAJnIVFk3YriFPKsUdJTiy_h2zUSje_L3VHsx2et3L5PLs6mIL5tx_yty-bWjkr2O9Y32UPN0thuYH6Kniaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+Min-Sum+Algorithm+for+Packing+and+Covering+Problems+via+Linear+Programming&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Even%2C+Guy&rft.au=Halabi%2C+Nissim&rft.date=2015-10-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=61&rft.issue=10&rft.spage=5295&rft.epage=5305&rft_id=info:doi/10.1109%2FTIT.2015.2466598&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2015_2466598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon