A Theory of Computational Resolution Limit for Line Spectral Estimation

Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 67; no. 7; pp. 4812 - 4827
Main Authors Liu, Ping, Zhang, Hai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2021.3075149

Cover

Abstract Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this paper, we introduce and quantitatively characterize the two resolution limits for the line spectral estimation problem under deterministic noise: one is the minimum separation distance between the line spectra that is required for exact detection of their number, and the other is the minimum separation distance between the line spectra that is required for a stable recovery of their supports. The quantitative results imply a phase transition phenomenon in each of the two recovery problems, and also the subtle difference between the two. We further propose a sweeping singular-value-thresholding algorithm for the number detection problem and conduct numerical experiments. The numerical results confirm the phase transition phenomenon in the number detection problem.
AbstractList Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this paper, we introduce and quantitatively characterize the two resolution limits for the line spectral estimation problem under deterministic noise: one is the minimum separation distance between the line spectra that is required for exact detection of their number, and the other is the minimum separation distance between the line spectra that is required for a stable recovery of their supports. The quantitative results imply a phase transition phenomenon in each of the two recovery problems, and also the subtle difference between the two. We further propose a sweeping singular-value-thresholding algorithm for the number detection problem and conduct numerical experiments. The numerical results confirm the phase transition phenomenon in the number detection problem.
Author Liu, Ping
Zhang, Hai
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0002-7857-7040
  surname: Liu
  fullname: Liu, Ping
  email: pliuah@connect.ust.hk
  organization: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong
– sequence: 2
  givenname: Hai
  orcidid: 0000-0002-5494-001X
  surname: Zhang
  fullname: Zhang, Hai
  email: haizhang@ust.hk
  organization: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong
BookMark eNp9kMFLwzAUh4NMcJveBS8Fz515aZIuxzHmFAaC9l7S9BU7uqYm7WH_vakdHjx4ynvw-17e-xZk1toWCbkHugKg6il7zVaMMlglNBXA1RWZgxBprKTgMzKnFNax4nx9QxbeH0PLBbA52W-i7BOtO0e2irb21A297mvb6iZ6R2-bYWyiQ32q-6iyLlQtRh8dmt6FyM739eknf0uuK914vLu8S5I977LtS3x4279uN4fYMAV9jKrSTGoslSh1WuqqFLLUFA0UBjSqxKSl4ZUUKcqkMEVRSuABgoQlTIlkSR6nsZ2zXwP6Pj_awYVtfc4EB57KNR1TdEoZZ713WOWdC3u6cw40H23lwVY-2sovtgIi_yCmnkyEQ-vmP_BhAmtE_P1HcaCSyeQbb3955w
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2024_3488573
crossref_primary_10_1016_j_acha_2021_09_002
crossref_primary_10_1016_j_acha_2024_101673
crossref_primary_10_2139_ssrn_4106833
crossref_primary_10_1137_23M1568569
crossref_primary_10_1109_TCYB_2022_3179378
crossref_primary_10_1093_imaiai_iaad048
crossref_primary_10_1109_LSP_2023_3324553
crossref_primary_10_1007_s10208_023_09618_7
crossref_primary_10_1016_j_acha_2023_01_005
crossref_primary_10_1016_j_acha_2023_03_002
crossref_primary_10_1017_fms_2024_72
crossref_primary_10_1137_23M1551730
crossref_primary_10_2139_ssrn_4068590
crossref_primary_10_2139_ssrn_4095423
Cites_doi 10.1109/TSP.2005.845492
10.1086/116315
10.1109/TSP.2013.2283462
10.1137/17M1147822
10.1080/14786447908639684
10.1109/TIT.2013.2277451
10.1016/0005-1098(78)90005-5
10.1093/biomet/43.1-2.128
10.1145/2746539.2746561
10.1109/ISCAS.1991.176121
10.1109/TAP.1986.1143830
10.1109/MSP.2019.2962209
10.1364/JOSA.59.000164
10.1137/15M1016552
10.1016/j.acha.2014.12.003
10.1109/SAMPTA.2015.7148965
10.1007/s10208-014-9228-6
10.1007/978-1-4612-1694-0_15
10.1016/0161-7346(79)90011-7
10.1109/78.80959
10.1109/TIP.2004.826096
10.1109/29.31267
10.1093/imaiai/iaw005
10.1002/cpa.21455
10.1007/s00041-013-9292-3
10.1137/0523074
10.1109/TASSP.1985.1164557
10.1109/TIT.1964.1053702
10.1109/SAMPTA.2015.7148951
10.1109/IMTC.1996.507422
10.1016/j.acha.2018.09.005
10.1214/aos/1176344136
10.1109/29.56027
10.1007/978-1-4612-1694-0_16
10.1109/TIT.2020.2974174
10.1007/BF01386302
10.1109/TIT.2014.2368122
10.1137/18M1212197
10.1007/s00041-016-9502-x
10.1109/TPAMI.2010.15
10.1016/j.acha.2014.03.004
10.1364/JOSAA.14.000547
10.1109/29.32276
10.1109/29.17564
10.1109/TSP.2018.2807417
10.1016/j.acha.2020.10.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2021.3075149
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4827
ExternalDocumentID 10_1109_TIT_2021_3075149
9410626
Genre orig-research
GrantInformation_xml – fundername: Hong Kong RGC
  grantid: GRF 16305419
  funderid: 10.13039/501100002920
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-e9fa26aed95da7dafd56da0ec1bc1ae93c7dc4f657e63bcbbd614e9f13232953
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 04:36:29 EDT 2025
Tue Jul 01 02:16:17 EDT 2025
Thu Apr 24 23:07:13 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e9fa26aed95da7dafd56da0ec1bc1ae93c7dc4f657e63bcbbd614e9f13232953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5494-001X
0000-0002-7857-7040
PQID 2541476805
PQPubID 36024
PageCount 16
ParticipantIDs crossref_primary_10_1109_TIT_2021_3075149
proquest_journals_2541476805
ieee_primary_9410626
crossref_citationtrail_10_1109_TIT_2021_3075149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
batenkov (ref26) 2020
ref53
ref11
ref54
ref10
ref19
ref18
prony (ref17) 1795; 1
ref51
ref50
he (ref52) 2010; 32
ref46
ref45
ref48
ref47
ref41
liu (ref42) 2021
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
lucy (ref31) 1992; 261
ref34
ref37
ref36
ref30
ref33
ref32
ref2
ref1
ref39
morgenshtern (ref16) 2020
fernandez-granda (ref5) 2013
ref24
ref23
shahram (ref35) 2004; 5204
ref25
ref20
ref22
ref21
demanet (ref38) 2015
ref28
ref27
ref29
References_xml – ident: ref36
  doi: 10.1109/TSP.2005.845492
– ident: ref32
  doi: 10.1086/116315
– ident: ref53
  doi: 10.1109/TSP.2013.2283462
– ident: ref8
  doi: 10.1137/17M1147822
– ident: ref1
  doi: 10.1080/14786447908639684
– ident: ref9
  doi: 10.1109/TIT.2013.2277451
– volume: 261
  start-page: 706
  year: 1992
  ident: ref31
  article-title: Statistical limits to super resolution
  publication-title: Astron Astrophys
– ident: ref48
  doi: 10.1016/0005-1098(78)90005-5
– ident: ref50
  doi: 10.1093/biomet/43.1-2.128
– year: 2020
  ident: ref26
  article-title: Super-resolution of near-colliding point sources
  publication-title: Inf Inference J IMA
– ident: ref40
  doi: 10.1145/2746539.2746561
– start-page: 145
  year: 2013
  ident: ref5
  article-title: Support detection in super-resolution
  publication-title: Proc 10th Int Conf Sampling Theory Appl (SampTA)
– ident: ref22
  doi: 10.1109/ISCAS.1991.176121
– ident: ref18
  doi: 10.1109/TAP.1986.1143830
– ident: ref11
  doi: 10.1109/MSP.2019.2962209
– ident: ref30
  doi: 10.1364/JOSA.59.000164
– ident: ref15
  doi: 10.1137/15M1016552
– year: 2020
  ident: ref16
  article-title: Super-resolution of positive sources on an arbitrarily fine grid
  publication-title: arXiv 2005 06756
– volume: 5204
  start-page: 1
  year: 2004
  ident: ref35
  article-title: Statistical analysis of achievable resolution in incoherent imaging
  publication-title: Signal and Data Processing of Small Targets 2003
– ident: ref54
  doi: 10.1016/j.acha.2014.12.003
– ident: ref41
  doi: 10.1109/SAMPTA.2015.7148965
– ident: ref7
  doi: 10.1007/s10208-014-9228-6
– ident: ref44
  doi: 10.1007/978-1-4612-1694-0_15
– ident: ref27
  doi: 10.1016/0161-7346(79)90011-7
– ident: ref51
  doi: 10.1109/78.80959
– ident: ref34
  doi: 10.1109/TIP.2004.826096
– ident: ref49
  doi: 10.1109/29.31267
– ident: ref4
  doi: 10.1093/imaiai/iaw005
– ident: ref2
  doi: 10.1002/cpa.21455
– ident: ref3
  doi: 10.1007/s00041-013-9292-3
– ident: ref37
  doi: 10.1137/0523074
– ident: ref46
  doi: 10.1109/TASSP.1985.1164557
– ident: ref29
  doi: 10.1109/TIT.1964.1053702
– ident: ref12
  doi: 10.1109/SAMPTA.2015.7148951
– ident: ref33
  doi: 10.1109/IMTC.1996.507422
– ident: ref13
  doi: 10.1016/j.acha.2018.09.005
– ident: ref47
  doi: 10.1214/aos/1176344136
– year: 2015
  ident: ref38
  article-title: The recoverability limit for superresolution via sparsity
  publication-title: arXiv 1502 01385
– ident: ref21
  doi: 10.1109/29.56027
– ident: ref45
  doi: 10.1007/978-1-4612-1694-0_16
– ident: ref24
  doi: 10.1109/TIT.2020.2974174
– ident: ref43
  doi: 10.1007/BF01386302
– ident: ref10
  doi: 10.1109/TIT.2014.2368122
– year: 2021
  ident: ref42
  article-title: A mathematical theory of computational resolution limit in one dimmension
  publication-title: arXivi 1912 05430v3
– ident: ref39
  doi: 10.1137/18M1212197
– ident: ref14
  doi: 10.1007/s00041-016-9502-x
– volume: 32
  start-page: 2006
  year: 2010
  ident: ref52
  article-title: Detecting the number of clusters in n-Way probabilistic clustering
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.15
– ident: ref6
  doi: 10.1016/j.acha.2014.03.004
– ident: ref28
  doi: 10.1364/JOSAA.14.000547
– ident: ref20
  doi: 10.1109/29.32276
– ident: ref19
  doi: 10.1109/29.17564
– ident: ref23
  doi: 10.1109/TSP.2018.2807417
– ident: ref25
  doi: 10.1016/j.acha.2020.10.004
– volume: 1
  start-page: 24
  year: 1795
  ident: ref17
  article-title: Essai experimental et analytique
  publication-title: J l Ecole Polytech (Paris)
SSID ssj0014512
Score 2.4311614
Snippet Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4812
SubjectTerms Algorithms
Estimation
Extraterrestrial measurements
Line spectra
Line spectral estimation
Minimization
Noise level
Phase measurement
phase transition
Phase transitions
Pollution measurement
Random noise
Recovery
resolution limit
Separation
Signal processing
Signal to noise ratio
Title A Theory of Computational Resolution Limit for Line Spectral Estimation
URI https://ieeexplore.ieee.org/document/9410626
https://www.proquest.com/docview/2541476805
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWCg0IIoFOSBBYmkcZ54rFBLQSpTkLpFfi6gFkG68Os5x0nES4jNg8-yfGfffed7AFxog3y1wsuuTeDFPBUeC7TwUJ0oGlMjaWiTk5cP6eIxvl8lqw5ctbkwWusq-Ez7dlj95auN3FpX2YTFCGDCtAtdFDOXq9X-GMQJdZXBKV5gxBzNl2TAJvldjkAwpD7KM9oH7IsKqnqq_HiIK-0y78Oy2ZcLKnnyt6Xw5fu3ko3_3fg-7NVmJpk6uTiAjl4PoN-0cCD1jR7A7qd6hEO4nRKXq082hrjJta-QWDe_E1JS5UQRNHZxtNbEdrC37hIyw9fCJUIeQj6f5TcLr-604MmQ0dLTzPAw5VqxRPFMcaOSVPFASyok5ZpFMlMyNmmS6TQSUgiFWh2JEMpGIUuiI-itN2t9DMQgjaKZ4MJWqlMK0Ys0NOYciXgs1AgmzdkXsq5CbpthPBcVGglYgdwqLLeKmlsjuGwpXlwFjj_mDu3ht_Pqcx_BuGFvUV_RtyK0DdARbAXJye9Up7Bj13axuWPola9bfYYWSCnOK9H7ADQr2O8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDKGhEUXvwYuLCduku9kiMCAqc1oTbps-LBozCxV_vdLtLfMV466GTNp1pZ77pPAAujEW-OuHl1zYMmEhkwEMjA1QnmjJqFY1ccvJkmgwf2f0snlXgap0LY4zJg89M2w3zv3y9UCvnKutwhgAmSjZgE_U-i3221vrPgMXU1waneIURdZSfkiHvpKMUoWBE2yjRaCHwL0oo76ry4ynO9cugBpNyZz6s5Km9Wsq2ev9WtPG_W9-D3cLQJH0vGftQMfM61MomDqS403XY-VSRsAF3feKz9cnCEj-58BYS5-j3YkryrCiC5i6O5oa4HvbOYUJu8b3wqZAHkA5u05thUPRaCFTE6TIw3IooEUbzWIueFlbHiRahUVQqKgzvqp5WzCZxzyRdqaTUqNeRCMFsN-Jx9xCq88XcHAGxSKNpTwrpatVpjfhFWcqEQCLBpG5Cpzz7TBV1yF07jOcsxyMhz5BbmeNWVnCrCZdrihdfg-OPuQ13-Ot5xbk3oVWyNysu6VsWuRboCLfC-Ph3qnPYGqaTcTYeTR9OYNut4yN1W1Bdvq7MKdojS3mWi-EHttrcPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theory+of+Computational+Resolution+Limit+for+Line+Spectral+Estimation&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Liu%2C+Ping&rft.au=Zhang%2C+Hai&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=67&rft.issue=7&rft.spage=4812&rft.epage=4827&rft_id=info:doi/10.1109%2FTIT.2021.3075149&rft.externalDocID=9410626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon