A Theory of Computational Resolution Limit for Line Spectral Estimation
Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this...
Saved in:
Published in | IEEE transactions on information theory Vol. 67; no. 7; pp. 4812 - 4827 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9448 1557-9654 |
DOI | 10.1109/TIT.2021.3075149 |
Cover
Abstract | Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this paper, we introduce and quantitatively characterize the two resolution limits for the line spectral estimation problem under deterministic noise: one is the minimum separation distance between the line spectra that is required for exact detection of their number, and the other is the minimum separation distance between the line spectra that is required for a stable recovery of their supports. The quantitative results imply a phase transition phenomenon in each of the two recovery problems, and also the subtle difference between the two. We further propose a sweeping singular-value-thresholding algorithm for the number detection problem and conduct numerical experiments. The numerical results confirm the phase transition phenomenon in the number detection problem. |
---|---|
AbstractList | Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by deterministic or random noise. Despite a large body of research on this subject, the theoretical understanding of this problem is still elusive. In this paper, we introduce and quantitatively characterize the two resolution limits for the line spectral estimation problem under deterministic noise: one is the minimum separation distance between the line spectra that is required for exact detection of their number, and the other is the minimum separation distance between the line spectra that is required for a stable recovery of their supports. The quantitative results imply a phase transition phenomenon in each of the two recovery problems, and also the subtle difference between the two. We further propose a sweeping singular-value-thresholding algorithm for the number detection problem and conduct numerical experiments. The numerical results confirm the phase transition phenomenon in the number detection problem. |
Author | Liu, Ping Zhang, Hai |
Author_xml | – sequence: 1 givenname: Ping orcidid: 0000-0002-7857-7040 surname: Liu fullname: Liu, Ping email: pliuah@connect.ust.hk organization: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong – sequence: 2 givenname: Hai orcidid: 0000-0002-5494-001X surname: Zhang fullname: Zhang, Hai email: haizhang@ust.hk organization: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong |
BookMark | eNp9kMFLwzAUh4NMcJveBS8Fz515aZIuxzHmFAaC9l7S9BU7uqYm7WH_vakdHjx4ynvw-17e-xZk1toWCbkHugKg6il7zVaMMlglNBXA1RWZgxBprKTgMzKnFNax4nx9QxbeH0PLBbA52W-i7BOtO0e2irb21A297mvb6iZ6R2-bYWyiQ32q-6iyLlQtRh8dmt6FyM739eknf0uuK914vLu8S5I977LtS3x4279uN4fYMAV9jKrSTGoslSh1WuqqFLLUFA0UBjSqxKSl4ZUUKcqkMEVRSuABgoQlTIlkSR6nsZ2zXwP6Pj_awYVtfc4EB57KNR1TdEoZZ713WOWdC3u6cw40H23lwVY-2sovtgIi_yCmnkyEQ-vmP_BhAmtE_P1HcaCSyeQbb3955w |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1109_TIT_2024_3488573 crossref_primary_10_1016_j_acha_2021_09_002 crossref_primary_10_1016_j_acha_2024_101673 crossref_primary_10_2139_ssrn_4106833 crossref_primary_10_1137_23M1568569 crossref_primary_10_1109_TCYB_2022_3179378 crossref_primary_10_1093_imaiai_iaad048 crossref_primary_10_1109_LSP_2023_3324553 crossref_primary_10_1007_s10208_023_09618_7 crossref_primary_10_1016_j_acha_2023_01_005 crossref_primary_10_1016_j_acha_2023_03_002 crossref_primary_10_1017_fms_2024_72 crossref_primary_10_1137_23M1551730 crossref_primary_10_2139_ssrn_4068590 crossref_primary_10_2139_ssrn_4095423 |
Cites_doi | 10.1109/TSP.2005.845492 10.1086/116315 10.1109/TSP.2013.2283462 10.1137/17M1147822 10.1080/14786447908639684 10.1109/TIT.2013.2277451 10.1016/0005-1098(78)90005-5 10.1093/biomet/43.1-2.128 10.1145/2746539.2746561 10.1109/ISCAS.1991.176121 10.1109/TAP.1986.1143830 10.1109/MSP.2019.2962209 10.1364/JOSA.59.000164 10.1137/15M1016552 10.1016/j.acha.2014.12.003 10.1109/SAMPTA.2015.7148965 10.1007/s10208-014-9228-6 10.1007/978-1-4612-1694-0_15 10.1016/0161-7346(79)90011-7 10.1109/78.80959 10.1109/TIP.2004.826096 10.1109/29.31267 10.1093/imaiai/iaw005 10.1002/cpa.21455 10.1007/s00041-013-9292-3 10.1137/0523074 10.1109/TASSP.1985.1164557 10.1109/TIT.1964.1053702 10.1109/SAMPTA.2015.7148951 10.1109/IMTC.1996.507422 10.1016/j.acha.2018.09.005 10.1214/aos/1176344136 10.1109/29.56027 10.1007/978-1-4612-1694-0_16 10.1109/TIT.2020.2974174 10.1007/BF01386302 10.1109/TIT.2014.2368122 10.1137/18M1212197 10.1007/s00041-016-9502-x 10.1109/TPAMI.2010.15 10.1016/j.acha.2014.03.004 10.1364/JOSAA.14.000547 10.1109/29.32276 10.1109/29.17564 10.1109/TSP.2018.2807417 10.1016/j.acha.2020.10.004 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2021.3075149 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 4827 |
ExternalDocumentID | 10_1109_TIT_2021_3075149 9410626 |
Genre | orig-research |
GrantInformation_xml | – fundername: Hong Kong RGC grantid: GRF 16305419 funderid: 10.13039/501100002920 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-e9fa26aed95da7dafd56da0ec1bc1ae93c7dc4f657e63bcbbd614e9f13232953 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Mon Jun 30 04:36:29 EDT 2025 Tue Jul 01 02:16:17 EDT 2025 Thu Apr 24 23:07:13 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e9fa26aed95da7dafd56da0ec1bc1ae93c7dc4f657e63bcbbd614e9f13232953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5494-001X 0000-0002-7857-7040 |
PQID | 2541476805 |
PQPubID | 36024 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TIT_2021_3075149 proquest_journals_2541476805 ieee_primary_9410626 crossref_citationtrail_10_1109_TIT_2021_3075149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 batenkov (ref26) 2020 ref53 ref11 ref54 ref10 ref19 ref18 prony (ref17) 1795; 1 ref51 ref50 he (ref52) 2010; 32 ref46 ref45 ref48 ref47 ref41 liu (ref42) 2021 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref40 lucy (ref31) 1992; 261 ref34 ref37 ref36 ref30 ref33 ref32 ref2 ref1 ref39 morgenshtern (ref16) 2020 fernandez-granda (ref5) 2013 ref24 ref23 shahram (ref35) 2004; 5204 ref25 ref20 ref22 ref21 demanet (ref38) 2015 ref28 ref27 ref29 |
References_xml | – ident: ref36 doi: 10.1109/TSP.2005.845492 – ident: ref32 doi: 10.1086/116315 – ident: ref53 doi: 10.1109/TSP.2013.2283462 – ident: ref8 doi: 10.1137/17M1147822 – ident: ref1 doi: 10.1080/14786447908639684 – ident: ref9 doi: 10.1109/TIT.2013.2277451 – volume: 261 start-page: 706 year: 1992 ident: ref31 article-title: Statistical limits to super resolution publication-title: Astron Astrophys – ident: ref48 doi: 10.1016/0005-1098(78)90005-5 – ident: ref50 doi: 10.1093/biomet/43.1-2.128 – year: 2020 ident: ref26 article-title: Super-resolution of near-colliding point sources publication-title: Inf Inference J IMA – ident: ref40 doi: 10.1145/2746539.2746561 – start-page: 145 year: 2013 ident: ref5 article-title: Support detection in super-resolution publication-title: Proc 10th Int Conf Sampling Theory Appl (SampTA) – ident: ref22 doi: 10.1109/ISCAS.1991.176121 – ident: ref18 doi: 10.1109/TAP.1986.1143830 – ident: ref11 doi: 10.1109/MSP.2019.2962209 – ident: ref30 doi: 10.1364/JOSA.59.000164 – ident: ref15 doi: 10.1137/15M1016552 – year: 2020 ident: ref16 article-title: Super-resolution of positive sources on an arbitrarily fine grid publication-title: arXiv 2005 06756 – volume: 5204 start-page: 1 year: 2004 ident: ref35 article-title: Statistical analysis of achievable resolution in incoherent imaging publication-title: Signal and Data Processing of Small Targets 2003 – ident: ref54 doi: 10.1016/j.acha.2014.12.003 – ident: ref41 doi: 10.1109/SAMPTA.2015.7148965 – ident: ref7 doi: 10.1007/s10208-014-9228-6 – ident: ref44 doi: 10.1007/978-1-4612-1694-0_15 – ident: ref27 doi: 10.1016/0161-7346(79)90011-7 – ident: ref51 doi: 10.1109/78.80959 – ident: ref34 doi: 10.1109/TIP.2004.826096 – ident: ref49 doi: 10.1109/29.31267 – ident: ref4 doi: 10.1093/imaiai/iaw005 – ident: ref2 doi: 10.1002/cpa.21455 – ident: ref3 doi: 10.1007/s00041-013-9292-3 – ident: ref37 doi: 10.1137/0523074 – ident: ref46 doi: 10.1109/TASSP.1985.1164557 – ident: ref29 doi: 10.1109/TIT.1964.1053702 – ident: ref12 doi: 10.1109/SAMPTA.2015.7148951 – ident: ref33 doi: 10.1109/IMTC.1996.507422 – ident: ref13 doi: 10.1016/j.acha.2018.09.005 – ident: ref47 doi: 10.1214/aos/1176344136 – year: 2015 ident: ref38 article-title: The recoverability limit for superresolution via sparsity publication-title: arXiv 1502 01385 – ident: ref21 doi: 10.1109/29.56027 – ident: ref45 doi: 10.1007/978-1-4612-1694-0_16 – ident: ref24 doi: 10.1109/TIT.2020.2974174 – ident: ref43 doi: 10.1007/BF01386302 – ident: ref10 doi: 10.1109/TIT.2014.2368122 – year: 2021 ident: ref42 article-title: A mathematical theory of computational resolution limit in one dimmension publication-title: arXivi 1912 05430v3 – ident: ref39 doi: 10.1137/18M1212197 – ident: ref14 doi: 10.1007/s00041-016-9502-x – volume: 32 start-page: 2006 year: 2010 ident: ref52 article-title: Detecting the number of clusters in n-Way probabilistic clustering publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.15 – ident: ref6 doi: 10.1016/j.acha.2014.03.004 – ident: ref28 doi: 10.1364/JOSAA.14.000547 – ident: ref20 doi: 10.1109/29.32276 – ident: ref19 doi: 10.1109/29.17564 – ident: ref23 doi: 10.1109/TSP.2018.2807417 – ident: ref25 doi: 10.1016/j.acha.2020.10.004 – volume: 1 start-page: 24 year: 1795 ident: ref17 article-title: Essai experimental et analytique publication-title: J l Ecole Polytech (Paris) |
SSID | ssj0014512 |
Score | 2.4311614 |
Snippet | Line spectral estimation is a classical signal processing problem that aims to estimate the line spectra from their signal which is contaminated by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4812 |
SubjectTerms | Algorithms Estimation Extraterrestrial measurements Line spectra Line spectral estimation Minimization Noise level Phase measurement phase transition Phase transitions Pollution measurement Random noise Recovery resolution limit Separation Signal processing Signal to noise ratio |
Title | A Theory of Computational Resolution Limit for Line Spectral Estimation |
URI | https://ieeexplore.ieee.org/document/9410626 https://www.proquest.com/docview/2541476805 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWCg0IIoFOSBBYmkcZ54rFBLQSpTkLpFfi6gFkG68Os5x0nES4jNg8-yfGfffed7AFxog3y1wsuuTeDFPBUeC7TwUJ0oGlMjaWiTk5cP6eIxvl8lqw5ctbkwWusq-Ez7dlj95auN3FpX2YTFCGDCtAtdFDOXq9X-GMQJdZXBKV5gxBzNl2TAJvldjkAwpD7KM9oH7IsKqnqq_HiIK-0y78Oy2ZcLKnnyt6Xw5fu3ko3_3fg-7NVmJpk6uTiAjl4PoN-0cCD1jR7A7qd6hEO4nRKXq082hrjJta-QWDe_E1JS5UQRNHZxtNbEdrC37hIyw9fCJUIeQj6f5TcLr-604MmQ0dLTzPAw5VqxRPFMcaOSVPFASyok5ZpFMlMyNmmS6TQSUgiFWh2JEMpGIUuiI-itN2t9DMQgjaKZ4MJWqlMK0Ys0NOYciXgs1AgmzdkXsq5CbpthPBcVGglYgdwqLLeKmlsjuGwpXlwFjj_mDu3ht_Pqcx_BuGFvUV_RtyK0DdARbAXJye9Up7Bj13axuWPola9bfYYWSCnOK9H7ADQr2O8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gHtSDKGhEUXvwYuLCduku9kiMCAqc1oTbps-LBozCxV_vdLtLfMV466GTNp1pZ77pPAAujEW-OuHl1zYMmEhkwEMjA1QnmjJqFY1ccvJkmgwf2f0snlXgap0LY4zJg89M2w3zv3y9UCvnKutwhgAmSjZgE_U-i3221vrPgMXU1waneIURdZSfkiHvpKMUoWBE2yjRaCHwL0oo76ry4ynO9cugBpNyZz6s5Km9Wsq2ev9WtPG_W9-D3cLQJH0vGftQMfM61MomDqS403XY-VSRsAF3feKz9cnCEj-58BYS5-j3YkryrCiC5i6O5oa4HvbOYUJu8b3wqZAHkA5u05thUPRaCFTE6TIw3IooEUbzWIueFlbHiRahUVQqKgzvqp5WzCZxzyRdqaTUqNeRCMFsN-Jx9xCq88XcHAGxSKNpTwrpatVpjfhFWcqEQCLBpG5Cpzz7TBV1yF07jOcsxyMhz5BbmeNWVnCrCZdrihdfg-OPuQ13-Ot5xbk3oVWyNysu6VsWuRboCLfC-Ph3qnPYGqaTcTYeTR9OYNut4yN1W1Bdvq7MKdojS3mWi-EHttrcPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theory+of+Computational+Resolution+Limit+for+Line+Spectral+Estimation&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Liu%2C+Ping&rft.au=Zhang%2C+Hai&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=67&rft.issue=7&rft.spage=4812&rft.epage=4827&rft_id=info:doi/10.1109%2FTIT.2021.3075149&rft.externalDocID=9410626 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |