Optimizing the Kerr Nonlinear Optical Performance of Silicon Waveguides Integrated With 2D Graphene Oxide Films

The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nano...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 39; no. 14; pp. 4671 - 4683
Main Authors Zhang, Yuning, Wu, Jiayang, Qu, Yang, Jia, Linnan, Jia, Baohua, Moss, David J.
Format Journal Article
LanguageEnglish
Published New York IEEE 15.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8724
1558-2213
DOI10.1109/JLT.2021.3069733

Cover

Loading…
Abstract The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ∼52 and ∼79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.8 can be achieved - more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed, together with the comparison between the spectral broadening after going through GO-coated and graphene-coated silicon waveguides. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films.
AbstractList The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ∼52 and ∼79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.8 can be achieved – more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed, together with the comparison between the spectral broadening after going through GO-coated and graphene-coated silicon waveguides. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films.
Author Zhang, Yuning
Wu, Jiayang
Qu, Yang
Moss, David J.
Jia, Baohua
Jia, Linnan
Author_xml – sequence: 1
  givenname: Yuning
  surname: Zhang
  fullname: Zhang, Yuning
  email: yuningzhang@swin.edu.au
  organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia
– sequence: 2
  givenname: Jiayang
  orcidid: 0000-0003-1115-610X
  surname: Wu
  fullname: Wu, Jiayang
  email: jiayangwu@swin.edu.au
  organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia
– sequence: 3
  givenname: Yang
  orcidid: 0000-0003-2030-8320
  surname: Qu
  fullname: Qu, Yang
  email: yqu@swin.edu.au
  organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia
– sequence: 4
  givenname: Linnan
  surname: Jia
  fullname: Jia, Linnan
  email: ljia@swin.edu.au
  organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia
– sequence: 5
  givenname: Baohua
  orcidid: 0000-0002-6703-477X
  surname: Jia
  fullname: Jia, Baohua
  email: bjia@swin.edu.au
  organization: Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Australia
– sequence: 6
  givenname: David J.
  orcidid: 0000-0001-5195-1744
  surname: Moss
  fullname: Moss, David J.
  email: dmoss@swin.edu.au
  organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia
BookMark eNp9kM9PwjAUgBuDiYDeTbw08Tzsj21tjwYFUSImYjgu3fYGJaPFrhj1r3cE4sGDpyav3_de8vVQxzoLCF1SMqCUqJvH6XzACKMDTlIlOD9BXZokMmKM8g7qknYUScHiM9RrmjUhNI6l6CI32wazMd_GLnFYAX4C7_Gzs7WxoD3e_xa6xi_gK-c32haAXYVfTW0KZ_FCf8ByZ0po8MQGWHodoMQLE1aY3eGx19sVWMCzzxbBI1NvmnN0Wum6gYvj20dvo_v58CGazsaT4e00KpiiIQJFy7zioDiXCcSKs4pImnIJgui4zFmqS0hzQUkpVJWXOuapyCWjOqcKUsL76Pqwd-vd-w6akK3dztv2ZMaShPKUCSlaKj1QhXdN46HKChN0MM4Gr02dUZLt42Zt3GwfNzvGbUXyR9x6s9H-6z_l6qAYAPjFFVeESsV_AMfGhuo
CODEN JLTEDG
CitedBy_id crossref_primary_10_1007_s13204_021_02220_9
crossref_primary_10_2139_ssrn_4749422
crossref_primary_10_2139_ssrn_4749420
crossref_primary_10_1109_JLT_2021_3101292
crossref_primary_10_2139_ssrn_3935111
crossref_primary_10_1109_JSTQE_2022_3177385
crossref_primary_10_1021_acs_nanolett_4c02625
crossref_primary_10_1002_admt_202201796
crossref_primary_10_1007_s12274_024_6911_z
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1109_ACCESS_2024_3356353
crossref_primary_10_2139_ssrn_4164854
crossref_primary_10_2139_ssrn_4833890
crossref_primary_10_3390_mi13081194
crossref_primary_10_1007_s11071_023_08469_9
crossref_primary_10_1016_j_optmat_2024_114912
crossref_primary_10_3390_mi13050756
crossref_primary_10_1038_s41563_022_01383_2
crossref_primary_10_1515_nanoph_2021_0800
Cites_doi 10.1364/OPTICA.2.000797
10.1002/lpor.201100020
10.1038/ncomms9433
10.1038/s41467-020-16265-x
10.1002/lpor.201900056
10.1364/PRJ.3.000206
10.1038/4501175b
10.1021/nl200587h
10.1109/JSTQE.2014.2312952
10.1038/s41566-019-0389-3
10.1038/s41566-018-0144-1
10.1364/OL.14.001140
10.1364/OL.32.002031
10.1021/nl9041017
10.1364/OE.25.021229
10.1038/srep43371
10.1364/OPTICA.3.000020
10.1021/acsphotonics.9b00060
10.1038/nphoton.2008.228
10.1109/JQE.1984.1072393
10.1002/adfm.200901007
10.1038/nphoton.2013.157
10.1109/JSTQE.2018.2805814
10.1038/nchem.907
10.1038/s41566-019-0556-6
10.1103/RevModPhys.78.1135
10.1038/s41586-020-2764-0
10.1002/adma.202006415
10.1038/srep45520
10.1002/adma.201304681
10.1038/nphoton.2010.185
10.1002/lpor.201200023
10.1038/s41598-017-09583-6
10.1038/ncomms7984
10.1038/s41586-018-0421-7
10.1038/nphoton.2009.236
10.1002/lpor.201700237
10.1038/nphoton.2016.112
10.1038/nphoton.2009.25
10.1364/OE.20.013100
10.1021/jp209843m
10.1038/nphoton.2013.183
10.1038/s41566-017-0033-z
10.1002/smll.201906563
10.1038/s41566-018-0175-7
10.1088/2040-8986/ab68b4
10.1002/admt.202070046
10.1038/nphoton.2015.281
10.1038/nature07430
10.1038/nphoton.2012.147
10.1038/s41467-018-05081-z
10.1038/s41467-020-15116-z
10.1364/OL.16.000714
10.1063/1.5064832
10.1063/1.5094523
10.1038/nphoton.2009.259
10.1021/acsami.0c07852
10.1038/nature10067
10.1364/OL.41.003281
10.1063/1.5045509
10.1364/OE.22.005029
10.1002/adom.202001048
10.1002/smtd.201700315
10.1364/OE.14.011721
10.1126/science.aao1467
10.1007/BF00708339
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2021.3069733
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 4683
ExternalDocumentID 10_1109_JLT_2021_3069733
9390189
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP150102972; DP190103186
  funderid: 10.13039/501100000923
– fundername: Industrial Transformation Training Centers scheme
  grantid: IC180100005
– fundername: Swinburne ECR-SUPRA Program
– fundername: Beijing Natural Science Foundation
  grantid: Z180007
  funderid: 10.13039/501100004826
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
5VS
AAYOK
AAYXX
AETIX
AFFNX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
RIG
VH1
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c291t-e91dbf3e93385e4932f081638e70a4db26ade6b710d79fbda4367b821ab19e603
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:15:29 EDT 2025
Tue Jul 01 01:01:59 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Aug 27 02:40:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e91dbf3e93385e4932f081638e70a4db26ade6b710d79fbda4367b821ab19e603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2030-8320
0000-0002-6703-477X
0000-0001-5195-1744
0000-0003-1115-610X
PQID 2551362787
PQPubID 85485
PageCount 13
ParticipantIDs crossref_primary_10_1109_JLT_2021_3069733
ieee_primary_9390189
proquest_journals_2551362787
crossref_citationtrail_10_1109_JLT_2021_3069733
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
gu (ref30) 2012; 6
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
li (ref60) 2014; 20
ref49
ref8
ref7
ref9
ref4
ref6
ref5
ref40
kady (ref53) 2012; 335
ref35
ref34
bogaerts (ref18) 2020; 586
ref37
ref36
ref31
ref33
ref32
foster (ref3) 2008; 456
ref2
ref1
ref39
ref38
liu (ref51) 2011; 474
ref68
ref24
ref67
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref62
ref61
References_xml – ident: ref13
  doi: 10.1364/OPTICA.2.000797
– ident: ref16
  doi: 10.1002/lpor.201100020
– ident: ref40
  doi: 10.1038/ncomms9433
– ident: ref6
  doi: 10.1038/s41467-020-16265-x
– ident: ref50
  doi: 10.1002/lpor.201900056
– ident: ref55
  doi: 10.1364/PRJ.3.000206
– ident: ref7
  doi: 10.1038/4501175b
– ident: ref68
  doi: 10.1021/nl200587h
– volume: 20
  start-page: 441
  year: 2014
  ident: ref60
  article-title: Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers
  publication-title: IEEE J Sel Top Quantum Electron
  doi: 10.1109/JSTQE.2014.2312952
– ident: ref41
  doi: 10.1038/s41566-019-0389-3
– ident: ref12
  doi: 10.1038/s41566-018-0144-1
– ident: ref62
  doi: 10.1364/OL.14.001140
– ident: ref61
  doi: 10.1364/OL.32.002031
– ident: ref9
  doi: 10.1021/nl9041017
– ident: ref23
  doi: 10.1364/OE.25.021229
– ident: ref35
  doi: 10.1038/srep43371
– ident: ref36
  doi: 10.1364/PRJ.3.000206
– ident: ref25
  doi: 10.1364/OPTICA.3.000020
– ident: ref46
  doi: 10.1021/acsphotonics.9b00060
– ident: ref27
  doi: 10.1038/nphoton.2008.228
– ident: ref59
  doi: 10.1109/JQE.1984.1072393
– ident: ref63
  doi: 10.1002/adfm.200901007
– ident: ref8
  doi: 10.1038/nphoton.2013.157
– ident: ref29
  doi: 10.1109/JSTQE.2018.2805814
– ident: ref38
  doi: 10.1038/nchem.907
– ident: ref10
  doi: 10.1038/s41566-019-0556-6
– ident: ref14
  doi: 10.1103/RevModPhys.78.1135
– volume: 586
  start-page: 207
  year: 2020
  ident: ref18
  article-title: Programmable photonic circuits
  publication-title: Nature
  doi: 10.1038/s41586-020-2764-0
– ident: ref44
  doi: 10.1002/adma.202006415
– ident: ref67
  doi: 10.1038/srep45520
– ident: ref42
  doi: 10.1002/adma.201304681
– ident: ref1
  doi: 10.1038/nphoton.2010.185
– ident: ref15
  doi: 10.1002/lpor.201200023
– ident: ref45
  doi: 10.1038/s41598-017-09583-6
– ident: ref39
  doi: 10.1038/ncomms7984
– ident: ref19
  doi: 10.1038/s41586-018-0421-7
– ident: ref28
  doi: 10.1038/nphoton.2009.236
– ident: ref20
  doi: 10.1002/lpor.201700237
– ident: ref11
  doi: 10.1038/nphoton.2016.112
– ident: ref5
  doi: 10.1038/nphoton.2009.25
– ident: ref21
  doi: 10.1364/OE.20.013100
– ident: ref48
  doi: 10.1021/jp209843m
– ident: ref2
  doi: 10.1038/nphoton.2013.183
– ident: ref52
  doi: 10.1038/s41566-017-0033-z
– ident: ref49
  doi: 10.1002/smll.201906563
– ident: ref31
  doi: 10.1038/s41566-018-0175-7
– ident: ref37
  doi: 10.1088/2040-8986/ab68b4
– ident: ref54
  doi: 10.1002/admt.202070046
– ident: ref17
  doi: 10.1038/nphoton.2015.281
– volume: 456
  start-page: 81
  year: 2008
  ident: ref3
  article-title: Silicon-chip-based ultrafast optical oscilloscope
  publication-title: Nature
  doi: 10.1038/nature07430
– volume: 6
  start-page: 554
  year: 2012
  ident: ref30
  article-title: Regenerative oscillation and four-wave mixing in graphene optoelectronics
  publication-title: Nat Photon
  doi: 10.1038/nphoton.2012.147
– ident: ref65
  doi: 10.1038/s41467-018-05081-z
– ident: ref43
  doi: 10.1038/s41467-020-15116-z
– ident: ref57
  doi: 10.1364/OL.16.000714
– ident: ref56
  doi: 10.1063/1.5064832
– ident: ref64
  doi: 10.1063/1.5094523
– ident: ref26
  doi: 10.1038/nphoton.2009.259
– ident: ref32
  doi: 10.1021/acsami.0c07852
– volume: 474
  start-page: 64
  year: 2011
  ident: ref51
  article-title: A graphene-based broadband optical modulator
  publication-title: Nature
  doi: 10.1038/nature10067
– volume: 335
  start-page: 1326?1330
  year: 2012
  ident: ref53
  article-title: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
  publication-title: Science
– ident: ref66
  doi: 10.1364/OL.41.003281
– ident: ref47
  doi: 10.1063/1.5045509
– ident: ref22
  doi: 10.1364/OE.22.005029
– ident: ref33
  doi: 10.1002/adom.202001048
– ident: ref34
  doi: 10.1002/smtd.201700315
– ident: ref24
  doi: 10.1364/OE.14.011721
– ident: ref4
  doi: 10.1126/science.aao1467
– ident: ref58
  doi: 10.1007/BF00708339
SSID ssj0014487
Score 2.5856032
Snippet The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4671
SubjectTerms 2D materials
Anisotropy
Figure of merit
Film thickness
Graphene
graphene oxide
Integrated optics
Kerr nonlinearity
Nanowires
Nonlinear optics
Nonlinearity
Optical films
Optical pulses
Optical waveguides
Oxide coatings
Parameters
Performance evaluation
Phase modulation
Silicon
silicon photonics
Spectra
Two dimensional displays
Ultrafast optics
Wave propagation
Waveguides
Title Optimizing the Kerr Nonlinear Optical Performance of Silicon Waveguides Integrated With 2D Graphene Oxide Films
URI https://ieeexplore.ieee.org/document/9390189
https://www.proquest.com/docview/2551362787
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BElIvpYVWXR6VD1wqNbuxnZePFXRLoYVKBcEtiuNxG7Hsok22qvj1jJ1kEW2FeouUsWXpG4-_secBsB8rnQkd20AQGQ-iLOFBpgsdoLXE9nkZysJH-Z4mRxfR8VV8tQLvl7kwiOiDz3DoPv1bvpmVC3dVNlLOQc_UKqyS49bmai1fDMjN8KnRqZS0w0XUP0mGanT85ZwcQcGHRI9VKuWjI8j3VPnLEPvTZbwBX_t1tUEl18NFo4fl3R8lG_934S_geUcz2YdWL17CCk43YaOjnKzb0PUmrPsI0LLegtkZGY-b6o6OMkakkJ3gfM5O20IaxZy5vwQn-_aQaMBmln2vJqRKU3ZZ_MIfi8pgzT73BSgMu6yan0wcsk-uKjYZVXb2m0TYuJrc1K_gYvzx_OAo6LoxBKVQvAlQcaOtREVObYwR8T7rmnbIDNOwiIwWSWEw0cRYTKqsNkUkk5QUgReaK0xC-RrWprMpvgFmiLVYLtHGmY4sape8G3JLwkoQjZYDGPUA5WVXqtx1zJjk3mUJVU6Q5g7SvIN0AO-WI27bMh1PyG45hJZyHTgD2O11IO_2cZ0L1_8mEWTVtv89ageeubndbS-Pd2GtmS9wj2hKo996_bwH2cLjJA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIQQvDDYQhQF-4AWJtLGdLz8ioHRb1yHRaXuL4vgMEV2LmhSh_fWcnaSIDyHeIuWsWPqd734X3wfAi1jpTOjYBoLIeBBlCQ8yXegArSW2z8tQFj7Ld5ZMzqPjy_hyB15ta2EQ0Sef4dA9-rt8syo37lfZSLkAPVM34Cb5_Ui11VrbOwMKNHxxdColnXER9ZeSoRodT-cUCgo-JIKsUil_cUJ-qsofptj7l_EenPY7a9NKvgw3jR6W1781bfzfrd-Dux3RZK9bzbgPO7jch72OdLLuSNf7cMvngJb1AazOyHxcVdfkzBjRQnaC6zWbta00ijVzbwlQ9uFnqQFbWfaxWpAyLdlF8Q0_bSqDNTvqW1AYdlE1n5l4y967vthkVtnZdxJh42pxVT-A8_G7-ZtJ0M1jCEqheBOg4kZbiYrC2hgjYn7Wje2QGaZhERktksJgoomzmFRZbYpIJimpAi80V5iE8iHsLldLfATMEG-xXKKNMx1Z1K58N-SWhJUgIi0HMOoBysuuWbmbmbHIfdASqpwgzR2keQfpAF5uV3xtG3X8Q_bAIbSV68AZwGGvA3l3kutcuAk4iSC79vjvq57D7cn8dJpPj2YnT-CO-47798vjQ9ht1ht8SqSl0c-8rv4A7UjmdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+Kerr+Nonlinear+Optical+Performance+of+Silicon+Waveguides+Integrated+With+2D+Graphene+Oxide+Films&rft.jtitle=Journal+of+lightwave+technology&rft.au=Zhang%2C+Yuning&rft.au=Wu%2C+Jiayang&rft.au=Qu%2C+Yang&rft.au=Jia%2C+Linnan&rft.date=2021-07-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=14&rft.spage=4671&rft.epage=4683&rft_id=info:doi/10.1109%2FJLT.2021.3069733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2021_3069733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon