Optimizing the Kerr Nonlinear Optical Performance of Silicon Waveguides Integrated With 2D Graphene Oxide Films
The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nano...
Saved in:
Published in | Journal of lightwave technology Vol. 39; no. 14; pp. 4671 - 4683 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0733-8724 1558-2213 |
DOI | 10.1109/JLT.2021.3069733 |
Cover
Loading…
Abstract | The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ∼52 and ∼79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.8 can be achieved - more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed, together with the comparison between the spectral broadening after going through GO-coated and graphene-coated silicon waveguides. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films. |
---|---|
AbstractList | The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and optimized based on experimentally measured linear and nonlinear optical parameters of the GO films. The strong mode overlap between the silicon nanowires and highly nonlinear GO films yields a significantly enhanced Kerr nonlinearity for the hybrid waveguides. A detailed analysis for the influence of waveguide geometry and GO film thickness on the propagation loss, nonlinear parameter, and nonlinear figure of merit (FOM) is performed. The results show that the effective nonlinear parameter and nonlinear FOM can be increased by up to ∼52 and ∼79 times relative to bare silicon nanowires, respectively. Self-phase modulation (SPM)-induced spectral broadening of optical pulses is used as a benchmark to evaluate the nonlinear performance, examining the trade-off between enhancing Kerr nonlinearity and minimizing loss. By optimizing the device parameters to balance this, a high spectral broadening factor of 27.8 can be achieved – more than 6 times that achieved in previous experiments. Finally, the influence of pulse chirp, material anisotropy, and the interplay between saturable absorption and SPM is also discussed, together with the comparison between the spectral broadening after going through GO-coated and graphene-coated silicon waveguides. These results provide useful guidance for optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D layered GO films. |
Author | Zhang, Yuning Wu, Jiayang Qu, Yang Moss, David J. Jia, Baohua Jia, Linnan |
Author_xml | – sequence: 1 givenname: Yuning surname: Zhang fullname: Zhang, Yuning email: yuningzhang@swin.edu.au organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia – sequence: 2 givenname: Jiayang orcidid: 0000-0003-1115-610X surname: Wu fullname: Wu, Jiayang email: jiayangwu@swin.edu.au organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia – sequence: 3 givenname: Yang orcidid: 0000-0003-2030-8320 surname: Qu fullname: Qu, Yang email: yqu@swin.edu.au organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia – sequence: 4 givenname: Linnan surname: Jia fullname: Jia, Linnan email: ljia@swin.edu.au organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia – sequence: 5 givenname: Baohua orcidid: 0000-0002-6703-477X surname: Jia fullname: Jia, Baohua email: bjia@swin.edu.au organization: Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Australia – sequence: 6 givenname: David J. orcidid: 0000-0001-5195-1744 surname: Moss fullname: Moss, David J. email: dmoss@swin.edu.au organization: Optical Sciences Center, Swinburne University of Technology, Hawthorn, Australia |
BookMark | eNp9kM9PwjAUgBuDiYDeTbw08Tzsj21tjwYFUSImYjgu3fYGJaPFrhj1r3cE4sGDpyav3_de8vVQxzoLCF1SMqCUqJvH6XzACKMDTlIlOD9BXZokMmKM8g7qknYUScHiM9RrmjUhNI6l6CI32wazMd_GLnFYAX4C7_Gzs7WxoD3e_xa6xi_gK-c32haAXYVfTW0KZ_FCf8ByZ0po8MQGWHodoMQLE1aY3eGx19sVWMCzzxbBI1NvmnN0Wum6gYvj20dvo_v58CGazsaT4e00KpiiIQJFy7zioDiXCcSKs4pImnIJgui4zFmqS0hzQUkpVJWXOuapyCWjOqcKUsL76Pqwd-vd-w6akK3dztv2ZMaShPKUCSlaKj1QhXdN46HKChN0MM4Gr02dUZLt42Zt3GwfNzvGbUXyR9x6s9H-6z_l6qAYAPjFFVeESsV_AMfGhuo |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_1007_s13204_021_02220_9 crossref_primary_10_2139_ssrn_4749422 crossref_primary_10_2139_ssrn_4749420 crossref_primary_10_1109_JLT_2021_3101292 crossref_primary_10_2139_ssrn_3935111 crossref_primary_10_1109_JSTQE_2022_3177385 crossref_primary_10_1021_acs_nanolett_4c02625 crossref_primary_10_1002_admt_202201796 crossref_primary_10_1007_s12274_024_6911_z crossref_primary_10_1002_adma_202307393 crossref_primary_10_1109_ACCESS_2024_3356353 crossref_primary_10_2139_ssrn_4164854 crossref_primary_10_2139_ssrn_4833890 crossref_primary_10_3390_mi13081194 crossref_primary_10_1007_s11071_023_08469_9 crossref_primary_10_1016_j_optmat_2024_114912 crossref_primary_10_3390_mi13050756 crossref_primary_10_1038_s41563_022_01383_2 crossref_primary_10_1515_nanoph_2021_0800 |
Cites_doi | 10.1364/OPTICA.2.000797 10.1002/lpor.201100020 10.1038/ncomms9433 10.1038/s41467-020-16265-x 10.1002/lpor.201900056 10.1364/PRJ.3.000206 10.1038/4501175b 10.1021/nl200587h 10.1109/JSTQE.2014.2312952 10.1038/s41566-019-0389-3 10.1038/s41566-018-0144-1 10.1364/OL.14.001140 10.1364/OL.32.002031 10.1021/nl9041017 10.1364/OE.25.021229 10.1038/srep43371 10.1364/OPTICA.3.000020 10.1021/acsphotonics.9b00060 10.1038/nphoton.2008.228 10.1109/JQE.1984.1072393 10.1002/adfm.200901007 10.1038/nphoton.2013.157 10.1109/JSTQE.2018.2805814 10.1038/nchem.907 10.1038/s41566-019-0556-6 10.1103/RevModPhys.78.1135 10.1038/s41586-020-2764-0 10.1002/adma.202006415 10.1038/srep45520 10.1002/adma.201304681 10.1038/nphoton.2010.185 10.1002/lpor.201200023 10.1038/s41598-017-09583-6 10.1038/ncomms7984 10.1038/s41586-018-0421-7 10.1038/nphoton.2009.236 10.1002/lpor.201700237 10.1038/nphoton.2016.112 10.1038/nphoton.2009.25 10.1364/OE.20.013100 10.1021/jp209843m 10.1038/nphoton.2013.183 10.1038/s41566-017-0033-z 10.1002/smll.201906563 10.1038/s41566-018-0175-7 10.1088/2040-8986/ab68b4 10.1002/admt.202070046 10.1038/nphoton.2015.281 10.1038/nature07430 10.1038/nphoton.2012.147 10.1038/s41467-018-05081-z 10.1038/s41467-020-15116-z 10.1364/OL.16.000714 10.1063/1.5064832 10.1063/1.5094523 10.1038/nphoton.2009.259 10.1021/acsami.0c07852 10.1038/nature10067 10.1364/OL.41.003281 10.1063/1.5045509 10.1364/OE.22.005029 10.1002/adom.202001048 10.1002/smtd.201700315 10.1364/OE.14.011721 10.1126/science.aao1467 10.1007/BF00708339 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2021.3069733 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 4683 |
ExternalDocumentID | 10_1109_JLT_2021_3069733 9390189 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP150102972; DP190103186 funderid: 10.13039/501100000923 – fundername: Industrial Transformation Training Centers scheme grantid: IC180100005 – fundername: Swinburne ECR-SUPRA Program – fundername: Beijing Natural Science Foundation grantid: Z180007 funderid: 10.13039/501100004826 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA 5VS AAYOK AAYXX AETIX AFFNX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 IBMZZ ICLAB IFJZH RIG VH1 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c291t-e91dbf3e93385e4932f081638e70a4db26ade6b710d79fbda4367b821ab19e603 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:15:29 EDT 2025 Tue Jul 01 01:01:59 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Wed Aug 27 02:40:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e91dbf3e93385e4932f081638e70a4db26ade6b710d79fbda4367b821ab19e603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2030-8320 0000-0002-6703-477X 0000-0001-5195-1744 0000-0003-1115-610X |
PQID | 2551362787 |
PQPubID | 85485 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JLT_2021_3069733 ieee_primary_9390189 proquest_journals_2551362787 crossref_citationtrail_10_1109_JLT_2021_3069733 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-15 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 gu (ref30) 2012; 6 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 li (ref60) 2014; 20 ref49 ref8 ref7 ref9 ref4 ref6 ref5 ref40 kady (ref53) 2012; 335 ref35 ref34 bogaerts (ref18) 2020; 586 ref37 ref36 ref31 ref33 ref32 foster (ref3) 2008; 456 ref2 ref1 ref39 ref38 liu (ref51) 2011; 474 ref68 ref24 ref67 ref23 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref62 ref61 |
References_xml | – ident: ref13 doi: 10.1364/OPTICA.2.000797 – ident: ref16 doi: 10.1002/lpor.201100020 – ident: ref40 doi: 10.1038/ncomms9433 – ident: ref6 doi: 10.1038/s41467-020-16265-x – ident: ref50 doi: 10.1002/lpor.201900056 – ident: ref55 doi: 10.1364/PRJ.3.000206 – ident: ref7 doi: 10.1038/4501175b – ident: ref68 doi: 10.1021/nl200587h – volume: 20 start-page: 441 year: 2014 ident: ref60 article-title: Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers publication-title: IEEE J Sel Top Quantum Electron doi: 10.1109/JSTQE.2014.2312952 – ident: ref41 doi: 10.1038/s41566-019-0389-3 – ident: ref12 doi: 10.1038/s41566-018-0144-1 – ident: ref62 doi: 10.1364/OL.14.001140 – ident: ref61 doi: 10.1364/OL.32.002031 – ident: ref9 doi: 10.1021/nl9041017 – ident: ref23 doi: 10.1364/OE.25.021229 – ident: ref35 doi: 10.1038/srep43371 – ident: ref36 doi: 10.1364/PRJ.3.000206 – ident: ref25 doi: 10.1364/OPTICA.3.000020 – ident: ref46 doi: 10.1021/acsphotonics.9b00060 – ident: ref27 doi: 10.1038/nphoton.2008.228 – ident: ref59 doi: 10.1109/JQE.1984.1072393 – ident: ref63 doi: 10.1002/adfm.200901007 – ident: ref8 doi: 10.1038/nphoton.2013.157 – ident: ref29 doi: 10.1109/JSTQE.2018.2805814 – ident: ref38 doi: 10.1038/nchem.907 – ident: ref10 doi: 10.1038/s41566-019-0556-6 – ident: ref14 doi: 10.1103/RevModPhys.78.1135 – volume: 586 start-page: 207 year: 2020 ident: ref18 article-title: Programmable photonic circuits publication-title: Nature doi: 10.1038/s41586-020-2764-0 – ident: ref44 doi: 10.1002/adma.202006415 – ident: ref67 doi: 10.1038/srep45520 – ident: ref42 doi: 10.1002/adma.201304681 – ident: ref1 doi: 10.1038/nphoton.2010.185 – ident: ref15 doi: 10.1002/lpor.201200023 – ident: ref45 doi: 10.1038/s41598-017-09583-6 – ident: ref39 doi: 10.1038/ncomms7984 – ident: ref19 doi: 10.1038/s41586-018-0421-7 – ident: ref28 doi: 10.1038/nphoton.2009.236 – ident: ref20 doi: 10.1002/lpor.201700237 – ident: ref11 doi: 10.1038/nphoton.2016.112 – ident: ref5 doi: 10.1038/nphoton.2009.25 – ident: ref21 doi: 10.1364/OE.20.013100 – ident: ref48 doi: 10.1021/jp209843m – ident: ref2 doi: 10.1038/nphoton.2013.183 – ident: ref52 doi: 10.1038/s41566-017-0033-z – ident: ref49 doi: 10.1002/smll.201906563 – ident: ref31 doi: 10.1038/s41566-018-0175-7 – ident: ref37 doi: 10.1088/2040-8986/ab68b4 – ident: ref54 doi: 10.1002/admt.202070046 – ident: ref17 doi: 10.1038/nphoton.2015.281 – volume: 456 start-page: 81 year: 2008 ident: ref3 article-title: Silicon-chip-based ultrafast optical oscilloscope publication-title: Nature doi: 10.1038/nature07430 – volume: 6 start-page: 554 year: 2012 ident: ref30 article-title: Regenerative oscillation and four-wave mixing in graphene optoelectronics publication-title: Nat Photon doi: 10.1038/nphoton.2012.147 – ident: ref65 doi: 10.1038/s41467-018-05081-z – ident: ref43 doi: 10.1038/s41467-020-15116-z – ident: ref57 doi: 10.1364/OL.16.000714 – ident: ref56 doi: 10.1063/1.5064832 – ident: ref64 doi: 10.1063/1.5094523 – ident: ref26 doi: 10.1038/nphoton.2009.259 – ident: ref32 doi: 10.1021/acsami.0c07852 – volume: 474 start-page: 64 year: 2011 ident: ref51 article-title: A graphene-based broadband optical modulator publication-title: Nature doi: 10.1038/nature10067 – volume: 335 start-page: 1326?1330 year: 2012 ident: ref53 article-title: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors publication-title: Science – ident: ref66 doi: 10.1364/OL.41.003281 – ident: ref47 doi: 10.1063/1.5045509 – ident: ref22 doi: 10.1364/OE.22.005029 – ident: ref33 doi: 10.1002/adom.202001048 – ident: ref34 doi: 10.1002/smtd.201700315 – ident: ref24 doi: 10.1364/OE.14.011721 – ident: ref4 doi: 10.1126/science.aao1467 – ident: ref58 doi: 10.1007/BF00708339 |
SSID | ssj0014487 |
Score | 2.5856032 |
Snippet | The Kerr nonlinear optical performance of silicon nanowire waveguides integrated with 2D layered graphene oxide (GO) films is theoretically studied and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4671 |
SubjectTerms | 2D materials Anisotropy Figure of merit Film thickness Graphene graphene oxide Integrated optics Kerr nonlinearity Nanowires Nonlinear optics Nonlinearity Optical films Optical pulses Optical waveguides Oxide coatings Parameters Performance evaluation Phase modulation Silicon silicon photonics Spectra Two dimensional displays Ultrafast optics Wave propagation Waveguides |
Title | Optimizing the Kerr Nonlinear Optical Performance of Silicon Waveguides Integrated With 2D Graphene Oxide Films |
URI | https://ieeexplore.ieee.org/document/9390189 https://www.proquest.com/docview/2551362787 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BElIvpYVWXR6VD1wqNbuxnZePFXRLoYVKBcEtiuNxG7Hsok22qvj1jJ1kEW2FeouUsWXpG4-_secBsB8rnQkd20AQGQ-iLOFBpgsdoLXE9nkZysJH-Z4mRxfR8VV8tQLvl7kwiOiDz3DoPv1bvpmVC3dVNlLOQc_UKqyS49bmai1fDMjN8KnRqZS0w0XUP0mGanT85ZwcQcGHRI9VKuWjI8j3VPnLEPvTZbwBX_t1tUEl18NFo4fl3R8lG_934S_geUcz2YdWL17CCk43YaOjnKzb0PUmrPsI0LLegtkZGY-b6o6OMkakkJ3gfM5O20IaxZy5vwQn-_aQaMBmln2vJqRKU3ZZ_MIfi8pgzT73BSgMu6yan0wcsk-uKjYZVXb2m0TYuJrc1K_gYvzx_OAo6LoxBKVQvAlQcaOtREVObYwR8T7rmnbIDNOwiIwWSWEw0cRYTKqsNkUkk5QUgReaK0xC-RrWprMpvgFmiLVYLtHGmY4sape8G3JLwkoQjZYDGPUA5WVXqtx1zJjk3mUJVU6Q5g7SvIN0AO-WI27bMh1PyG45hJZyHTgD2O11IO_2cZ0L1_8mEWTVtv89ageeubndbS-Pd2GtmS9wj2hKo996_bwH2cLjJA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIQQvDDYQhQF-4AWJtLGdLz8ioHRb1yHRaXuL4vgMEV2LmhSh_fWcnaSIDyHeIuWsWPqd734X3wfAi1jpTOjYBoLIeBBlCQ8yXegArSW2z8tQFj7Ld5ZMzqPjy_hyB15ta2EQ0Sef4dA9-rt8syo37lfZSLkAPVM34Cb5_Ui11VrbOwMKNHxxdColnXER9ZeSoRodT-cUCgo-JIKsUil_cUJ-qsofptj7l_EenPY7a9NKvgw3jR6W1781bfzfrd-Dux3RZK9bzbgPO7jch72OdLLuSNf7cMvngJb1AazOyHxcVdfkzBjRQnaC6zWbta00ijVzbwlQ9uFnqQFbWfaxWpAyLdlF8Q0_bSqDNTvqW1AYdlE1n5l4y967vthkVtnZdxJh42pxVT-A8_G7-ZtJ0M1jCEqheBOg4kZbiYrC2hgjYn7Wje2QGaZhERktksJgoomzmFRZbYpIJimpAi80V5iE8iHsLldLfATMEG-xXKKNMx1Z1K58N-SWhJUgIi0HMOoBysuuWbmbmbHIfdASqpwgzR2keQfpAF5uV3xtG3X8Q_bAIbSV68AZwGGvA3l3kutcuAk4iSC79vjvq57D7cn8dJpPj2YnT-CO-47798vjQ9ht1ht8SqSl0c-8rv4A7UjmdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+Kerr+Nonlinear+Optical+Performance+of+Silicon+Waveguides+Integrated+With+2D+Graphene+Oxide+Films&rft.jtitle=Journal+of+lightwave+technology&rft.au=Zhang%2C+Yuning&rft.au=Wu%2C+Jiayang&rft.au=Qu%2C+Yang&rft.au=Jia%2C+Linnan&rft.date=2021-07-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=39&rft.issue=14&rft.spage=4671&rft.epage=4683&rft_id=info:doi/10.1109%2FJLT.2021.3069733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2021_3069733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |