Network Structure Identification From Corrupt Data Streams
Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on network identification has shown that the network structure of linear time-invariant (LTI) systems can be reconstructed from the joint power...
Saved in:
Published in | IEEE transactions on automatic control Vol. 66; no. 11; pp. 5314 - 5325 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on network identification has shown that the network structure of linear time-invariant (LTI) systems can be reconstructed from the joint power spectrum of the data streams. These results assumed that data are perfectly measured. However, real-world data are subject to many corruptions, such as inaccurate time-stamps, noise, and data loss. We show that identifying the structure of linear time-invariant (LTI) systems using corrupt measurements results in the inference of erroneous links. We provide an exact characterization and prove that such erroneous links are restricted to the neighborhood of the perturbed node. We extend the analysis of LTI systems to the case of Markov random fields with corrupt measurements. We show that data corruption in Markov random fields results in spurious probabilistic relationships in precisely the locations, where spurious links arise in LTI systems. |
---|---|
AbstractList | Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on network identification has shown that the network structure of linear time-invariant (LTI) systems can be reconstructed from the joint power spectrum of the data streams. These results assumed that data are perfectly measured. However, real-world data are subject to many corruptions, such as inaccurate time-stamps, noise, and data loss. We show that identifying the structure of linear time-invariant (LTI) systems using corrupt measurements results in the inference of erroneous links. We provide an exact characterization and prove that such erroneous links are restricted to the neighborhood of the perturbed node. We extend the analysis of LTI systems to the case of Markov random fields with corrupt measurements. We show that data corruption in Markov random fields results in spurious probabilistic relationships in precisely the locations, where spurious links arise in LTI systems. |
Author | Subramanian, Venkat Ram Lamperski, Andrew Salapaka, Murti V. |
Author_xml | – sequence: 1 givenname: Venkat Ram orcidid: 0000-0002-0383-5156 surname: Subramanian fullname: Subramanian, Venkat Ram email: subra148@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Andrew orcidid: 0000-0003-0383-1830 surname: Lamperski fullname: Lamperski, Andrew email: alampers@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: Murti V. orcidid: 0000-0002-4595-9683 surname: Salapaka fullname: Salapaka, Murti V. email: murtis@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA |
BookMark | eNp9kEFLw0AQRhepYFu9C14CnlNnJ8lm11uJVgtFD9bzsklnIbXN1s0G8d83tcWDB0_DwPfmY96IDRrXEGPXHCacg7pbTosJAsIkgRRUhmdsyLNMxphhMmBDAC5jhVJcsFHbrvtVpCkfsvsXCl_Of0RvwXdV6DxF8xU1obZ1ZULtmmjm3TYqnPfdLkQPJphDlMy2vWTn1mxaujrNMXufPS6L53jx-jQvpou4QsVDTLLKSeRpyYW1KEpOVIrUZDlCWipLAEgiscpYBaJaES8lmVJygZRDJstkzG6Pd3fefXbUBr12nW_6So2ZFAJFgmmfgmOq8q5tPVm98_XW-G_NQR8M6d6QPhjSJ0M9Iv4gVR1-ng7e1Jv_wJsjWBPRb4_CHIVUyR7-lnRi |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_compchemeng_2023_108365 crossref_primary_10_1109_TCNS_2023_3258619 crossref_primary_10_1016_j_chaos_2024_114476 |
Cites_doi | 10.1073/pnas.1701214114 10.1016/j.automatica.2011.03.008 10.1109/TIT.2015.2478440 10.1109/TCNS.2017.2673546 10.1109/TAC.2016.2602499 10.3182/20110828-6-IT-1002.02181 10.1080/07350015.2015.1017643 10.1109/TAC.2018.2867336 10.1109/CDC.2013.6760369 10.1109/SURV.2013.042313.00197 10.1038/nn.4502 10.1109/TSC.2010.3 10.1162/NECO_a_00874 10.1109/TAC.2008.928114 10.1049/iet-wss.2013.0118 10.23919/ACC.2017.7963053 10.1093/oso/9780198522195.001.0001 10.1007/s11299-015-0167-y 10.1016/j.automatica.2018.03.054 10.1109/TAC.2019.2915153 10.1016/j.automatica.2017.12.013 10.1109/CVPR.2003.1211488 10.1109/TAC.2012.2183170 10.1109/TAC.2019.2957345 10.1109/CDC.2017.8263894 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2020.3040952 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 5325 |
ExternalDocumentID | 10_1109_TAC_2020_3040952 9272689 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF CMMI grantid: 1727096; 1727096 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-e8c7e674b16ff26b1eeb64a57204b9fe002e63f9af906cde1b8eab8162e7058b3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 1558-2523 |
IngestDate | Mon Jun 30 10:10:29 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Tue Jul 01 03:36:37 EDT 2025 Wed Aug 27 03:03:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e8c7e674b16ff26b1eeb64a57204b9fe002e63f9af906cde1b8eab8162e7058b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4595-9683 0000-0002-0383-5156 0000-0003-0383-1830 |
PQID | 2586626324 |
PQPubID | 85475 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TAC_2020_3040952 proquest_journals_2586626324 ieee_primary_9272689 crossref_citationtrail_10_1109_TAC_2020_3040952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 kaufman (ref2) 2017; 16 ref14 ref11 lauritzen (ref27) 1996 ref10 ref1 ref17 ref16 ref19 ref18 petersen (ref26) 2012 koller (ref25) 2009 ref24 ref23 ref20 ref22 ref21 ref28 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref1 doi: 10.1073/pnas.1701214114 – ident: ref21 doi: 10.1016/j.automatica.2011.03.008 – ident: ref20 doi: 10.1109/TIT.2015.2478440 – ident: ref10 doi: 10.1109/TCNS.2017.2673546 – ident: ref13 doi: 10.1109/TAC.2016.2602499 – ident: ref4 doi: 10.3182/20110828-6-IT-1002.02181 – ident: ref5 doi: 10.1080/07350015.2015.1017643 – ident: ref15 doi: 10.1109/TAC.2018.2867336 – ident: ref22 doi: 10.1109/CDC.2013.6760369 – year: 2009 ident: ref25 publication-title: Probabilistic Graphical Models Principles and Techniques – ident: ref7 doi: 10.1109/SURV.2013.042313.00197 – volume: 16 year: 2017 ident: ref2 publication-title: Methods in Social Epidemiology – ident: ref3 doi: 10.1038/nn.4502 – ident: ref8 doi: 10.1109/TSC.2010.3 – ident: ref17 doi: 10.1162/NECO_a_00874 – ident: ref23 doi: 10.1109/TAC.2008.928114 – ident: ref12 doi: 10.1049/iet-wss.2013.0118 – ident: ref28 doi: 10.23919/ACC.2017.7963053 – year: 1996 ident: ref27 publication-title: Graphical Models doi: 10.1093/oso/9780198522195.001.0001 – ident: ref6 doi: 10.1007/s11299-015-0167-y – ident: ref11 doi: 10.1016/j.automatica.2018.03.054 – ident: ref18 doi: 10.1109/TAC.2019.2915153 – year: 2012 ident: ref26 article-title: The matrix cookbook – ident: ref14 doi: 10.1016/j.automatica.2017.12.013 – ident: ref9 doi: 10.1109/CVPR.2003.1211488 – ident: ref19 doi: 10.1109/TAC.2012.2183170 – ident: ref16 doi: 10.1109/TAC.2019.2957345 – ident: ref24 doi: 10.1109/CDC.2017.8263894 |
SSID | ssj0016441 |
Score | 2.4075596 |
Snippet | Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5314 |
SubjectTerms | Coupling Data loss Data transmission Directed graphs Fields (mathematics) Graphical models Graphical representations Invariants Linear systems Links Markov processes System identification Time series analysis |
Title | Network Structure Identification From Corrupt Data Streams |
URI | https://ieeexplore.ieee.org/document/9272689 https://www.proquest.com/docview/2586626324 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XABYlubdZkCbdpME1I7MIm7VYlqXuBPdR1F349SdpVvIS45eBIke3YcWx_BrgxHk8xKtFHWyoeCa59ziPlyyQVPdnDiCiH9jlh41n0NKfzGtxVvTCI6IrPsGOXLpefrPTWfpV1BekTxkUd6iZwK3q1qoyB9euF1TUXmPAqJRmI7nQwNIEgMfGp0VhByRcX5Gaq_DDEzruMDuF5d66iqOS1s81VR79_g2z878GP4KB8ZnqDQi-OoYbLE9j_BD7YhPtJUQHuvTgI2W2GXtG1m5bfeN4oWy284SrLtuvce5C5tKQoF5tTmI0ep8OxX05S8DURYe4j131k_UiFLE0JUyGiYpGkdkKNEikas4islwqZioDpBEPFUSoeMoL9gHLVO4PGcrXEc_CYMhFOgFpSzSNKiZAkwkBorTBkCdUt6O6YG-sSZtxOu3iLXbgRiNiII7biiEtxtOC22rEuIDb-oG1a7lZ0JWNb0N7JLy7v4CYmlDPm4Ogvft91CXvEVqi4zsI2NAy38co8MXJ17XTrA1LXzIk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TwMxDLZKGYCBN6JQ4AYWJK69Sy9pwlYVqgJtF4rEdkpS3wJ9qL0u_HqS3PXES4gtgyNFtmPHsf0Z4NJ4PMWoRB9tqXgkuPY5j5QvR4loyAZGRDm0zwHrPkcPL_SlBNdFLwwiuuIzrNmly-WPpnppv8rqgjQJ42IN1o3fp2HWrVXkDKxnz-yuucKEF0nJQNSHrbYJBYmJUI3OCkq-OCE3VeWHKXb-pbMD_dXJsrKS19oyVTX9_g208b9H34Xt_KHptTLN2IMSTvZh6xP84AHcDLIacO_Jgcgu5-hlfbtJ_pHndebTsdeezufLWerdylRaUpTjxSE8d-6G7a6fz1LwNRFh6iPXTWTNSIUsSQhTIaJikaR2Ro0SCRrDiKyRCJmIgOkRhoqjVDxkBJsB5apxBOXJdILH4DFlYpwAtaSaGzEQIUmEgdBaYchGVFegvmJurHOgcTvv4i12AUcgYiOO2IojzsVRgatixywD2fiD9sByt6DLGVuB6kp-cX4LFzGhnDEHSH_y-64L2OgO-724dz94PIVNYutVXJ9hFcqG83hmHhypOnd69gEr2M_S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Structure+Identification+From+Corrupt+Data+Streams&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Subramanian%2C+Venkat+Ram&rft.au=Lamperski%2C+Andrew&rft.au=Salapaka%2C+Murti+V.&rft.date=2021-11-01&rft.issn=1558-2523&rft.eissn=1558-2523&rft.volume=66&rft.issue=11&rft.spage=5314&rft.epage=5325&rft_id=info:doi/10.1109%2FTAC.2020.3040952&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3040952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |