Network Structure Identification From Corrupt Data Streams

Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on network identification has shown that the network structure of linear time-invariant (LTI) systems can be reconstructed from the joint power...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 66; no. 11; pp. 5314 - 5325
Main Authors Subramanian, Venkat Ram, Lamperski, Andrew, Salapaka, Murti V.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on network identification has shown that the network structure of linear time-invariant (LTI) systems can be reconstructed from the joint power spectrum of the data streams. These results assumed that data are perfectly measured. However, real-world data are subject to many corruptions, such as inaccurate time-stamps, noise, and data loss. We show that identifying the structure of linear time-invariant (LTI) systems using corrupt measurements results in the inference of erroneous links. We provide an exact characterization and prove that such erroneous links are restricted to the neighborhood of the perturbed node. We extend the analysis of LTI systems to the case of Markov random fields with corrupt measurements. We show that data corruption in Markov random fields results in spurious probabilistic relationships in precisely the locations, where spurious links arise in LTI systems.
AbstractList Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on network identification has shown that the network structure of linear time-invariant (LTI) systems can be reconstructed from the joint power spectrum of the data streams. These results assumed that data are perfectly measured. However, real-world data are subject to many corruptions, such as inaccurate time-stamps, noise, and data loss. We show that identifying the structure of linear time-invariant (LTI) systems using corrupt measurements results in the inference of erroneous links. We provide an exact characterization and prove that such erroneous links are restricted to the neighborhood of the perturbed node. We extend the analysis of LTI systems to the case of Markov random fields with corrupt measurements. We show that data corruption in Markov random fields results in spurious probabilistic relationships in precisely the locations, where spurious links arise in LTI systems.
Author Subramanian, Venkat Ram
Lamperski, Andrew
Salapaka, Murti V.
Author_xml – sequence: 1
  givenname: Venkat Ram
  orcidid: 0000-0002-0383-5156
  surname: Subramanian
  fullname: Subramanian, Venkat Ram
  email: subra148@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Andrew
  orcidid: 0000-0003-0383-1830
  surname: Lamperski
  fullname: Lamperski, Andrew
  email: alampers@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Murti V.
  orcidid: 0000-0002-4595-9683
  surname: Salapaka
  fullname: Salapaka, Murti V.
  email: murtis@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
BookMark eNp9kEFLw0AQRhepYFu9C14CnlNnJ8lm11uJVgtFD9bzsklnIbXN1s0G8d83tcWDB0_DwPfmY96IDRrXEGPXHCacg7pbTosJAsIkgRRUhmdsyLNMxphhMmBDAC5jhVJcsFHbrvtVpCkfsvsXCl_Of0RvwXdV6DxF8xU1obZ1ZULtmmjm3TYqnPfdLkQPJphDlMy2vWTn1mxaujrNMXufPS6L53jx-jQvpou4QsVDTLLKSeRpyYW1KEpOVIrUZDlCWipLAEgiscpYBaJaES8lmVJygZRDJstkzG6Pd3fefXbUBr12nW_6So2ZFAJFgmmfgmOq8q5tPVm98_XW-G_NQR8M6d6QPhjSJ0M9Iv4gVR1-ng7e1Jv_wJsjWBPRb4_CHIVUyR7-lnRi
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_compchemeng_2023_108365
crossref_primary_10_1109_TCNS_2023_3258619
crossref_primary_10_1016_j_chaos_2024_114476
Cites_doi 10.1073/pnas.1701214114
10.1016/j.automatica.2011.03.008
10.1109/TIT.2015.2478440
10.1109/TCNS.2017.2673546
10.1109/TAC.2016.2602499
10.3182/20110828-6-IT-1002.02181
10.1080/07350015.2015.1017643
10.1109/TAC.2018.2867336
10.1109/CDC.2013.6760369
10.1109/SURV.2013.042313.00197
10.1038/nn.4502
10.1109/TSC.2010.3
10.1162/NECO_a_00874
10.1109/TAC.2008.928114
10.1049/iet-wss.2013.0118
10.23919/ACC.2017.7963053
10.1093/oso/9780198522195.001.0001
10.1007/s11299-015-0167-y
10.1016/j.automatica.2018.03.054
10.1109/TAC.2019.2915153
10.1016/j.automatica.2017.12.013
10.1109/CVPR.2003.1211488
10.1109/TAC.2012.2183170
10.1109/TAC.2019.2957345
10.1109/CDC.2017.8263894
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.3040952
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 5325
ExternalDocumentID 10_1109_TAC_2020_3040952
9272689
Genre orig-research
GrantInformation_xml – fundername: NSF CMMI
  grantid: 1727096; 1727096
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-e8c7e674b16ff26b1eeb64a57204b9fe002e63f9af906cde1b8eab8162e7058b3
IEDL.DBID RIE
ISSN 0018-9286
1558-2523
IngestDate Mon Jun 30 10:10:29 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Tue Jul 01 03:36:37 EDT 2025
Wed Aug 27 03:03:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e8c7e674b16ff26b1eeb64a57204b9fe002e63f9af906cde1b8eab8162e7058b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4595-9683
0000-0002-0383-5156
0000-0003-0383-1830
PQID 2586626324
PQPubID 85475
PageCount 12
ParticipantIDs crossref_primary_10_1109_TAC_2020_3040952
proquest_journals_2586626324
ieee_primary_9272689
crossref_citationtrail_10_1109_TAC_2020_3040952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
kaufman (ref2) 2017; 16
ref14
ref11
lauritzen (ref27) 1996
ref10
ref1
ref17
ref16
ref19
ref18
petersen (ref26) 2012
koller (ref25) 2009
ref24
ref23
ref20
ref22
ref21
ref28
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1073/pnas.1701214114
– ident: ref21
  doi: 10.1016/j.automatica.2011.03.008
– ident: ref20
  doi: 10.1109/TIT.2015.2478440
– ident: ref10
  doi: 10.1109/TCNS.2017.2673546
– ident: ref13
  doi: 10.1109/TAC.2016.2602499
– ident: ref4
  doi: 10.3182/20110828-6-IT-1002.02181
– ident: ref5
  doi: 10.1080/07350015.2015.1017643
– ident: ref15
  doi: 10.1109/TAC.2018.2867336
– ident: ref22
  doi: 10.1109/CDC.2013.6760369
– year: 2009
  ident: ref25
  publication-title: Probabilistic Graphical Models Principles and Techniques
– ident: ref7
  doi: 10.1109/SURV.2013.042313.00197
– volume: 16
  year: 2017
  ident: ref2
  publication-title: Methods in Social Epidemiology
– ident: ref3
  doi: 10.1038/nn.4502
– ident: ref8
  doi: 10.1109/TSC.2010.3
– ident: ref17
  doi: 10.1162/NECO_a_00874
– ident: ref23
  doi: 10.1109/TAC.2008.928114
– ident: ref12
  doi: 10.1049/iet-wss.2013.0118
– ident: ref28
  doi: 10.23919/ACC.2017.7963053
– year: 1996
  ident: ref27
  publication-title: Graphical Models
  doi: 10.1093/oso/9780198522195.001.0001
– ident: ref6
  doi: 10.1007/s11299-015-0167-y
– ident: ref11
  doi: 10.1016/j.automatica.2018.03.054
– ident: ref18
  doi: 10.1109/TAC.2019.2915153
– year: 2012
  ident: ref26
  article-title: The matrix cookbook
– ident: ref14
  doi: 10.1016/j.automatica.2017.12.013
– ident: ref9
  doi: 10.1109/CVPR.2003.1211488
– ident: ref19
  doi: 10.1109/TAC.2012.2183170
– ident: ref16
  doi: 10.1109/TAC.2019.2957345
– ident: ref24
  doi: 10.1109/CDC.2017.8263894
SSID ssj0016441
Score 2.4075596
Snippet Complex networked systems can be modeled as graphs with nodes representing the agents and links describing the dynamic coupling between them. Previous work on...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5314
SubjectTerms Coupling
Data loss
Data transmission
Directed graphs
Fields (mathematics)
Graphical models
Graphical representations
Invariants
Linear systems
Links
Markov processes
System identification
Time series analysis
Title Network Structure Identification From Corrupt Data Streams
URI https://ieeexplore.ieee.org/document/9272689
https://www.proquest.com/docview/2586626324
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XABYlubdZkCbdpME1I7MIm7VYlqXuBPdR1F349SdpVvIS45eBIke3YcWx_BrgxHk8xKtFHWyoeCa59ziPlyyQVPdnDiCiH9jlh41n0NKfzGtxVvTCI6IrPsGOXLpefrPTWfpV1BekTxkUd6iZwK3q1qoyB9euF1TUXmPAqJRmI7nQwNIEgMfGp0VhByRcX5Gaq_DDEzruMDuF5d66iqOS1s81VR79_g2z878GP4KB8ZnqDQi-OoYbLE9j_BD7YhPtJUQHuvTgI2W2GXtG1m5bfeN4oWy284SrLtuvce5C5tKQoF5tTmI0ep8OxX05S8DURYe4j131k_UiFLE0JUyGiYpGkdkKNEikas4islwqZioDpBEPFUSoeMoL9gHLVO4PGcrXEc_CYMhFOgFpSzSNKiZAkwkBorTBkCdUt6O6YG-sSZtxOu3iLXbgRiNiII7biiEtxtOC22rEuIDb-oG1a7lZ0JWNb0N7JLy7v4CYmlDPm4Ogvft91CXvEVqi4zsI2NAy38co8MXJ17XTrA1LXzIk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TwMxDLZKGYCBN6JQ4AYWJK69Sy9pwlYVqgJtF4rEdkpS3wJ9qL0u_HqS3PXES4gtgyNFtmPHsf0Z4NJ4PMWoRB9tqXgkuPY5j5QvR4loyAZGRDm0zwHrPkcPL_SlBNdFLwwiuuIzrNmly-WPpnppv8rqgjQJ42IN1o3fp2HWrVXkDKxnz-yuucKEF0nJQNSHrbYJBYmJUI3OCkq-OCE3VeWHKXb-pbMD_dXJsrKS19oyVTX9_g208b9H34Xt_KHptTLN2IMSTvZh6xP84AHcDLIacO_Jgcgu5-hlfbtJ_pHndebTsdeezufLWerdylRaUpTjxSE8d-6G7a6fz1LwNRFh6iPXTWTNSIUsSQhTIaJikaR2Ro0SCRrDiKyRCJmIgOkRhoqjVDxkBJsB5apxBOXJdILH4DFlYpwAtaSaGzEQIUmEgdBaYchGVFegvmJurHOgcTvv4i12AUcgYiOO2IojzsVRgatixywD2fiD9sByt6DLGVuB6kp-cX4LFzGhnDEHSH_y-64L2OgO-724dz94PIVNYutVXJ9hFcqG83hmHhypOnd69gEr2M_S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Structure+Identification+From+Corrupt+Data+Streams&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Subramanian%2C+Venkat+Ram&rft.au=Lamperski%2C+Andrew&rft.au=Salapaka%2C+Murti+V.&rft.date=2021-11-01&rft.issn=1558-2523&rft.eissn=1558-2523&rft.volume=66&rft.issue=11&rft.spage=5314&rft.epage=5325&rft_id=info:doi/10.1109%2FTAC.2020.3040952&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3040952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon