SKELETAL STOCHASTIC DIFFERENTIAL EQUATIONS FOR CONTINUOUS-STATE BRANCHING PROCESSES

It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs {non-prolific...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied probability Vol. 56; no. 4; pp. 1122 - 1150
Main Authors FEKETE, D., FONTBONA, J., KYPRIANOU, A. E.
Format Journal Article
LanguageEnglish
Published Sheffield Applied Probability Trust 01.12.2019
Cambridge University Press
Subjects
Online AccessGet full text
ISSN0021-9002
1475-6072
DOI10.1017/jpr.2019.67

Cover

Abstract It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs {non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Ldvy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical.
AbstractList It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs (non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Lévy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical.
It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the skeleton of prolific individuals ) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs ( non-prolific mass ). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Lévy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical.
It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs {non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Ldvy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical.
Author FONTBONA, J.
FEKETE, D.
KYPRIANOU, A. E.
Author_xml – sequence: 1
  givenname: D.
  surname: FEKETE
  fullname: FEKETE, D.
– sequence: 2
  givenname: J.
  surname: FONTBONA
  fullname: FONTBONA, J.
– sequence: 3
  givenname: A. E.
  surname: KYPRIANOU
  fullname: KYPRIANOU, A. E.
BookMark eNp1kF1LwzAUhoNMcJte-QcK4pV05qNpmsta0604Wl2y65DFFFbmOtPuwn9vx7wQwZtz4OV5z4FnAkb7du8AuEVwhiBij83BzzBEfBazCzBGEaNhDBkegTGEGIV8mFdg0nUNhCiinI2BlC9iKVS6DKSqskUqVZEFz0Wei5UoVTHk4m2dqqIqZZBXqyCrhrRcV2sZSpUqETyt0jJbFOU8eF1VmZBSyGtwWZtd525-9hSsc6GyRbis5kWWLkOLOepDlxAe2Q0iNGZmU1sKmcHxxjjKEkcRjDC3jlr4jpHhkBDiEkhja1FSO-M4J1Nwd7578O3n0XW9btqj3w8vNSaYEJ5QRgYKnSnr267zrtZ225t-2-57b7Y7jaA-udODO31yp2M2dB7-dA5--2H81z_0_Zluur71v1FMINMRxYzFmJJvN612Qw
CitedBy_id crossref_primary_10_1017_jpr_2020_53
crossref_primary_10_1007_s10473_021_0504_7
crossref_primary_10_30757_ALEA_v21_49
crossref_primary_10_1214_19_EJP358
Cites_doi 10.1017/S0308210500002699
10.1007/s004400050271
10.1214/12-AOP759
10.1007/978-3-0348-8683-3
10.1016/j.spa.2009.11.005
10.1007/978-3-319-11970-0_2
10.1002/9780470316658.ch4
10.1239/jap/1346955325
10.1007/978-3-662-06400-9
10.1080/15326340802437728
10.1016/S0304-4149(97)00059-8
10.1214/ECP.v17-1972
10.1007/978-3-642-37632-0
10.1214/11-AOP644
10.1214/EJP.v19-2831
10.1239/aap/1035228122
10.1016/S0304-4149(99)00103-9
10.1239/jap/1222441825
10.1214/EJP.v12-402
10.1016/0304-4149(91)90093-R
10.1007/s00440-017-0819-4
10.1016/j.spa.2011.02.004
10.1214/14-AOP944
10.1214/14-AOP972
10.4153/CMB-1994-028-3
10.1016/j.spl.2011.09.013
10.1007/s00440-007-0064-3
10.1214/aop/1022855417
10.1007/978-3-642-15004-3_2
10.1214/10-AOP629
10.1007/s00440-003-0333-8
10.1214/009117905000000747
10.1215/ijm/1258059473
10.1007/978-3-662-02619-9
10.2307/3212674
10.1007/978-3-642-15358-7_6
10.1016/0304-4149(95)00087-9
ContentType Journal Article
Copyright Copyright © Applied Probability Trust 2019
Applied Probability Trust 2019
Copyright_xml – notice: Copyright © Applied Probability Trust 2019
– notice: Applied Probability Trust 2019
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
H8D
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1017/jpr.2019.67
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Research Library China
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1475-6072
EndPage 1150
ExternalDocumentID 10_1017_jpr_2019_67
45277625
GeographicLocations United Kingdom--UK
New York
United States--US
GeographicLocations_xml – name: New York
– name: United Kingdom--UK
– name: United States--US
GroupedDBID -~X
09C
09E
0R~
5GY
7WY
8C1
8FE
8FG
8FL
8G5
8VB
AAAZR
AABES
AABWE
AACJH
AAGFV
AARAB
AASVR
AAUKB
AAWIL
ABAWQ
ABBHK
ABFAN
ABGDZ
ABJCF
ABJNI
ABMWE
ABQDR
ABQTM
ABROB
ABUWG
ABVZP
ABXAU
ABXHF
ABXSQ
ABYWD
ABZCX
ACBMC
ACDIW
ACDLN
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACTMH
ACUIJ
ACYZP
ACZBM
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADODI
ADVJH
AEBAK
AECCQ
AEGXH
AEHGV
AELKX
AELLO
AENEX
AENGE
AEUPB
AFFUJ
AFKQG
AFKRA
AFLVW
AFVYC
AFZFC
AGBYD
AGJUD
AGLNM
AHQXX
AHRGI
AIAGR
AIGNW
AIHAF
AIHIV
AIOIP
AJCYY
AJPFC
AJQAS
AKBRZ
AKMAY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALWZO
AMVHM
AQJOH
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BEZIV
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
C-6
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EJD
F5P
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
HQ6
IH6
IOEEP
IPSME
JAA
JENOY
JHPGK
JMS
JPL
JQKCU
JST
K1G
K60
K6V
K6~
K7-
KCGVB
KFECR
L6V
M0C
M2O
M7S
NIKVX
O9-
P2P
P62
PADUT
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PUASD
PYCCK
QWB
RAMDC
RBU
RCA
ROL
RPE
S6U
SA0
SAAAG
T9M
TN5
U5U
UKHRP
UT1
WFFJZ
WH7
YQT
ZL0
ZYDXJ
2AX
AAKTX
AANRG
AAYJJ
AAYXX
ABEFU
ABTNK
ABVKB
ADOVH
ADOVT
ADULT
AENCP
AI.
AJAHB
AKZCZ
ARZZG
AS~
AYIQA
BCGOX
BESQT
CCUQV
CFBFF
CGQII
CITATION
EGQIC
FEDTE
GIFXF
HGD
HVGLF
IOO
JAAYA
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
KAFGG
LHUNA
LW7
NZEOI
RNS
VH1
YHZ
ZDLDU
ZGI
ZJOSE
ZMEZD
ZY4
3V.
7SC
7XB
8AL
8FD
8FK
H8D
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c291t-e8394cb13567abfc507a26bae578e510429ce5c0d21a90333e8056cc18feae993
IEDL.DBID BENPR
ISSN 0021-9002
IngestDate Sat Aug 16 11:42:21 EDT 2025
Tue Jul 01 02:35:52 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Thu Jul 03 22:07:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e8394cb13567abfc507a26bae578e510429ce5c0d21a90333e8056cc18feae993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2323398573
PQPubID 30074
PageCount 29
ParticipantIDs proquest_journals_2323398573
crossref_citationtrail_10_1017_jpr_2019_67
crossref_primary_10_1017_jpr_2019_67
jstor_primary_10_2307_45277625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191201
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191201
  day: 1
PublicationDecade 2010
PublicationPlace Sheffield
PublicationPlace_xml – name: Sheffield
PublicationTitle Journal of applied probability
PublicationYear 2019
Publisher Applied Probability Trust
Cambridge University Press
Publisher_xml – name: Applied Probability Trust
– name: Cambridge University Press
References Roelly-Coppoletta (S0021900219000676_ref42) 1989; 309
S0021900219000676_ref1
Le Gall (S0021900219000676_ref31) 1998; 26
S0021900219000676_ref3
Duquesne (S0021900219000676_ref10) 2005
S0021900219000676_ref4
S0021900219000676_ref5
Barczy (S0021900219000676_ref2) 2015; 2015
S0021900219000676_ref30
S0021900219000676_ref6
S0021900219000676_ref7
S0021900219000676_ref8
S0021900219000676_ref11
S0021900219000676_ref34
S0021900219000676_ref9
S0021900219000676_ref12
S0021900219000676_ref13
S0021900219000676_ref35
S0021900219000676_ref14
S0021900219000676_ref36
S0021900219000676_ref37
S0021900219000676_ref15
S0021900219000676_ref38
S0021900219000676_ref16
S0021900219000676_ref39
S0021900219000676_ref18
S0021900219000676_ref19
Li (S0021900219000676_ref33) 2001; 46
S0021900219000676_ref40
S0021900219000676_ref41
S0021900219000676_ref20
S0021900219000676_ref43
S0021900219000676_ref21
S0021900219000676_ref44
S0021900219000676_ref22
S0021900219000676_ref23
S0021900219000676_ref45
S0021900219000676_ref24
S0021900219000676_ref25
S0021900219000676_ref26
S0021900219000676_ref27
S0021900219000676_ref28
S0021900219000676_ref29
Evans (S0021900219000676_ref17) 1998; 19
Le Gall (S0021900219000676_ref32) 1998; 26
References_xml – ident: S0021900219000676_ref15
  doi: 10.1017/S0308210500002699
– ident: S0021900219000676_ref43
  doi: 10.1007/s004400050271
– ident: S0021900219000676_ref37
  doi: 10.1214/12-AOP759
– ident: S0021900219000676_ref30
  doi: 10.1007/978-3-0348-8683-3
– ident: S0021900219000676_ref20
  doi: 10.1016/j.spa.2009.11.005
– volume: 309
  start-page: 867
  year: 1989
  ident: S0021900219000676_ref42
  article-title: Processus de Dawson–Watanabe conditionné par le futur lointain
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– ident: S0021900219000676_ref26
  doi: 10.1007/978-3-319-11970-0_2
– ident: S0021900219000676_ref16
  doi: 10.1002/9780470316658.ch4
– ident: S0021900219000676_ref25
  doi: 10.1239/jap/1346955325
– ident: S0021900219000676_ref41
  doi: 10.1007/978-3-662-06400-9
– ident: S0021900219000676_ref29
  doi: 10.1080/15326340802437728
– ident: S0021900219000676_ref45
  doi: 10.1016/S0304-4149(97)00059-8
– ident: S0021900219000676_ref19
  doi: 10.1214/ECP.v17-1972
– ident: S0021900219000676_ref24
  doi: 10.1007/978-3-642-37632-0
– ident: S0021900219000676_ref1
  doi: 10.1214/11-AOP644
– ident: S0021900219000676_ref9
  doi: 10.1214/EJP.v19-2831
– ident: S0021900219000676_ref39
– ident: S0021900219000676_ref35
  doi: 10.1239/aap/1035228122
– ident: S0021900219000676_ref44
  doi: 10.1016/S0304-4149(99)00103-9
– ident: S0021900219000676_ref5
  doi: 10.1239/jap/1222441825
– ident: S0021900219000676_ref28
  doi: 10.1214/EJP.v12-402
– ident: S0021900219000676_ref14
  doi: 10.1016/0304-4149(91)90093-R
– ident: S0021900219000676_ref3
  doi: 10.1007/s00440-017-0819-4
– ident: S0021900219000676_ref4
  doi: 10.1016/j.spa.2011.02.004
– volume: 46
  start-page: 247
  year: 2001
  ident: S0021900219000676_ref33
  article-title: Skew convolution semigroups and related immigration processes
  publication-title: Teor. Veroyat. Primen.
– ident: S0021900219000676_ref13
  doi: 10.1214/14-AOP944
– ident: S0021900219000676_ref22
  doi: 10.1214/14-AOP972
– ident: S0021900219000676_ref18
  doi: 10.4153/CMB-1994-028-3
– volume: 26
  start-page: 1407
  year: 1998
  ident: S0021900219000676_ref31
  article-title: Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses
  publication-title: Ann. Prob.
– start-page: 281
  year: 2005
  ident: S0021900219000676_ref10
  article-title: Random trees, Lévy processes and spatial branching processes
  publication-title: Astérisque
– ident: S0021900219000676_ref27
  doi: 10.1016/j.spl.2011.09.013
– ident: S0021900219000676_ref11
  doi: 10.1007/s00440-007-0064-3
– volume: 26
  start-page: 213
  year: 1998
  ident: S0021900219000676_ref32
  article-title: Branching processes in Lévy processes: The exploration process
  publication-title: Ann. Prob.
  doi: 10.1214/aop/1022855417
– ident: S0021900219000676_ref36
  doi: 10.1007/978-3-642-15004-3_2
– ident: S0021900219000676_ref8
  doi: 10.1214/10-AOP629
– ident: S0021900219000676_ref12
  doi: 10.1007/s00440-003-0333-8
– ident: S0021900219000676_ref7
  doi: 10.1214/009117905000000747
– ident: S0021900219000676_ref6
  doi: 10.1215/ijm/1258059473
– ident: S0021900219000676_ref40
  doi: 10.1007/978-3-662-02619-9
– volume: 19
  volume-title: Partial Differential Equations
  year: 1998
  ident: S0021900219000676_ref17
– ident: S0021900219000676_ref21
  doi: 10.2307/3212674
– ident: S0021900219000676_ref23
  doi: 10.1007/978-3-642-15358-7_6
– ident: S0021900219000676_ref34
  doi: 10.1016/0304-4149(95)00087-9
– ident: S0021900219000676_ref38
– volume: 2015
  start-page: 460472
  year: 2015
  ident: S0021900219000676_ref2
  article-title: Yamada–Watanabe results for stochastic differential equations with jumps
  publication-title: Internat. J. Stoch. Anal.
SSID ssj0014597
Score 2.2440014
Snippet It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the...
It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1122
SubjectTerms Branching (mathematics)
Coding
Conditioning
Decomposition
Differential equations
Immigration
Markov analysis
Markov processes
Mathematical analysis
Mathematics
Partial differential equations
Random variables
Stochastic processes
Title SKELETAL STOCHASTIC DIFFERENTIAL EQUATIONS FOR CONTINUOUS-STATE BRANCHING PROCESSES
URI https://www.jstor.org/stable/45277625
https://www.proquest.com/docview/2323398573
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgWhXro-yhJyE2ye42yUFES6sILWIt9BZ2Nxt8lD5s-_-dyaMVFC-5ZElgdmfm291v5gNoKN-NMO5r3Jao1BEmUo42MnFSyf3ElSrQWXl0r996HIqnkRxtQb-shSFaZRkTs0CdTA2dkTcx83MehTLgt7O5Q6pRdLtaSmioQlohuclajG3DDobkENf9zn2n__yyvlcQMipEXImYQNyeatFrqPkxo_agXnSdSc5vclROU_wVqrP80z2A_QI4srt8pg9hy06qsNdbd11dHMFg8IlJBNE0w2-ZN0UtmFmpgIKePGZ2nnf2XjDEqoxo6u-TFe79nayuiGlS2aAjKTbL6wfs4hiG3c5r-9EpRBMc40fe0rGIeITRHpetQOnUIN5Tfksri65p0QEx_xgrjZv4nopczrkNEQMZ44WpVRbRyglUJtOJPQWG6CGRgqdCi0QQkPNdGeI8kFSGlwSiBlelmWJTdBQnYYtxnFPHghhtGpNN41ZQg8Z68CxvpPH3sHpm759jiKseC-kHGLhlDS7KiYgLd1vEm8Vx9v_rc9ilH-V8lAuoLL9W9hJRxVLXYTtse_TsPtSLZfMN2ujNFg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5FcKAcEOUhAjTdA70gudj7iO1DVVWFEArhAkjclt31WjyiJOBEiD_V39gZPwJSq944e2Vbs-OZb9fffh_AnuFhinXf4rLE5IF0qQmsU1mQK8GzUJnYlsejB-fd_pX8da2uW_C7OQtDtMqmJpaFOhs72iM_wM4vRJqoWHyfPAbkGkV_VxsLjSotTv3LMy7Zim8nhzi_XzjvHV3-7Ae1q0DgeBpNA4-QQDobCdWNjc0dAiLDu9Z4zF2PGYoF2nnlwoxHJg2FED5BkOBclOTe-JTEl7DkL0p8G7KKSHrH878WUqW1RSzRHog5tFYrGR3cT0h8NEq_lob2rx2wIkH-1QjK7tZbhZUalrIfVR59hJYfrcHyYK7pWqzDxcUDtijE6gzv5W4NCTyzxl8F68SQ-cdKN7xgiIQZkeDvRrPxrAjKU0vMkocHbXixSXU6wRcbcPUuwduEhdF45LeAITbJlBS5tDKTBBN5qBKcZTLiiLJYtmG_CZN2tV452WYMdUVMizXGVFNMdTduw9588KSS6fj3sE4Z77djiAmvpeIxtgXVht1mInT9MRf6NfW2_3_5Myz1Lwdn-uzk_HQHPtBDK-bLLixMn2b-E-KXqe2UScPg5r2z9A8PLAGB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+stochastic+differential+equations+for+continuous-state+branching+processes&rft.jtitle=Journal+of+applied+probability&rft.au=Fekete%2C+D.&rft.au=Fontbona%2C+J.&rft.au=Kyprianou%2C+A.+E.&rft.date=2019-12-01&rft.issn=0021-9002&rft.eissn=1475-6072&rft.volume=56&rft.issue=4&rft.spage=1122&rft.epage=1150&rft_id=info:doi/10.1017%2Fjpr.2019.67&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jpr_2019_67
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9002&client=summon