SKELETAL STOCHASTIC DIFFERENTIAL EQUATIONS FOR CONTINUOUS-STATE BRANCHING PROCESSES
It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs {non-prolific...
Saved in:
Published in | Journal of applied probability Vol. 56; no. 4; pp. 1122 - 1150 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Sheffield
Applied Probability Trust
01.12.2019
Cambridge University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9002 1475-6072 |
DOI | 10.1017/jpr.2019.67 |
Cover
Abstract | It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs {non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Ldvy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical. |
---|---|
AbstractList | It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs (non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Lévy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical. It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the skeleton of prolific individuals ) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs ( non-prolific mass ). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Lévy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical. It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs {non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Ldvy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical. |
Author | FONTBONA, J. FEKETE, D. KYPRIANOU, A. E. |
Author_xml | – sequence: 1 givenname: D. surname: FEKETE fullname: FEKETE, D. – sequence: 2 givenname: J. surname: FONTBONA fullname: FONTBONA, J. – sequence: 3 givenname: A. E. surname: KYPRIANOU fullname: KYPRIANOU, A. E. |
BookMark | eNp1kF1LwzAUhoNMcJte-QcK4pV05qNpmsta0604Wl2y65DFFFbmOtPuwn9vx7wQwZtz4OV5z4FnAkb7du8AuEVwhiBij83BzzBEfBazCzBGEaNhDBkegTGEGIV8mFdg0nUNhCiinI2BlC9iKVS6DKSqskUqVZEFz0Wei5UoVTHk4m2dqqIqZZBXqyCrhrRcV2sZSpUqETyt0jJbFOU8eF1VmZBSyGtwWZtd525-9hSsc6GyRbis5kWWLkOLOepDlxAe2Q0iNGZmU1sKmcHxxjjKEkcRjDC3jlr4jpHhkBDiEkhja1FSO-M4J1Nwd7578O3n0XW9btqj3w8vNSaYEJ5QRgYKnSnr267zrtZ225t-2-57b7Y7jaA-udODO31yp2M2dB7-dA5--2H81z_0_Zluur71v1FMINMRxYzFmJJvN612Qw |
CitedBy_id | crossref_primary_10_1017_jpr_2020_53 crossref_primary_10_1007_s10473_021_0504_7 crossref_primary_10_30757_ALEA_v21_49 crossref_primary_10_1214_19_EJP358 |
Cites_doi | 10.1017/S0308210500002699 10.1007/s004400050271 10.1214/12-AOP759 10.1007/978-3-0348-8683-3 10.1016/j.spa.2009.11.005 10.1007/978-3-319-11970-0_2 10.1002/9780470316658.ch4 10.1239/jap/1346955325 10.1007/978-3-662-06400-9 10.1080/15326340802437728 10.1016/S0304-4149(97)00059-8 10.1214/ECP.v17-1972 10.1007/978-3-642-37632-0 10.1214/11-AOP644 10.1214/EJP.v19-2831 10.1239/aap/1035228122 10.1016/S0304-4149(99)00103-9 10.1239/jap/1222441825 10.1214/EJP.v12-402 10.1016/0304-4149(91)90093-R 10.1007/s00440-017-0819-4 10.1016/j.spa.2011.02.004 10.1214/14-AOP944 10.1214/14-AOP972 10.4153/CMB-1994-028-3 10.1016/j.spl.2011.09.013 10.1007/s00440-007-0064-3 10.1214/aop/1022855417 10.1007/978-3-642-15004-3_2 10.1214/10-AOP629 10.1007/s00440-003-0333-8 10.1214/009117905000000747 10.1215/ijm/1258059473 10.1007/978-3-662-02619-9 10.2307/3212674 10.1007/978-3-642-15358-7_6 10.1016/0304-4149(95)00087-9 |
ContentType | Journal Article |
Copyright | Copyright © Applied Probability Trust 2019 Applied Probability Trust 2019 |
Copyright_xml | – notice: Copyright © Applied Probability Trust 2019 – notice: Applied Probability Trust 2019 |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ GUQSH H8D HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U |
DOI | 10.1017/jpr.2019.67 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Research Library China Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced Aerospace Database ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ABI/INFORM China ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1475-6072 |
EndPage | 1150 |
ExternalDocumentID | 10_1017_jpr_2019_67 45277625 |
GeographicLocations | United Kingdom--UK New York United States--US |
GeographicLocations_xml | – name: New York – name: United Kingdom--UK – name: United States--US |
GroupedDBID | -~X 09C 09E 0R~ 5GY 7WY 8C1 8FE 8FG 8FL 8G5 8VB AAAZR AABES AABWE AACJH AAGFV AARAB AASVR AAUKB AAWIL ABAWQ ABBHK ABFAN ABGDZ ABJCF ABJNI ABMWE ABQDR ABQTM ABROB ABUWG ABVZP ABXAU ABXHF ABXSQ ABYWD ABZCX ACBMC ACDIW ACDLN ACGFO ACGFS ACHJO ACIWK ACMTB ACNCT ACTMH ACUIJ ACYZP ACZBM ACZWT ADBBV ADCGK ADDNB ADFEC ADKIL ADODI ADVJH AEBAK AECCQ AEGXH AEHGV AELKX AELLO AENEX AENGE AEUPB AFFUJ AFKQG AFKRA AFLVW AFVYC AFZFC AGBYD AGJUD AGLNM AHQXX AHRGI AIAGR AIGNW AIHAF AIHIV AIOIP AJCYY AJPFC AJQAS AKBRZ AKMAY ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALWZO AMVHM AQJOH ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BEZIV BGLVJ BJBOZ BLZWO BMAJL BPHCQ C-6 CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DQDLB DSRWC DU5 DWQXO EBS ECEWR EJD F5P FRNLG FYUFA GNUQQ GUQSH HCIFZ HQ6 IH6 IOEEP IPSME JAA JENOY JHPGK JMS JPL JQKCU JST K1G K60 K6V K6~ K7- KCGVB KFECR L6V M0C M2O M7S NIKVX O9- P2P P62 PADUT PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PUASD PYCCK QWB RAMDC RBU RCA ROL RPE S6U SA0 SAAAG T9M TN5 U5U UKHRP UT1 WFFJZ WH7 YQT ZL0 ZYDXJ 2AX AAKTX AANRG AAYJJ AAYXX ABEFU ABTNK ABVKB ADOVH ADOVT ADULT AENCP AI. AJAHB AKZCZ ARZZG AS~ AYIQA BCGOX BESQT CCUQV CFBFF CGQII CITATION EGQIC FEDTE GIFXF HGD HVGLF IOO JAAYA JBMMH JBZCM JHFFW JKQEH JLEZI JLXEF KAFGG LHUNA LW7 NZEOI RNS VH1 YHZ ZDLDU ZGI ZJOSE ZMEZD ZY4 3V. 7SC 7XB 8AL 8FD 8FK H8D JQ2 L.- L7M L~C L~D M0N MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c291t-e8394cb13567abfc507a26bae578e510429ce5c0d21a90333e8056cc18feae993 |
IEDL.DBID | BENPR |
ISSN | 0021-9002 |
IngestDate | Sat Aug 16 11:42:21 EDT 2025 Tue Jul 01 02:35:52 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Thu Jul 03 22:07:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e8394cb13567abfc507a26bae578e510429ce5c0d21a90333e8056cc18feae993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2323398573 |
PQPubID | 30074 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2323398573 crossref_citationtrail_10_1017_jpr_2019_67 crossref_primary_10_1017_jpr_2019_67 jstor_primary_10_2307_45277625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191201 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Sheffield |
PublicationPlace_xml | – name: Sheffield |
PublicationTitle | Journal of applied probability |
PublicationYear | 2019 |
Publisher | Applied Probability Trust Cambridge University Press |
Publisher_xml | – name: Applied Probability Trust – name: Cambridge University Press |
References | Roelly-Coppoletta (S0021900219000676_ref42) 1989; 309 S0021900219000676_ref1 Le Gall (S0021900219000676_ref31) 1998; 26 S0021900219000676_ref3 Duquesne (S0021900219000676_ref10) 2005 S0021900219000676_ref4 S0021900219000676_ref5 Barczy (S0021900219000676_ref2) 2015; 2015 S0021900219000676_ref30 S0021900219000676_ref6 S0021900219000676_ref7 S0021900219000676_ref8 S0021900219000676_ref11 S0021900219000676_ref34 S0021900219000676_ref9 S0021900219000676_ref12 S0021900219000676_ref13 S0021900219000676_ref35 S0021900219000676_ref14 S0021900219000676_ref36 S0021900219000676_ref37 S0021900219000676_ref15 S0021900219000676_ref38 S0021900219000676_ref16 S0021900219000676_ref39 S0021900219000676_ref18 S0021900219000676_ref19 Li (S0021900219000676_ref33) 2001; 46 S0021900219000676_ref40 S0021900219000676_ref41 S0021900219000676_ref20 S0021900219000676_ref43 S0021900219000676_ref21 S0021900219000676_ref44 S0021900219000676_ref22 S0021900219000676_ref23 S0021900219000676_ref45 S0021900219000676_ref24 S0021900219000676_ref25 S0021900219000676_ref26 S0021900219000676_ref27 S0021900219000676_ref28 S0021900219000676_ref29 Evans (S0021900219000676_ref17) 1998; 19 Le Gall (S0021900219000676_ref32) 1998; 26 |
References_xml | – ident: S0021900219000676_ref15 doi: 10.1017/S0308210500002699 – ident: S0021900219000676_ref43 doi: 10.1007/s004400050271 – ident: S0021900219000676_ref37 doi: 10.1214/12-AOP759 – ident: S0021900219000676_ref30 doi: 10.1007/978-3-0348-8683-3 – ident: S0021900219000676_ref20 doi: 10.1016/j.spa.2009.11.005 – volume: 309 start-page: 867 year: 1989 ident: S0021900219000676_ref42 article-title: Processus de Dawson–Watanabe conditionné par le futur lointain publication-title: C. R. Acad. Sci. Paris Sér. I Math. – ident: S0021900219000676_ref26 doi: 10.1007/978-3-319-11970-0_2 – ident: S0021900219000676_ref16 doi: 10.1002/9780470316658.ch4 – ident: S0021900219000676_ref25 doi: 10.1239/jap/1346955325 – ident: S0021900219000676_ref41 doi: 10.1007/978-3-662-06400-9 – ident: S0021900219000676_ref29 doi: 10.1080/15326340802437728 – ident: S0021900219000676_ref45 doi: 10.1016/S0304-4149(97)00059-8 – ident: S0021900219000676_ref19 doi: 10.1214/ECP.v17-1972 – ident: S0021900219000676_ref24 doi: 10.1007/978-3-642-37632-0 – ident: S0021900219000676_ref1 doi: 10.1214/11-AOP644 – ident: S0021900219000676_ref9 doi: 10.1214/EJP.v19-2831 – ident: S0021900219000676_ref39 – ident: S0021900219000676_ref35 doi: 10.1239/aap/1035228122 – ident: S0021900219000676_ref44 doi: 10.1016/S0304-4149(99)00103-9 – ident: S0021900219000676_ref5 doi: 10.1239/jap/1222441825 – ident: S0021900219000676_ref28 doi: 10.1214/EJP.v12-402 – ident: S0021900219000676_ref14 doi: 10.1016/0304-4149(91)90093-R – ident: S0021900219000676_ref3 doi: 10.1007/s00440-017-0819-4 – ident: S0021900219000676_ref4 doi: 10.1016/j.spa.2011.02.004 – volume: 46 start-page: 247 year: 2001 ident: S0021900219000676_ref33 article-title: Skew convolution semigroups and related immigration processes publication-title: Teor. Veroyat. Primen. – ident: S0021900219000676_ref13 doi: 10.1214/14-AOP944 – ident: S0021900219000676_ref22 doi: 10.1214/14-AOP972 – ident: S0021900219000676_ref18 doi: 10.4153/CMB-1994-028-3 – volume: 26 start-page: 1407 year: 1998 ident: S0021900219000676_ref31 article-title: Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses publication-title: Ann. Prob. – start-page: 281 year: 2005 ident: S0021900219000676_ref10 article-title: Random trees, Lévy processes and spatial branching processes publication-title: Astérisque – ident: S0021900219000676_ref27 doi: 10.1016/j.spl.2011.09.013 – ident: S0021900219000676_ref11 doi: 10.1007/s00440-007-0064-3 – volume: 26 start-page: 213 year: 1998 ident: S0021900219000676_ref32 article-title: Branching processes in Lévy processes: The exploration process publication-title: Ann. Prob. doi: 10.1214/aop/1022855417 – ident: S0021900219000676_ref36 doi: 10.1007/978-3-642-15004-3_2 – ident: S0021900219000676_ref8 doi: 10.1214/10-AOP629 – ident: S0021900219000676_ref12 doi: 10.1007/s00440-003-0333-8 – ident: S0021900219000676_ref7 doi: 10.1214/009117905000000747 – ident: S0021900219000676_ref6 doi: 10.1215/ijm/1258059473 – ident: S0021900219000676_ref40 doi: 10.1007/978-3-662-02619-9 – volume: 19 volume-title: Partial Differential Equations year: 1998 ident: S0021900219000676_ref17 – ident: S0021900219000676_ref21 doi: 10.2307/3212674 – ident: S0021900219000676_ref23 doi: 10.1007/978-3-642-15358-7_6 – ident: S0021900219000676_ref34 doi: 10.1016/0304-4149(95)00087-9 – ident: S0021900219000676_ref38 – volume: 2015 start-page: 460472 year: 2015 ident: S0021900219000676_ref2 article-title: Yamada–Watanabe results for stochastic differential equations with jumps publication-title: Internat. J. Stoch. Anal. |
SSID | ssj0014597 |
Score | 2.2440014 |
Snippet | It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton-Watson process (the... It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the... |
SourceID | proquest crossref jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1122 |
SubjectTerms | Branching (mathematics) Coding Conditioning Decomposition Differential equations Immigration Markov analysis Markov processes Mathematical analysis Mathematics Partial differential equations Random variables Stochastic processes |
Title | SKELETAL STOCHASTIC DIFFERENTIAL EQUATIONS FOR CONTINUOUS-STATE BRANCHING PROCESSES |
URI | https://www.jstor.org/stable/45277625 https://www.proquest.com/docview/2323398573 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XvQgWhXro-yhJyE2ye42yUFES6sILWIt9BZ2Nxt8lD5s-_-dyaMVFC-5ZElgdmfm291v5gNoKN-NMO5r3Jao1BEmUo42MnFSyf3ElSrQWXl0r996HIqnkRxtQb-shSFaZRkTs0CdTA2dkTcx83MehTLgt7O5Q6pRdLtaSmioQlohuclajG3DDobkENf9zn2n__yyvlcQMipEXImYQNyeatFrqPkxo_agXnSdSc5vclROU_wVqrP80z2A_QI4srt8pg9hy06qsNdbd11dHMFg8IlJBNE0w2-ZN0UtmFmpgIKePGZ2nnf2XjDEqoxo6u-TFe79nayuiGlS2aAjKTbL6wfs4hiG3c5r-9EpRBMc40fe0rGIeITRHpetQOnUIN5Tfksri65p0QEx_xgrjZv4nopczrkNEQMZ44WpVRbRyglUJtOJPQWG6CGRgqdCi0QQkPNdGeI8kFSGlwSiBlelmWJTdBQnYYtxnFPHghhtGpNN41ZQg8Z68CxvpPH3sHpm759jiKseC-kHGLhlDS7KiYgLd1vEm8Vx9v_rc9ilH-V8lAuoLL9W9hJRxVLXYTtse_TsPtSLZfMN2ujNFg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5FcKAcEOUhAjTdA70gudj7iO1DVVWFEArhAkjclt31WjyiJOBEiD_V39gZPwJSq944e2Vbs-OZb9fffh_AnuFhinXf4rLE5IF0qQmsU1mQK8GzUJnYlsejB-fd_pX8da2uW_C7OQtDtMqmJpaFOhs72iM_wM4vRJqoWHyfPAbkGkV_VxsLjSotTv3LMy7Zim8nhzi_XzjvHV3-7Ae1q0DgeBpNA4-QQDobCdWNjc0dAiLDu9Z4zF2PGYoF2nnlwoxHJg2FED5BkOBclOTe-JTEl7DkL0p8G7KKSHrH878WUqW1RSzRHog5tFYrGR3cT0h8NEq_lob2rx2wIkH-1QjK7tZbhZUalrIfVR59hJYfrcHyYK7pWqzDxcUDtijE6gzv5W4NCTyzxl8F68SQ-cdKN7xgiIQZkeDvRrPxrAjKU0vMkocHbXixSXU6wRcbcPUuwduEhdF45LeAITbJlBS5tDKTBBN5qBKcZTLiiLJYtmG_CZN2tV452WYMdUVMizXGVFNMdTduw9588KSS6fj3sE4Z77djiAmvpeIxtgXVht1mInT9MRf6NfW2_3_5Myz1Lwdn-uzk_HQHPtBDK-bLLixMn2b-E-KXqe2UScPg5r2z9A8PLAGB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+stochastic+differential+equations+for+continuous-state+branching+processes&rft.jtitle=Journal+of+applied+probability&rft.au=Fekete%2C+D.&rft.au=Fontbona%2C+J.&rft.au=Kyprianou%2C+A.+E.&rft.date=2019-12-01&rft.issn=0021-9002&rft.eissn=1475-6072&rft.volume=56&rft.issue=4&rft.spage=1122&rft.epage=1150&rft_id=info:doi/10.1017%2Fjpr.2019.67&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jpr_2019_67 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9002&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9002&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9002&client=summon |