A scalable framework for annotating photovoltaic cell defects in electroluminescence images

The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for au...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 19; no. 9; pp. 1 - 8
Main Authors Otamendi, Urtzi, Martinez, Inigo, Olaizola, Igor G., Quartulli, Marco
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in Electroluminescence (EL) images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life-cycle of the PV cells and predict failures. This paper addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a Golden Standard benchmark. The proposed method stands out for (1) its adaptability to new PV cell types, (2) cost-efficient fine-tuning, and (3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%.
AbstractList The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in Electroluminescence (EL) images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life-cycle of the PV cells and predict failures. This paper addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a Golden Standard benchmark. The proposed method stands out for (1) its adaptability to new PV cell types, (2) cost-efficient fine-tuning, and (3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%.
The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in electroluminescence images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life cycle of the PV cells and predict failures. This article addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a golden standard benchmark. The proposed method stands out for: 1) its adaptability to new PV cell types; 2) cost-efficient fine-tuning; and 3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%.
Author Quartulli, Marco
Martinez, Inigo
Olaizola, Igor G.
Otamendi, Urtzi
Author_xml – sequence: 1
  givenname: Urtzi
  orcidid: 0000-0002-4233-4258
  surname: Otamendi
  fullname: Otamendi, Urtzi
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
– sequence: 2
  givenname: Inigo
  orcidid: 0000-0001-8174-9272
  surname: Martinez
  fullname: Martinez, Inigo
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
– sequence: 3
  givenname: Igor G.
  orcidid: 0000-0002-9965-2038
  surname: Olaizola
  fullname: Olaizola, Igor G.
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
– sequence: 4
  givenname: Marco
  surname: Quartulli
  fullname: Quartulli, Marco
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
BookMark eNp9kL1PwzAUxC1UJNrCjsRiiTnl2U4ce6wqPiohsZSJIXKdl5Li2sVOQfz3pLRiYGC6G-7ePf1GZOCDR0IuGUwYA32zmM8nHDifCM6VVHBChkznLAMoYND7omCZ4CDOyCilNYAoQegheZnSZI0zS4e0iWaDnyG-0SZEarwPnelav6Lb19CFj-A601pq0TlaY4O2S7T1FF3vYnC7TesxWfQWabsxK0zn5LQxLuHFUcfk-e52MXvIHp_u57PpY2a5Zl2GErmUeal7KRTkJueo0KAwgJYXthQNSgAmBbJaaSt0XS9LaRgshRRaijG5PtzdxvC-w9RV67CLvp-suMo5k7r4ScEhZWNIKWJTbWP_Z_yqGFR7hFWPsNojrI4I-4r8U7HtHknwXTSt-694dSi2iPi7o7XiuVLiG9mOgJw
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_JIOT_2024_3403711
crossref_primary_10_1109_TII_2024_3376726
crossref_primary_10_1109_JIOT_2024_3366945
crossref_primary_10_1021_acsami_4c03397
crossref_primary_10_4018_IJIIT_331595
Cites_doi 10.1016/j.solener.2021.03.058
10.1016/j.solener.2019.02.067
10.1109/TII.2019.2922680
10.1109/JPHOTOV.2019.2920732
10.1109/PVSC.2010.5616880
10.1109/TIP.2003.819861
10.1109/TSMC.1979.4310076
10.1109/TNNLS.2019.2927224
10.1016/j.energy.2019.116319
10.1109/TCYB.2017.2647904
10.1016/j.rser.2021.111532
10.1109/TIT.1983.1056714
10.1109/PVSC.2015.7356124
10.1016/j.solener.2020.03.049
10.1007/s00138-021-01191-9
10.1109/ACCESS.2020.2976843
10.1186/1687-5281-2014-15
10.1063/1.1924869
10.1016/j.solener.2019.06.017
10.3390/su12020608
10.1063/1.4940159
10.1063/1.1978979
10.1109/ICIP.2019.8803116
10.3390/en13246496
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2022.3228680
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 8
ExternalDocumentID 10_1109_TII_2022_3228680
9982488
Genre orig-research
GrantInformation_xml – fundername: Advances in Photovoltaic Solar Energy Operation and Maintenance Research
  grantid: KK2019/00088
– fundername: ELKARTEK program of the Basque Government
GroupedDBID 0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
CITATION
EJD
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-e6e266479e265804a42e8eae3a0ec25c73fe600163e1d89c39ddb76a10b363963
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 08:36:50 EDT 2025
Tue Jul 01 03:00:22 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e6e266479e265804a42e8eae3a0ec25c73fe600163e1d89c39ddb76a10b363963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8174-9272
0000-0002-4233-4258
0000-0002-9965-2038
PQID 2842169596
PQPubID 85507
PageCount 8
ParticipantIDs crossref_primary_10_1109_TII_2022_3228680
crossref_citationtrail_10_1109_TII_2022_3228680
ieee_primary_9982488
proquest_journals_2842169596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref30
ref11
ref17
ref16
ref19
(ref2) 2019
tkachenko (ref28) 2020
ref24
ref23
hu (ref29) 0
ref26
ref25
ref20
ref22
ref21
(ref1) 2019
ref27
ref8
ref7
ref9
ref4
ref3
deitsch (ref6) 2019; 185
ester (ref12) 1996; 96
minaee (ref10) 2022; 44
ref5
buerhop-lutz (ref18) 0
References_xml – ident: ref24
  doi: 10.1016/j.solener.2021.03.058
– volume: 185
  start-page: 455
  year: 2019
  ident: ref6
  article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.02.067
– ident: ref16
  doi: 10.1109/TII.2019.2922680
– start-page: 1287
  year: 0
  ident: ref18
  article-title: A benchmark for visual identification of defective solar cells in electroluminescence imagery
  publication-title: Proc 35th Eur PV Sol Energy Conf Exhib
– ident: ref20
  doi: 10.1109/JPHOTOV.2019.2920732
– ident: ref25
  doi: 10.1109/PVSC.2010.5616880
– ident: ref11
  doi: 10.1109/TIP.2003.819861
– ident: ref26
  doi: 10.1109/TSMC.1979.4310076
– ident: ref31
  doi: 10.1109/TNNLS.2019.2927224
– ident: ref22
  doi: 10.1016/j.energy.2019.116319
– ident: ref30
  doi: 10.1109/TCYB.2017.2647904
– ident: ref15
  doi: 10.1016/j.rser.2021.111532
– year: 2019
  ident: ref1
  publication-title: Renewables 2019 Market Analysis and Forecast From 2019 to 2024
– ident: ref27
  doi: 10.1109/TIT.1983.1056714
– ident: ref7
  doi: 10.1109/PVSC.2015.7356124
– ident: ref21
  doi: 10.1016/j.solener.2020.03.049
– volume: 44
  start-page: 3523
  year: 2022
  ident: ref10
  article-title: Image segmentation using deep learning: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref19
  doi: 10.1007/s00138-021-01191-9
– ident: ref9
  doi: 10.1109/ACCESS.2020.2976843
– ident: ref5
  doi: 10.1186/1687-5281-2014-15
– ident: ref13
  doi: 10.1063/1.1924869
– year: 2019
  ident: ref2
  publication-title: Solar Energy Mapping the Road Ahead
– ident: ref4
  doi: 10.1016/j.solener.2019.06.017
– year: 2020
  ident: ref28
  article-title: Label Studio: Data labeling software
– ident: ref3
  doi: 10.3390/su12020608
– start-page: 22106
  year: 0
  ident: ref29
  article-title: Semi-supervised semantic segmentation via adaptive equalization learning
  publication-title: Proc Int Conf Neural Inf Process
– volume: 96
  start-page: 226
  year: 1996
  ident: ref12
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Knowl Discov Databases
– ident: ref17
  doi: 10.1063/1.4940159
– ident: ref14
  doi: 10.1063/1.1978979
– ident: ref8
  doi: 10.1109/ICIP.2019.8803116
– ident: ref23
  doi: 10.3390/en13246496
SSID ssj0037039
Score 2.4153705
Snippet The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Annotations
Anomalies
anomaly segmentation
benchmark dataset
Costs
Datasets
Decision making
deep learning
defect annotation
Electroluminescence
Golden Standard
Image segmentation
Photovoltaic cells
Pipelines
Training
Title A scalable framework for annotating photovoltaic cell defects in electroluminescence images
URI https://ieeexplore.ieee.org/document/9982488
https://www.proquest.com/docview/2842169596
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnfTg1xSnU3LwItgtTdqsOQ5xbMI8bTDwUJo01aG2w3UX_3pf-jGGingo7SGBkPf6Pn_vPYBrruM4UYF0lKCe46HT4QR-opyYai1QoymtbBxy8ihGM-9h7s8bcLuphTHGFOAz07WfRS4_zvTahsp66BowZLgd2EHHrazVqqUuR86VRW9U33U4o7xOSVLZm47H6Agy1kXmDYRtALmlgoqZKj8EcaFdhgcwqc9Vgkpeu-tcdfXnt5aN_z34IexXZiYZlHxxBA2THsPeVvPBFjwNyAoJZEunSFJDtAjasCRK08xm6NNnsnzJ8gwlWB4tNLFBfhKbAgBCFimpRuigeLPYeW1lBFm8o4BancBseD-9GznVqAVHM-nmjhEGNbXXl_jyA-pFHjOBiQyPqNHM132eGGsaCW7cOJCayzhWfREhMTnaOIKfQjPNUnMGRLqJ73PFdeAxrx-5MpEqoRz9GhrhE7ShV99-qKs-5HYcxltY-CNUhkiv0NIrrOjVhpvNjmXZg-OPtS17_Zt11c23oVMTOKx-0lWImpm5QvpSnP--6wJ27XT5ElLWgWb-sTaXaIPk6qpgvi-fhthJ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB615UB74NEWdWGhPtADh-w6duyNDxxWQLXb12krVeKQxs6krKBJ1c0KwW_hr_DfGOexqgBxq8QhSg524ng-z8OeB8Br6bIst7EJrOZREJHREcQqt0HGndMk0ayzfh_y9ExPzqOjC3WxBj9WsTCIWDuf4cA_1mf5WemWfqtsSKaBIMC1LpTH-O0rGWiLt9P3RM0DIQ4_zN5NgraGQOCECasANZIIikaGbirmURoJjDFFmXJ0QrmRzNHLfC0xzGLjpMkyO9IpjVKS8NaS3rsOD0jPUKKJDuv4vKS1YupsrCoMpOCyOwTlZjibTsn0FGJAyyXWPuXkHaFXV3H5g_XX8uzwMfzsZqJxY_k8WFZ24L7_liTyf52qJ_CoVaTZuEH-U1jDYhu27qRX3IGPY7YgCPrgMJZ3TmiMtHSWFkXpfRCKK3bzqaxK4tFVOnfMH2OwDGsXFzYvWFskiBi4jw5wnguy-TWx4MUunN_L3z2DjaIscA-YCXOlpJUujkQ0SkOTG5tzSZYbT-mKezDsqJ24NtO6L_jxJaktLm4Swkfi8ZG0-OjBm1WPmybLyD_a7nhyr9q1lO5BvwNU0rKhRUK6hwi1UUY__3uvfXg4mZ2eJCfTs-MXsEnfkY0DXR82qtslviSNq7KvauAzuLxv-PwC4yk0cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scalable+framework+for+annotating+photovoltaic+cell+defects+in+electroluminescence+images&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Otamendi%2C+Urtzi&rft.au=Martinez%2C+Inigo&rft.au=Olaizola%2C+Igor+G.&rft.au=Quartulli%2C+Marco&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1551-3203&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTII.2022.3228680&rft.externalDocID=9982488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon