A scalable framework for annotating photovoltaic cell defects in electroluminescence images
The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for au...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 19; no. 9; pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in Electroluminescence (EL) images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life-cycle of the PV cells and predict failures. This paper addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a Golden Standard benchmark. The proposed method stands out for (1) its adaptability to new PV cell types, (2) cost-efficient fine-tuning, and (3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%. |
---|---|
AbstractList | The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in Electroluminescence (EL) images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life-cycle of the PV cells and predict failures. This paper addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a Golden Standard benchmark. The proposed method stands out for (1) its adaptability to new PV cell types, (2) cost-efficient fine-tuning, and (3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%. The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells can result in significant cost savings in operation and maintenance (O&M). Recent research has focused on deep learning techniques for automatically detecting anomalies in electroluminescence images. Automated anomaly annotations can improve current O&M methodologies and help develop decision-making systems to extend the life cycle of the PV cells and predict failures. This article addresses the lack of anomaly segmentation annotations in the literature by proposing a combination of state-of-the-art data-driven techniques to create a golden standard benchmark. The proposed method stands out for: 1) its adaptability to new PV cell types; 2) cost-efficient fine-tuning; and 3) leverage public datasets to generate advanced annotations. The methodology has been validated in the annotation of a widely used dataset, obtaining a reduction of the annotation cost by 60%. |
Author | Quartulli, Marco Martinez, Inigo Olaizola, Igor G. Otamendi, Urtzi |
Author_xml | – sequence: 1 givenname: Urtzi orcidid: 0000-0002-4233-4258 surname: Otamendi fullname: Otamendi, Urtzi organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain – sequence: 2 givenname: Inigo orcidid: 0000-0001-8174-9272 surname: Martinez fullname: Martinez, Inigo organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain – sequence: 3 givenname: Igor G. orcidid: 0000-0002-9965-2038 surname: Olaizola fullname: Olaizola, Igor G. organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain – sequence: 4 givenname: Marco surname: Quartulli fullname: Quartulli, Marco organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain |
BookMark | eNp9kL1PwzAUxC1UJNrCjsRiiTnl2U4ce6wqPiohsZSJIXKdl5Li2sVOQfz3pLRiYGC6G-7ePf1GZOCDR0IuGUwYA32zmM8nHDifCM6VVHBChkznLAMoYND7omCZ4CDOyCilNYAoQegheZnSZI0zS4e0iWaDnyG-0SZEarwPnelav6Lb19CFj-A601pq0TlaY4O2S7T1FF3vYnC7TesxWfQWabsxK0zn5LQxLuHFUcfk-e52MXvIHp_u57PpY2a5Zl2GErmUeal7KRTkJueo0KAwgJYXthQNSgAmBbJaaSt0XS9LaRgshRRaijG5PtzdxvC-w9RV67CLvp-suMo5k7r4ScEhZWNIKWJTbWP_Z_yqGFR7hFWPsNojrI4I-4r8U7HtHknwXTSt-694dSi2iPi7o7XiuVLiG9mOgJw |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3403711 crossref_primary_10_1109_TII_2024_3376726 crossref_primary_10_1109_JIOT_2024_3366945 crossref_primary_10_1021_acsami_4c03397 crossref_primary_10_4018_IJIIT_331595 |
Cites_doi | 10.1016/j.solener.2021.03.058 10.1016/j.solener.2019.02.067 10.1109/TII.2019.2922680 10.1109/JPHOTOV.2019.2920732 10.1109/PVSC.2010.5616880 10.1109/TIP.2003.819861 10.1109/TSMC.1979.4310076 10.1109/TNNLS.2019.2927224 10.1016/j.energy.2019.116319 10.1109/TCYB.2017.2647904 10.1016/j.rser.2021.111532 10.1109/TIT.1983.1056714 10.1109/PVSC.2015.7356124 10.1016/j.solener.2020.03.049 10.1007/s00138-021-01191-9 10.1109/ACCESS.2020.2976843 10.1186/1687-5281-2014-15 10.1063/1.1924869 10.1016/j.solener.2019.06.017 10.3390/su12020608 10.1063/1.4940159 10.1063/1.1978979 10.1109/ICIP.2019.8803116 10.3390/en13246496 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2022.3228680 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 8 |
ExternalDocumentID | 10_1109_TII_2022_3228680 9982488 |
Genre | orig-research |
GrantInformation_xml | – fundername: Advances in Photovoltaic Solar Energy Operation and Maintenance Research grantid: KK2019/00088 – fundername: ELKARTEK program of the Basque Government |
GroupedDBID | 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS 5VS AAYXX AETIX AGSQL CITATION EJD RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-e6e266479e265804a42e8eae3a0ec25c73fe600163e1d89c39ddb76a10b363963 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 08:36:50 EDT 2025 Tue Jul 01 03:00:22 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Wed Aug 27 02:29:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e6e266479e265804a42e8eae3a0ec25c73fe600163e1d89c39ddb76a10b363963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8174-9272 0000-0002-4233-4258 0000-0002-9965-2038 |
PQID | 2842169596 |
PQPubID | 85507 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_TII_2022_3228680 crossref_citationtrail_10_1109_TII_2022_3228680 ieee_primary_9982488 proquest_journals_2842169596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref31 ref30 ref11 ref17 ref16 ref19 (ref2) 2019 tkachenko (ref28) 2020 ref24 ref23 hu (ref29) 0 ref26 ref25 ref20 ref22 ref21 (ref1) 2019 ref27 ref8 ref7 ref9 ref4 ref3 deitsch (ref6) 2019; 185 ester (ref12) 1996; 96 minaee (ref10) 2022; 44 ref5 buerhop-lutz (ref18) 0 |
References_xml | – ident: ref24 doi: 10.1016/j.solener.2021.03.058 – volume: 185 start-page: 455 year: 2019 ident: ref6 article-title: Automatic classification of defective photovoltaic module cells in electroluminescence images publication-title: Sol Energy doi: 10.1016/j.solener.2019.02.067 – ident: ref16 doi: 10.1109/TII.2019.2922680 – start-page: 1287 year: 0 ident: ref18 article-title: A benchmark for visual identification of defective solar cells in electroluminescence imagery publication-title: Proc 35th Eur PV Sol Energy Conf Exhib – ident: ref20 doi: 10.1109/JPHOTOV.2019.2920732 – ident: ref25 doi: 10.1109/PVSC.2010.5616880 – ident: ref11 doi: 10.1109/TIP.2003.819861 – ident: ref26 doi: 10.1109/TSMC.1979.4310076 – ident: ref31 doi: 10.1109/TNNLS.2019.2927224 – ident: ref22 doi: 10.1016/j.energy.2019.116319 – ident: ref30 doi: 10.1109/TCYB.2017.2647904 – ident: ref15 doi: 10.1016/j.rser.2021.111532 – year: 2019 ident: ref1 publication-title: Renewables 2019 Market Analysis and Forecast From 2019 to 2024 – ident: ref27 doi: 10.1109/TIT.1983.1056714 – ident: ref7 doi: 10.1109/PVSC.2015.7356124 – ident: ref21 doi: 10.1016/j.solener.2020.03.049 – volume: 44 start-page: 3523 year: 2022 ident: ref10 article-title: Image segmentation using deep learning: A survey publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref19 doi: 10.1007/s00138-021-01191-9 – ident: ref9 doi: 10.1109/ACCESS.2020.2976843 – ident: ref5 doi: 10.1186/1687-5281-2014-15 – ident: ref13 doi: 10.1063/1.1924869 – year: 2019 ident: ref2 publication-title: Solar Energy Mapping the Road Ahead – ident: ref4 doi: 10.1016/j.solener.2019.06.017 – year: 2020 ident: ref28 article-title: Label Studio: Data labeling software – ident: ref3 doi: 10.3390/su12020608 – start-page: 22106 year: 0 ident: ref29 article-title: Semi-supervised semantic segmentation via adaptive equalization learning publication-title: Proc Int Conf Neural Inf Process – volume: 96 start-page: 226 year: 1996 ident: ref12 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Knowl Discov Databases – ident: ref17 doi: 10.1063/1.4940159 – ident: ref14 doi: 10.1063/1.1978979 – ident: ref8 doi: 10.1109/ICIP.2019.8803116 – ident: ref23 doi: 10.3390/en13246496 |
SSID | ssj0037039 |
Score | 2.4153705 |
Snippet | The correct functioning of photovoltaic (PV) cells is critical to ensuring the optimal performance of a solar plant. Anomaly detection techniques for PV cells... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Annotations Anomalies anomaly segmentation benchmark dataset Costs Datasets Decision making deep learning defect annotation Electroluminescence Golden Standard Image segmentation Photovoltaic cells Pipelines Training |
Title | A scalable framework for annotating photovoltaic cell defects in electroluminescence images |
URI | https://ieeexplore.ieee.org/document/9982488 https://www.proquest.com/docview/2842169596 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnfTg1xSnU3LwItgtTdqsOQ5xbMI8bTDwUJo01aG2w3UX_3pf-jGGingo7SGBkPf6Pn_vPYBrruM4UYF0lKCe46HT4QR-opyYai1QoymtbBxy8ihGM-9h7s8bcLuphTHGFOAz07WfRS4_zvTahsp66BowZLgd2EHHrazVqqUuR86VRW9U33U4o7xOSVLZm47H6Agy1kXmDYRtALmlgoqZKj8EcaFdhgcwqc9Vgkpeu-tcdfXnt5aN_z34IexXZiYZlHxxBA2THsPeVvPBFjwNyAoJZEunSFJDtAjasCRK08xm6NNnsnzJ8gwlWB4tNLFBfhKbAgBCFimpRuigeLPYeW1lBFm8o4BancBseD-9GznVqAVHM-nmjhEGNbXXl_jyA-pFHjOBiQyPqNHM132eGGsaCW7cOJCayzhWfREhMTnaOIKfQjPNUnMGRLqJ73PFdeAxrx-5MpEqoRz9GhrhE7ShV99-qKs-5HYcxltY-CNUhkiv0NIrrOjVhpvNjmXZg-OPtS17_Zt11c23oVMTOKx-0lWImpm5QvpSnP--6wJ27XT5ElLWgWb-sTaXaIPk6qpgvi-fhthJ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB615UB74NEWdWGhPtADh-w6duyNDxxWQLXb12krVeKQxs6krKBJ1c0KwW_hr_DfGOexqgBxq8QhSg524ng-z8OeB8Br6bIst7EJrOZREJHREcQqt0HGndMk0ayzfh_y9ExPzqOjC3WxBj9WsTCIWDuf4cA_1mf5WemWfqtsSKaBIMC1LpTH-O0rGWiLt9P3RM0DIQ4_zN5NgraGQOCECasANZIIikaGbirmURoJjDFFmXJ0QrmRzNHLfC0xzGLjpMkyO9IpjVKS8NaS3rsOD0jPUKKJDuv4vKS1YupsrCoMpOCyOwTlZjibTsn0FGJAyyXWPuXkHaFXV3H5g_XX8uzwMfzsZqJxY_k8WFZ24L7_liTyf52qJ_CoVaTZuEH-U1jDYhu27qRX3IGPY7YgCPrgMJZ3TmiMtHSWFkXpfRCKK3bzqaxK4tFVOnfMH2OwDGsXFzYvWFskiBi4jw5wnguy-TWx4MUunN_L3z2DjaIscA-YCXOlpJUujkQ0SkOTG5tzSZYbT-mKezDsqJ24NtO6L_jxJaktLm4Swkfi8ZG0-OjBm1WPmybLyD_a7nhyr9q1lO5BvwNU0rKhRUK6hwi1UUY__3uvfXg4mZ2eJCfTs-MXsEnfkY0DXR82qtslviSNq7KvauAzuLxv-PwC4yk0cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+scalable+framework+for+annotating+photovoltaic+cell+defects+in+electroluminescence+images&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Otamendi%2C+Urtzi&rft.au=Martinez%2C+Inigo&rft.au=Olaizola%2C+Igor+G.&rft.au=Quartulli%2C+Marco&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=1551-3203&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTII.2022.3228680&rft.externalDocID=9982488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |