Jetting Phenomenon in Cold Spray: A Critical Review on Finite Element Simulations
This paper offers a concise critical review of finite element studies of the jetting phenomenon in cold spray (CS). CS is a deposition technique wherein solid particles impact a substrate at high velocities, inducing severe plastic deformation and material deposition. These high-velocity particle im...
Saved in:
Published in | Journal of thermal spray technology Vol. 33; no. 5; pp. 1233 - 1250 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper offers a concise critical review of finite element studies of the jetting phenomenon in cold spray (CS). CS is a deposition technique wherein solid particles impact a substrate at high velocities, inducing severe plastic deformation and material deposition. These high-velocity particle impacts lead to the ejection of material in a jet-like shape at the periphery of the particle/substrate interface, a phenomenon known as "jetting". Jetting has been the subject of numerous studies over recent decades and remains a point of debate. Two main mechanisms, Adiabatic Shear Instability (ASI) and Hydrodynamic Pressure-Release (HPR), have been proposed to explain the jetting phenomenon. These mechanisms are mainly elucidated through finite element method (FEM) simulations, a numerical technique rooted in continuum mechanics. However, it is important to emphasize that FEM is limited by the equations established for analysis, and as such, its predictive capabilities are confined to those principles clearly defined within these equations. The choice of employed equations and approaches significantly influence the outcomes and predictions in FEM. While recognizing FEM's capabilities, this study reviews the ASI and HPR mechanisms within the context of CS. Additionally, this paper reviews FEM's algorithms and the core principles that govern FEM in calculating plastic deformation, which can lead to the formation of jetting. |
---|---|
AbstractList | This paper offers a concise critical review of finite element studies of the jetting phenomenon in cold spray (CS). CS is a deposition technique wherein solid particles impact a substrate at high velocities, inducing severe plastic deformation and material deposition. These high-velocity particle impacts lead to the ejection of material in a jet-like shape at the periphery of the particle/substrate interface, a phenomenon known as "jetting". Jetting has been the subject of numerous studies over recent decades and remains a point of debate. Two main mechanisms, Adiabatic Shear Instability (ASI) and Hydrodynamic Pressure-Release (HPR), have been proposed to explain the jetting phenomenon. These mechanisms are mainly elucidated through finite element method (FEM) simulations, a numerical technique rooted in continuum mechanics. However, it is important to emphasize that FEM is limited by the equations established for analysis, and as such, its predictive capabilities are confined to those principles clearly defined within these equations. The choice of employed equations and approaches significantly influence the outcomes and predictions in FEM. While recognizing FEM's capabilities, this study reviews the ASI and HPR mechanisms within the context of CS. Additionally, this paper reviews FEM's algorithms and the core principles that govern FEM in calculating plastic deformation, which can lead to the formation of jetting. |
Author | Coyle, T. Dolatabadi, A. Mostaghimi, J. Rahmati, S. |
Author_xml | – sequence: 1 givenname: S. surname: Rahmati fullname: Rahmati, S. email: saeed.rahmati@utoronto.ca organization: Centre for Advanced Coating Technologies, University of Toronto – sequence: 2 givenname: J. surname: Mostaghimi fullname: Mostaghimi, J. organization: Centre for Advanced Coating Technologies, University of Toronto – sequence: 3 givenname: T. surname: Coyle fullname: Coyle, T. organization: Centre for Advanced Coating Technologies, University of Toronto – sequence: 4 givenname: A. surname: Dolatabadi fullname: Dolatabadi, A. organization: Centre for Advanced Coating Technologies, University of Toronto |
BookMark | eNp9kE1PAjEQhhuDiYD-AU_9A6udbtttvRECfoTED_Tc7EcXS5YuaYuGf28FTx44TGYO7zOZeUZo4HpnELoGcgOEFLcBQAiREcoyAkWa5BkaAmcsAwJikGbCVaZETi7QKIQ1IYQLyofo9cnEaN0Kv3wa129SOWwdnvZdg5dbX-7v8ARPvY22Ljv8Zr6s-cYpM7fORoNnnUlMxEu72XVltL0Ll-i8Lbtgrv76GH3MZ-_Th2zxfP84nSyymiqImWGVYo2sQFRMUUaNrJuqElSpCoqc5UXBi7YuQDWy5YZLmdOGABecVCxXwPMxkse9te9D8KbVtY2HE6IvbaeB6F81-qhGJzX6oEbLhNJ_6NbbTen3p6H8CIUUdivj9brfeZdePEX9AEXUd2o |
CitedBy_id | crossref_primary_10_1007_s11666_024_01916_y |
Cites_doi | 10.1038/srep37226 10.1361/105996306X108093 10.1007/s11666-020-01123-5 10.1557/s43578-022-00764-2 10.1007/s11666-013-0051-4 10.1016/j.scriptamat.2018.12.015 10.1016/j.ijsolstr.2023.112520 10.1016/j.apsusc.2010.01.014 10.1016/J.ACTAMAT.2008.06.003 10.1007/978-3-319-67125-3 10.1007/s11666-020-01000-1 10.1016/J.ACTAMAT.2018.07.065 10.1007/s11666-011-9717-y 10.1016/j.surfcoat.2021.127748 10.1016/J.APSUSC.2009.04.135 10.1016/j.surfcoat.2023.129839 10.1016/j.apsusc.2006.05.126 10.1016/j.wear.2011.02.003 10.1016/j.scriptamat.2018.10.036 10.1016/j.actamat.2020.10.057 10.1016/j.matdes.2004.03.008 10.1007/s11666-009-9379-1 10.1007/s11666-015-0229-z 10.1016/j.scriptamat.2015.05.026 10.1016/j.addma.2023.103755 10.1016/j.surfcoat.2023.129639 10.1007/s11666-020-01105-7 10.1016/j.commatsci.2019.109219 10.1007/s11666-021-01245-4 10.1016/J.ACTAMAT.2016.06.034 10.1093/oso/9780198568261.001.0001 10.1051/meca/2018021 10.1016/S1359-6454(03)00274-X 10.1016/j.msea.2010.01.083 10.1007/s11666-022-01377-1 10.1016/j.ijplas.2023.103630 10.1007/s11666-022-01509-7 10.1007/978-3-540-75999-7_101 |
ContentType | Journal Article |
Copyright | ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11666-024-01766-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1544-1016 |
EndPage | 1250 |
ExternalDocumentID | 10_1007_s11666_024_01766_8 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8R4 8R5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABEFU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV LK5 LLZTM M4Y M7R MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PCBAR PDBOC PF0 PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z8M Z8N Z8T Z8Z Z92 ZMTXR ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-e4b94d8b16b49242e8cdbb6299b173437757fc719d8f5e58832d015650b439153 |
IEDL.DBID | U2A |
ISSN | 1059-9630 |
IngestDate | Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 01:56:25 EDT 2025 Fri Feb 21 02:39:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cold spray jetting finite elements method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e4b94d8b16b49242e8cdbb6299b173437757fc719d8f5e58832d015650b439153 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1007_s11666_024_01766_8 crossref_primary_10_1007_s11666_024_01766_8 springer_journals_10_1007_s11666_024_01766_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of thermal spray technology |
PublicationTitleAbbrev | J Therm Spray Tech |
PublicationYear | 2024 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Hassani-Gangaraj, Veysset, Champagne, Nelson, Schuh (CR7) 2018; 158 Hedayati, Sadighi (CR30) 2015 Shah, Abid (CR37) 2012 Rahmati, Ghaei (CR10) 2014; 23 Razavipour, Rahmati, Zúñiga, Criado, Jodoin (CR4) 2020 Li, Zhang, Li, Liao (CR49) 2009; 18 Adaan-Nyiak, Tiamiyu (CR25) 2023; 38 Tiamiyu, Sun, Nelson, Schuh (CR3) 2021; 202 Ming, Pantalé (CR41) 2018; 19 Li, Gao (CR23) 2009; 255 de Souza Neto, Peric, Owen (CR35) 2011 Palodhi, Singh (CR19) 2020; 29 Li, Li, Liao (CR22) 2006; 15 Yildirim, Muftu, Gouldstone (CR28) 2011; 270 Li, Liao, Li, Li, Coddet, Wang (CR24) 2006; 253 CR40 Dai, Xu, Wang, Wang (CR43) 2023; 284 Li, Yin, Wang (CR26) 2010; 256 Assadi, Gärtner, Klassen, Kreye (CR8) 2019; 162 Meng, Yue, Song (CR20) 2015; 107 Akisin, Bennett, Venturi, Assadi, Hussain (CR17) 2022; 31 Nikbakht, Saadati, Kim, Jahazi, Kim, Jodoin (CR5) 2021; 425 Assadi, Kreye, Gärtner, Klassen (CR1) 2016; 116 Okereke, Keates (CR39) 2018 Meng, Aydin, Yue, Song (CR21) 2015; 24 Bae, Xiong, Kumar, Kang, Lee (CR16) 2008; 56 Devi, Kumar, Mangalarapu, Vinay, Chavan, Gopal (CR42) 2023; 470 Wriggers (CR32) 2008 Rahmati, Veiga, Zúñiga, Jodoin (CR48) 2021 Abaqus (CR14) 2016 Dunne, Petrinic (CR34) 2005 CR11 Deng, Qu, Zhang, Liu, Li, Zhou (CR45) 2023; 466 Khamsepour, Moreau, Dolatabadi (CR46) 2023; 32 Chen, Xie, Champagne, Nardi, Lee, Müftü (CR18) 2023; 166 Pereira, Zúñiga, Jodoin, Veiga, Rahmati (CR33) 2023; 75 Huebner, Dewhirst, Smith, Byrom (CR31) 2001 Kim, Watanabe, Kuroda (CR2) 2009; 18 Kachanov (CR38) 2013 Hassani-Gangaraj, Veysset, Champagne, Nelson, Schuh (CR9) 2019; 162 Lepi (CR29) 1998 Landau, Osovski, Venkert, Gärtnerová, Rittel (CR13) 2016; 6 Grujicic, Zhao, DeRosset, Helfritch (CR15) 2004; 25 Assadi, Gärtner, Stoltenhoff, Kreye (CR6) 2003; 51 Yu, Li, Wang, Liao (CR27) 2012; 21 Gao, Zhang (CR12) 2010; 527 Rahmati, Zúñiga, Jodoin, Veiga (CR44) 2020; 171 Khoei (CR36) 2010 Rahmati, Jodoin (CR47) 2020; 29 1766_CR11 P Landau (1766_CR13) 2016; 6 W-Y Li (1766_CR26) 2010; 256 LM Kachanov (1766_CR38) 2013 WY Li (1766_CR49) 2009; 18 H Assadi (1766_CR1) 2016; 116 M Grujicic (1766_CR15) 2004; 25 AA Tiamiyu (1766_CR3) 2021; 202 M Hassani-Gangaraj (1766_CR7) 2018; 158 L Ming (1766_CR41) 2018; 19 M Hassani-Gangaraj (1766_CR9) 2019; 162 Q Chen (1766_CR18) 2023; 166 CJ Akisin (1766_CR17) 2022; 31 C-J Li (1766_CR22) 2006; 15 R Hedayati (1766_CR30) 2015 GN Devi (1766_CR42) 2023; 470 S Rahmati (1766_CR44) 2020; 171 G Bae (1766_CR16) 2008; 56 L Palodhi (1766_CR19) 2020; 29 H Assadi (1766_CR8) 2019; 162 B Yildirim (1766_CR28) 2011; 270 S Rahmati (1766_CR48) 2021 LM Pereira (1766_CR33) 2023; 75 F Dunne (1766_CR34) 2005 P Khamsepour (1766_CR46) 2023; 32 W-Y Li (1766_CR23) 2009; 255 V Abaqus (1766_CR14) 2016 K Kim (1766_CR2) 2009; 18 W-Y Li (1766_CR24) 2006; 253 M Yu (1766_CR27) 2012; 21 H Assadi (1766_CR6) 2003; 51 KH Huebner (1766_CR31) 2001 N Deng (1766_CR45) 2023; 466 S Rahmati (1766_CR10) 2014; 23 QH Shah (1766_CR37) 2012 M Razavipour (1766_CR4) 2020 Z Dai (1766_CR43) 2023; 284 S Rahmati (1766_CR47) 2020; 29 F Meng (1766_CR21) 2015; 24 R Nikbakht (1766_CR5) 2021; 425 M Okereke (1766_CR39) 2018 P Wriggers (1766_CR32) 2008 A Khoei (1766_CR36) 2010 CY Gao (1766_CR12) 2010; 527 S Lepi (1766_CR29) 1998 1766_CR40 EA de Souza Neto (1766_CR35) 2011 MA Adaan-Nyiak (1766_CR25) 2023; 38 F Meng (1766_CR20) 2015; 107 |
References_xml | – volume: 6 start-page: 37226 year: 2016 ident: CR13 article-title: The Genesis of Adiabatic Shear Bands publication-title: Sci. Rep. doi: 10.1038/srep37226 – volume: 15 start-page: 212 year: 2006 end-page: 222 ident: CR22 article-title: Examination of the Critical Velocity for Deposition of Particles in Cold Spraying publication-title: J. Therm. Spray Technol. doi: 10.1361/105996306X108093 – year: 2020 ident: CR4 article-title: Bonding Mechanisms in Cold Spray: Influence of Surface Oxidation During Powder Storage publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01123-5 – volume: 38 start-page: 69 year: 2023 end-page: 95 ident: CR25 article-title: Recent Advances on Bonding Mechanism in Cold Spray Process: A Review of Single-Particle Impact Methods publication-title: J. Mater. Res. doi: 10.1557/s43578-022-00764-2 – year: 2016 ident: CR14 publication-title: 6.14 Online Documentation Help Theory Manual: Dassault Systms – volume: 23 start-page: 530 year: 2014 end-page: 540 ident: CR10 article-title: The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-013-0051-4 – volume: 162 start-page: 515 year: 2019 end-page: 519 ident: CR9 article-title: Response to Comment on “Adiabatic Shear Instability is Not Necessary for Adhesion in Cold Spray” publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.12.015 – year: 2011 ident: CR35 publication-title: Computational Methods for Plasticity: Theory and Applications – volume: 284 start-page: 112520 year: 2023 ident: CR43 article-title: Investigation of Dynamic Contact Between Cold Spray Particles and Substrate Based on 2D SPH Method publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2023.112520 – volume: 256 start-page: 3725 year: 2010 end-page: 3734 ident: CR26 article-title: Numerical Investigations of the Effect of Oblique Impact on Particle Deformation in Cold Spraying by the SPH Method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.01.014 – volume: 56 start-page: 4858 year: 2008 end-page: 4868 ident: CR16 article-title: General Aspects of Interface Bonding in Kinetic Sprayed Coatings publication-title: Acta Mater. doi: 10.1016/J.ACTAMAT.2008.06.003 – year: 2018 ident: CR39 publication-title: Finite Element Applications: A Practical Guide to the FEM Process doi: 10.1007/978-3-319-67125-3 – volume: 29 start-page: 611 year: 2020 end-page: 629 ident: CR47 article-title: Physically Based Finite Element Modeling Method to Predict Metallic Bonding in Cold Spray publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01000-1 – volume: 18 start-page: 921 year: 2009 end-page: 933 ident: CR49 article-title: Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis publication-title: ASM Int. – year: 2010 ident: CR36 publication-title: Computational Plasticity in Powder Forming Processes – ident: CR11 – volume: 158 start-page: 430 year: 2018 end-page: 439 ident: CR7 article-title: Adiabatic Shear Instability is Not Necessary for Adhesion in Cold Spray publication-title: Acta Mater. doi: 10.1016/J.ACTAMAT.2018.07.065 – volume: 21 start-page: 745 year: 2012 end-page: 752 ident: CR27 article-title: Finite Element Simulation of Impacting Behavior of Particles in Cold Spraying by Eulerian Approach publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-011-9717-y – year: 1998 ident: CR29 publication-title: Practical Guide to Finite Elements: A Solid Mechanics Approach – year: 2015 ident: CR30 publication-title: Bird Strike: An Experimental Theoretical and Numerical Investigation – volume: 425 start-page: 127748 year: 2021 ident: CR5 article-title: Cold Spray Deposition Characteristic and Bonding of CrMnCoFeNi High Entropy Alloy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127748 – volume: 255 start-page: 7878 year: 2009 end-page: 7892 ident: CR23 article-title: Some Aspects on 3D Numerical Modeling of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis publication-title: Appl. Surf. Sci. doi: 10.1016/J.APSUSC.2009.04.135 – year: 2012 ident: CR37 publication-title: LS-DYNA for Beginners: An Insight Into Ls-Prepost and Ls-Dyna – volume: 470 start-page: 129839 year: 2023 ident: CR42 article-title: Assessing Critical Process Condition for Bonding in Cold Spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2023.129839 – volume: 253 start-page: 2852 year: 2006 ident: CR24 article-title: On High Velocity Impact of Micro-Sized Metallic Particles in Cold Spraying publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.05.126 – volume: 270 start-page: 703 year: 2011 end-page: 713 ident: CR28 article-title: Modeling of high velocity impact of spherical particles publication-title: Wear doi: 10.1016/j.wear.2011.02.003 – volume: 162 start-page: 512 year: 2019 end-page: 514 ident: CR8 article-title: Comment on ‘Adiabatic Shear Instability is Not Necessary for Adhesion in Cold Spray’ publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.10.036 – volume: 202 start-page: 159 year: 2021 end-page: 169 ident: CR3 article-title: Site-Specific Study of Jetting, Bonding, and Local Deformation During High-Velocity Metallic Microparticle Impact publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.057 – volume: 25 start-page: 681 year: 2004 end-page: 688 ident: CR15 article-title: Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process publication-title: Mater. Des. doi: 10.1016/j.matdes.2004.03.008 – year: 2001 ident: CR31 publication-title: The Finite Element Method for Engineers – volume: 18 start-page: 490 year: 2009 ident: CR2 article-title: Jetting-Out Phenomenon Associated with Bonding of Warm-Sprayed Titanium Particles onto Steel Substrate publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-009-9379-1 – volume: 24 start-page: 711 year: 2015 end-page: 719 ident: CR21 article-title: The Effects of Contact Conditions on the Onset of Shear Instability in Cold-Spray publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-015-0229-z – volume: 107 start-page: 83 year: 2015 end-page: 87 ident: CR20 article-title: Quantitative Prediction of Critical Velocity and Deposition Efficiency in Cold-Spray: A Finite-Element Study publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.05.026 – volume: 75 start-page: 103755 year: 2023 ident: CR33 article-title: Unraveling Jetting Mechanisms in High-Velocity Impact of Copper Particles Using Molecular Dynamics Simulations publication-title: Addit. Manuf. doi: 10.1016/j.addma.2023.103755 – ident: CR40 – year: 2013 ident: CR38 publication-title: Fundamentals of the Theory of Plasticity – volume: 466 start-page: 129639 year: 2023 ident: CR45 article-title: Simulation and Experimental Study on Cold Sprayed WCu Composite with High Retainability of W Using Core-Shell Powder publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2023.129639 – volume: 29 start-page: 1863 year: 2020 end-page: 1875 ident: CR19 article-title: On the Dependence of Critical Velocity on the Material Properties During Cold Spray Process publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01105-7 – volume: 171 start-page: 109219 year: 2020 ident: CR44 article-title: Deformation of Copper Particles Upon Impact: A Molecular Dynamics Study of Cold Spray publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.109219 – year: 2021 ident: CR48 article-title: A Numerical Approach to Study the Oxide Layer Effect on Adhesion in Cold Spray publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-021-01245-4 – volume: 116 start-page: 382 year: 2016 end-page: 407 ident: CR1 article-title: Cold Spraying—A Materials Perspective publication-title: Acta Mater. doi: 10.1016/J.ACTAMAT.2016.06.034 – year: 2005 ident: CR34 publication-title: Introduction to Computational Plasticity doi: 10.1093/oso/9780198568261.001.0001 – volume: 19 start-page: 308 year: 2018 ident: CR41 article-title: An Efficient and Robust VUMAT Implementation of Elastoplastic Constitutive Laws in Abaqus/Explicit Finite Element Code publication-title: Mech. Ind. doi: 10.1051/meca/2018021 – volume: 51 start-page: 4379 year: 2003 end-page: 4394 ident: CR6 article-title: Bonding Mechanism in Cold Gas Spraying publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00274-X – volume: 527 start-page: 3138 year: 2010 end-page: 3143 ident: CR12 article-title: A Constitutive Model for Dynamic Plasticity of FCC Metals publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.01.083 – volume: 31 start-page: 1085 year: 2022 end-page: 1111 ident: CR17 article-title: Numerical and Experimental Analysis of the Deformation Behavior of CoCrFeNiMn High Entropy Alloy Particles onto Various Substrates During Cold Spraying publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-022-01377-1 – volume: 166 start-page: 103630 year: 2023 ident: CR18 article-title: On Adiabatic Shear Instability in Impacts of Micron-Scale Al-6061 Particles with Sapphire and Al-6061 Substrates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103630 – volume: 32 start-page: 1153 year: 2023 end-page: 1166 ident: CR46 article-title: Effect of Particle and Substrate Pre-heating on the Oxide Layer and Material Jet Formation in Solid-State Spray Deposition: A Numerical Study publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-022-01509-7 – year: 2008 ident: CR32 publication-title: Nonlinear Finite Element Methods – volume-title: The Finite Element Method for Engineers year: 2001 ident: 1766_CR31 – volume: 162 start-page: 515 year: 2019 ident: 1766_CR9 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.12.015 – volume: 527 start-page: 3138 year: 2010 ident: 1766_CR12 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.01.083 – volume: 29 start-page: 611 year: 2020 ident: 1766_CR47 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01000-1 – volume-title: Computational Methods for Plasticity: Theory and Applications year: 2011 ident: 1766_CR35 – volume: 162 start-page: 512 year: 2019 ident: 1766_CR8 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.10.036 – volume: 255 start-page: 7878 year: 2009 ident: 1766_CR23 publication-title: Appl. Surf. Sci. doi: 10.1016/J.APSUSC.2009.04.135 – volume: 23 start-page: 530 year: 2014 ident: 1766_CR10 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-013-0051-4 – volume: 270 start-page: 703 year: 2011 ident: 1766_CR28 publication-title: Wear doi: 10.1016/j.wear.2011.02.003 – volume: 75 start-page: 103755 year: 2023 ident: 1766_CR33 publication-title: Addit. Manuf. doi: 10.1016/j.addma.2023.103755 – volume: 18 start-page: 490 year: 2009 ident: 1766_CR2 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-009-9379-1 – volume: 24 start-page: 711 year: 2015 ident: 1766_CR21 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-015-0229-z – volume: 166 start-page: 103630 year: 2023 ident: 1766_CR18 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103630 – year: 2021 ident: 1766_CR48 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-021-01245-4 – volume-title: Fundamentals of the Theory of Plasticity year: 2013 ident: 1766_CR38 – volume: 29 start-page: 1863 year: 2020 ident: 1766_CR19 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01105-7 – volume: 171 start-page: 109219 year: 2020 ident: 1766_CR44 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.109219 – ident: 1766_CR40 doi: 10.1007/978-3-540-75999-7_101 – volume-title: 6.14 Online Documentation Help Theory Manual: Dassault Systms year: 2016 ident: 1766_CR14 – volume: 107 start-page: 83 year: 2015 ident: 1766_CR20 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.05.026 – volume: 51 start-page: 4379 year: 2003 ident: 1766_CR6 publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00274-X – volume: 6 start-page: 37226 year: 2016 ident: 1766_CR13 publication-title: Sci. Rep. doi: 10.1038/srep37226 – volume: 19 start-page: 308 year: 2018 ident: 1766_CR41 publication-title: Mech. Ind. doi: 10.1051/meca/2018021 – volume-title: LS-DYNA for Beginners: An Insight Into Ls-Prepost and Ls-Dyna year: 2012 ident: 1766_CR37 – volume: 25 start-page: 681 year: 2004 ident: 1766_CR15 publication-title: Mater. Des. doi: 10.1016/j.matdes.2004.03.008 – volume: 21 start-page: 745 year: 2012 ident: 1766_CR27 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-011-9717-y – volume: 158 start-page: 430 year: 2018 ident: 1766_CR7 publication-title: Acta Mater. doi: 10.1016/J.ACTAMAT.2018.07.065 – volume-title: Practical Guide to Finite Elements: A Solid Mechanics Approach year: 1998 ident: 1766_CR29 – volume-title: Nonlinear Finite Element Methods year: 2008 ident: 1766_CR32 – volume: 56 start-page: 4858 year: 2008 ident: 1766_CR16 publication-title: Acta Mater. doi: 10.1016/J.ACTAMAT.2008.06.003 – volume: 466 start-page: 129639 year: 2023 ident: 1766_CR45 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2023.129639 – volume: 18 start-page: 921 year: 2009 ident: 1766_CR49 publication-title: ASM Int. – volume: 15 start-page: 212 year: 2006 ident: 1766_CR22 publication-title: J. Therm. Spray Technol. doi: 10.1361/105996306X108093 – volume: 253 start-page: 2852 year: 2006 ident: 1766_CR24 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.05.126 – volume: 32 start-page: 1153 year: 2023 ident: 1766_CR46 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-022-01509-7 – volume-title: Computational Plasticity in Powder Forming Processes year: 2010 ident: 1766_CR36 – volume-title: Finite Element Applications: A Practical Guide to the FEM Process year: 2018 ident: 1766_CR39 doi: 10.1007/978-3-319-67125-3 – volume: 284 start-page: 112520 year: 2023 ident: 1766_CR43 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2023.112520 – volume-title: Introduction to Computational Plasticity year: 2005 ident: 1766_CR34 doi: 10.1093/oso/9780198568261.001.0001 – volume: 116 start-page: 382 year: 2016 ident: 1766_CR1 publication-title: Acta Mater. doi: 10.1016/J.ACTAMAT.2016.06.034 – year: 2020 ident: 1766_CR4 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-020-01123-5 – ident: 1766_CR11 – volume-title: Bird Strike: An Experimental Theoretical and Numerical Investigation year: 2015 ident: 1766_CR30 – volume: 31 start-page: 1085 year: 2022 ident: 1766_CR17 publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-022-01377-1 – volume: 256 start-page: 3725 year: 2010 ident: 1766_CR26 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.01.014 – volume: 202 start-page: 159 year: 2021 ident: 1766_CR3 publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.10.057 – volume: 470 start-page: 129839 year: 2023 ident: 1766_CR42 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2023.129839 – volume: 425 start-page: 127748 year: 2021 ident: 1766_CR5 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2021.127748 – volume: 38 start-page: 69 year: 2023 ident: 1766_CR25 publication-title: J. Mater. Res. doi: 10.1557/s43578-022-00764-2 |
SSID | ssj0005625 |
Score | 2.3989553 |
SecondaryResourceType | review_article |
Snippet | This paper offers a concise critical review of finite element studies of the jetting phenomenon in cold spray (CS). CS is a deposition technique wherein solid... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1233 |
SubjectTerms | Analytical Chemistry Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Machines Manufacturing Materials Science Processes Review Surfaces and Interfaces Thin Films Tribology |
Title | Jetting Phenomenon in Cold Spray: A Critical Review on Finite Element Simulations |
URI | https://link.springer.com/article/10.1007/s11666-024-01766-8 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuL8GDl400CbJk3irZPVMXEoczBPpfkYDrSObR78703S1jkQwVNzeA3lJel7v7yPHwAXhpmASSUQzjVGRGKDhIoIyk3OsFbWofBcBPeDuDci_TEdV0VhizrbvQ5J-j_1qtjNRbiQtSkW_jI74pugSS12d4lcI5ysEjtiT7XqHAdkt1dQlcr8Pse6OVqPhXoTk-6Cnco3hEm5mHtgwxT7YPtHx8AD8Ng3PlEZPryYwjVPeC_gtIAW_ms4nM3zz2uYwJq-AJYX_9DKpFPnW8JumSwOh9O3irZrcQhGaffppocqVgSksAiXyBApiOYyjCWx4AkbrrSUsTUrMmQRiRijbKJYKDSfUEO5PbLa1UvTQLoqWxodgYb9OHMMIJeSMp2LiCpDhLVUggcW0MggNkyZiLZAWCsnU1XLcMdc8Zqtmh07hWZWoZlXaMZb4PL7nVnZMONP6ata51l1eBZ_iJ_8T_wUbGG_1u7S5Aw0lvMPc259iKVsg2aSdjoD97x9vuu2_Rb6AqeqvU4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA6lHtSD-MT6zEFPGtjNPpIVPJTa0jdKW-ht3WRTLNS2tBXp__GHOkl3rQUpeOhtD7MQvkwyM5nHh9CNYspiQgaERjElrqCKBNJxSaQiRmMJDoXhImg0_XLHrXa9bgZ9pb0wpto9TUmam3rZ7KYzXARsCoS_DL54UkpZU_NPCNSmj5Un2NVbSkvFdqFMEi4BImlgz4hyReDGXNi-cCHkoIrLWAgfLmNhM8d1GPNYTzI7iHnPUx4HRY91l7FnCd2bqrkh4KLfAueD67PTofllIYlvqF21o0JAna2kNefvNa-av9XcqzFppX20l_iiOL9QngOUUcNDtPtrQuEReqkqUxiNn9_UUA9rGA1xf4gLo0GMW-NJNH_AeZzSJeBFogGDTKmvfVlcXBSn41b_PaEJmx6jzkaQO0FZWJw6RZgL4bE4ChxPKjcAyxhwCwIoYfmKSeV4OWSn4IQyGVGumTIG4XK4sgY0BEBDA2jIc-ju55_xYkDHWun7FPMwOazTNeJn_xO_RtvldqMe1ivN2jnaoWbf9YPNBcrOJh_qEvyXmbgy6oPR66b19RscEfUB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF6KguhBfGJ97kFPujTZbLKJ4KHUBrValFroLWYfxYLG0kak_8qf6Gwe1oIIHnrLYQLL7OzOzM588yF0rLm2uJABobGihAmqSSAdRmIdc6okBBQZF8Fd27vqspue26ugzxILk3W7lyXJHNNgpjQlaW2o-rUp8M1Uuwj4F0iFOXz5RVtlS08-IGkbX1xfwg6fUBo2HxtXpOAVIJIGdko0EwFTvrA9wSD9oNqXSggPLmZhc4c5nLu8L7kdKL_vatcHo1cGcexawuBUDU8EXPqLzKCP4QR1aX3aVOJlNK8maCFg2lYB0_l9zbOucLYOm7m3cA2tFnEprueGtI4qOtlAKz-mFW6ihxudNUnj-2edmMENbwkeJLjx9qJwZziKJ-e4jkvqBJwXHTDIhAMT1-Jm3qiOO4PXgjJsvIW6c9HcNlqAxekdhH0hXK7iwHGlZgF4ycC3IJkSlqe51I5bRXapnEgW48oNa8ZLNB20bBQagUKjTKGRX0Wn3_8M82Edf0qflTqPioM7_kN893_iR2jp_jKMbq_brT20TLNtN283-2ghHb3rAwhlUnGYWQ9GT_M21y8Ht_k0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jetting+Phenomenon+in+Cold+Spray%3A+A+Critical+Review+on+Finite+Element+Simulations&rft.jtitle=Journal+of+thermal+spray+technology&rft.au=Rahmati%2C+S.&rft.au=Mostaghimi%2C+J.&rft.au=Coyle%2C+T.&rft.au=Dolatabadi%2C+A.&rft.date=2024-06-01&rft.pub=Springer+US&rft.issn=1059-9630&rft.eissn=1544-1016&rft.volume=33&rft.issue=5&rft.spage=1233&rft.epage=1250&rft_id=info:doi/10.1007%2Fs11666-024-01766-8&rft.externalDocID=10_1007_s11666_024_01766_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-9630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-9630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-9630&client=summon |