New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet Transform Some Monogenic Clifford Polynomials and Associated Wavelets

Recently 3D image processing has interested researchers in both theoretical and applied fields and thus has constituted a challenging subject. Theoretically, this needs suitable functional bases that are easy to implement by the next. It holds that Clifford wavelets are main tools to achieve this ne...

Full description

Saved in:
Bibliographic Details
Published inActa applicandae mathematicae Vol. 170; no. 1; pp. 1 - 35
Main Authors Arfaoui, Sabrine, Ben Mabrouk, Anouar, Cattani, Carlo
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2020
Subjects
Online AccessGet full text
ISSN0167-8019
1572-9036
DOI10.1007/s10440-020-00322-0

Cover

Loading…
Abstract Recently 3D image processing has interested researchers in both theoretical and applied fields and thus has constituted a challenging subject. Theoretically, this needs suitable functional bases that are easy to implement by the next. It holds that Clifford wavelets are main tools to achieve this necessity. In the present paper we intend to develop some new classes of Clifford wavelet functions. Some classes of new monogenic polynomials are developed firstly from monogenic extensions of 2-parameters Clifford weights. Such classes englobe the well known Jacobi, Gegenbauer and Hermite ones. The constructed polynomials are next applied to develop new Clifford wavelets. Reconstruction and Fourier-Plancherel formulae have been proved. Finally, computational examples are developed provided with graphical illustrations of the Clifford mother wavelets in some cases. Some graphical illustrations of the constructed wavelets have been provided and finally concrete applications in biofields have been developed dealing with EEG/ECG and Brain image processing.
AbstractList Recently 3D image processing has interested researchers in both theoretical and applied fields and thus has constituted a challenging subject. Theoretically, this needs suitable functional bases that are easy to implement by the next. It holds that Clifford wavelets are main tools to achieve this necessity. In the present paper we intend to develop some new classes of Clifford wavelet functions. Some classes of new monogenic polynomials are developed firstly from monogenic extensions of 2-parameters Clifford weights. Such classes englobe the well known Jacobi, Gegenbauer and Hermite ones. The constructed polynomials are next applied to develop new Clifford wavelets. Reconstruction and Fourier-Plancherel formulae have been proved. Finally, computational examples are developed provided with graphical illustrations of the Clifford mother wavelets in some cases. Some graphical illustrations of the constructed wavelets have been provided and finally concrete applications in biofields have been developed dealing with EEG/ECG and Brain image processing.
Author Cattani, Carlo
Ben Mabrouk, Anouar
Arfaoui, Sabrine
Author_xml – sequence: 1
  givenname: Sabrine
  surname: Arfaoui
  fullname: Arfaoui, Sabrine
  email: sabrine.arfaoui@issatm.rnu.tn
  organization: Algebra, Number Theory and Nonlinear Analysis Laboratory LR18ES15, Department of Mathematics, Faculty of Sciences, University of Monastir, Department of Mathematics, Faculty of Sciences, University of Tabuk
– sequence: 2
  givenname: Anouar
  surname: Ben Mabrouk
  fullname: Ben Mabrouk, Anouar
  organization: Algebra, Number Theory and Nonlinear Analysis Laboratory LR18ES15, Department of Mathematics, Faculty of Sciences, University of Monastir, Department of Mathematics, Higher Institute of Applied Mathematics and Computer Science, University of Kairouan, Department of Mathematics, Faculty of Sciences, University of Tabuk
– sequence: 3
  givenname: Carlo
  surname: Cattani
  fullname: Cattani, Carlo
  organization: Engineering School (DEIM), Tuscia University
BookMark eNp9kMtOAzEMRSNUJNrCD7DKDwTymOeyqqAF8VoUsYwyGadKNZNUyQyof0-grFh0YVmy77F17wxNnHeA0DWjN4zS8jYymmWUUJ6KCs4JPUNTlpec1FQUEzSlrChJRVl9gWYx7mhS1UUxRfsX-MKbwx6wN3gFW3CNGiGQR6V9Y8kaQm8HwM_e-bSzGr_57uB8b1UXsXItXsTotVUDtHjp3WDd6MeIl501xocWf6hP6GDAm6BcTJP-Ep2bxMLVX5-j9_u7zXJNnl5XD8vFE9G8ZgMBXgquGct0UVYFmIrrhhthdA06K1vWCGaMyJOobNuCZ4bmebKk67yhWd42Yo748a4OPsYARu6D7VU4SEblT2bymJlMmcnfzCRNUPUP0nZQg03GgrLdaVQc0Zj-uC0EufNjcMniKeobxLSEOQ
CitedBy_id crossref_primary_10_3390_e23070844
crossref_primary_10_3390_math9101117
crossref_primary_10_1063_5_0015989
crossref_primary_10_1007_s00500_021_06217_y
crossref_primary_10_32604_cmc_2022_030954
crossref_primary_10_3390_math9212748
Cites_doi 10.1023/A:1022843426320
10.1063/1.3060000
10.1007/978-0-8176-8403-7
10.1007/BF03320981
10.1080/10652460410001727536
10.1007/BF02511157
10.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO;2-7
10.1007/s00006-017-0788-9
10.1007/978-0-8176-8166-1
10.1016/j.camwa.2012.10.011
10.1007/s10851-012-0352-0
10.1007/s10851-013-0430-y
10.1007/978-3-7643-7778-6_16
10.1016/j.jat.2005.02.006
10.1007/s00006-009-0152-9
10.1007/s10851-006-3605-y
10.1155/2010/513186
10.1155/2013/161030
10.1007/BF03042219
10.1007/s10474-013-0338-4
10.1016/S1076-5670(08)01402-X
10.1007/978-1-4419-6190-7_6
10.1201/b18273-5
10.1093/imrn/rnq288
10.1007/s11071-016-2753-x
10.1007/s10440-017-0150-1
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Copyright_xml – notice: Springer Nature B.V. 2020
DBID AAYXX
CITATION
DOI 10.1007/s10440-020-00322-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9036
EndPage 35
ExternalDocumentID 10_1007_s10440_020_00322_0
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8FW
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z88
Z8R
Z8U
Z8W
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-e2732c114c6786ef82cb2f3fc9ec47d1b31ff357327dd624f055039c95b045db3
IEDL.DBID U2A
ISSN 0167-8019
IngestDate Tue Jul 01 00:58:43 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Fri Feb 21 02:38:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fourier-Plancherel, monogenic polynomials, EEG/ECG, Brain images
44A15
Continuous wavelet transform
Clifford analysis
42B10
30G35
Clifford Fourier transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e2732c114c6786ef82cb2f3fc9ec47d1b31ff357327dd624f055039c95b045db3
PageCount 35
ParticipantIDs crossref_primary_10_1007_s10440_020_00322_0
crossref_citationtrail_10_1007_s10440_020_00322_0
springer_journals_10_1007_s10440_020_00322_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Acta applicandae mathematicae
PublicationTitleAbbrev Acta Appl Math
PublicationYear 2020
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References Saillard, J., Bunel, G.: Apport des fonctions sphéroidales pour l’estimation des paramètres d’une cible radar. 12ème Colloque Gretsi-Juan-Les-Pins, 12-19 Juin 1989, 4 pages
De Bie, H.: Clifford algebras, Fourier transforms and quantum mechanics. arXiv:1209.6434v1, September 2012, 39 pages
BrackxF.SommenF.Clifford-Hermite wavelets in Euclidean spaceJ. Fourier Anal. Appl.200063299310175514510.1007/BF02511157
ArfaouiS.Ben MabroukA.Some old orthogonal polynomials revisited and associated wavelets: two-parameters Clifford-Jacobi polynomials and associated spheroidal waveletsActa Appl. Math.201710.1007/s10440-017-0150-11407.42028
BrackxF.De SchepperN.SommenF.Clifford-Jacobi polynomials and the associated continuous wavelet transform in Euclidean spaceWavelet Analysis and Applications200618519810.1007/978-3-7643-7778-6_16
BrackxF.De SchepperN.SommenF.The Fourier transform in Clifford analysisAdv. Imaging Electron Phys.20091565520110.1016/S1076-5670(08)01402-X
SteinE.M.WeissG.Introduction to Fourier Analysis on Euclidean Spaces1971PrincetonPrinceton University Press0232.42007
StrattonJ.A.MorseP.M.ChuL.J.LittleJ.D.C.CorbatoF.J.Spheroidal Wave Functions1956New YorkWiley10.1063/1.3060000
MichelV.Lectures on Constructive Approximation2013BaselBirkhäuser10.1007/978-0-8176-8403-7
De Bie, H., Xu, Y.: On the Clifford-Fourier transform. arXiv:1003.0689, December 2010, 30 pages
CattaniC.KudreykoA.Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kindAppl. Math. Comput.2010215124164417125960921186.65160
DelangheR.Clifford analysis: history and perspectiveComput. Methods Funct. Theory200111107153193160710.1007/BF03320981
Rizo-RodríguezD.Mendez-VazquezH.Garcia-ReyesE.Illumination invariant face recognition using quaternion-based correlation filtersJ. Math. Imaging Vis.201345164175301740510.1007/s10851-012-0352-0
Abreu-BlayaR.Bory-ReyesJ.BoschP.Extension theorem for complex Clifford algebras-valued functions on fractal domainsBound. Value Probl.20102010260891610.1155/2010/5131869 pages
HeydariM.H.HooshmandaslM.R.CattaniC.LiM.Legendre wavelets method for solving fractional population growth model in a closed systemMath. Probl. Eng.20132013310798610.1155/2013/1610308 pages
SauK.BasakaR.K.ChandaA.Image compression based on block truncation coding using Clifford algebraInternational Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 20132013699706
BrackxF.De SchepperN.SommenF.GürlebeckK.KönkeC.Clifford-Hermite and two-dimensional Clifford-Gabor filters for early vision(digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering2006Bauhaus-Universität Weimar
ShiY.G.Orthogonal polynomials for Jacobi-exponential weightsActa Math. Hung.20131404363376308569110.1007/s10474-013-0338-4
Arfaoui, S.: New monogenic Gegenbauer Jacobi polynomials and associated spheroidal wavelets. Doctoral Thesis in Mathematics, University of Monastir, Tunisia, Faculty of Sciences, July 26, 2017
Van De VilleD.SageD.BalacK.UnserM.The Marr wavelet pyramid and multiscale directional image analysis16th European Signal Processing Conference (EUSIPCO 2008)20085 pages
AntoineJ.-P.MurenziR.VandergheynstP.Two-dimensional directional wavelets in image processingInt. J. Imaging Syst. Technol.19967315216510.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO;2-7
Lahar, S.: Clifford algebra: a visual introduction. A topnotch WordPress.com site, March 18, 2014
CarréP.BerthierM.Fernandez-MaloigneC.Color representation and processes with Clifford algebraAdvanced Color Image Processing and Analysis2013New YorkSpringer14717910.1007/978-1-4419-6190-7_6Chap. 6
ArfaouiS.Ben MabroukA.Some ultraspheroidal monogenic Clifford Gegenbauer Jacobi polynomials and associated waveletsAdv. Appl. Clifford Algebras201727322872306368882410.1007/s00006-017-0788-9
Pena, D.P.: Cauchy-Kowalevski extensions, Fueter’s theorems and boundary values of special systems in Clifford analysis. A PhD thesis, in Mathematics, Ghent University (2008)
BrackxF.SommenF.The generalized Clifford-Hermite continuous wavelet transformAdv. Appl. Clifford Algebras20011151219231210672110.1007/BF03042219(Special Issue: Clifford Analysis, Proceedings of the Clifford Analysis Conference, Cetraro (Italy), October 1998)
YangB.SukT.DaiM.FlusserJ.PapakostasG.A.2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2D$\end{document} and 3D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3D$\end{document} image analysis by Gaussian-Hermite momentsMoments and Moment Invariants - Theory and Applications2014143173Science Gate Publishing, Chap. 7
AbramowitzM.StegunI.A.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1964WashingtonNational Bureau of Standards0171.38503
BrackxF.De SchepperN.SommenF.The Clifford-Gegenbauer polynomials and the associated continuous wavelet transformIntegral Transforms Spec. Funct.2004155387404208665110.1080/10652460410001727536
ArfaouiS.RezguiI.Ben MabroukA.Harmonic Wavelet Analysis on the Sphere, Spheroidal Wavelets2016Berlinde Gruyter1369.42026ISBN 978-11-048188-4
ColomboF.Sa BadiniI.SommenF.StruppaD.C.Analysis of Dirac Systems and Computational Algebra2004BostonBirkhäuser10.1007/978-0-8176-8166-1
StrattonJ.A.Spheroidal functionsPhysics19352151560010.35801
MoraisJ.KouK.I.SprößigW.Generalized holomorphic Szegö kernel in 3D spheroidsComput. Math. Appl.2013654576588301144210.1016/j.camwa.2012.10.011
LiL.-W.KangX.-K.LeongM.-S.Spheroidal Wave Functions in Electromagnetic Theory2002New YorkWiley
Arfaoui, S., Ben Mabrouk, A.: Some generalized Clifford-Jacobi polynomials and associated spheroidal wavelets. arxiv:1704.03513, April 06, 2017, 24 pages.
BrackxF.DelangheR.SommenF.Clifford Analysis1982LondonPitman Publication0529.30001
OsipovA.RokhlinV.XiaoH.Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximationApplied Mathematical Sciences2013BerlinSpringer
BrackxF.De SchepperN.SommenF.The two-dimensional Clifford-Fourier transformJ. Math. Imaging Vis.200626518228386810.1007/s10851-006-3605-y
HitzerE.MastorakisN.E.PardalosP.M.AgarwalR.P.KocinacL.New developments in Clifford Fourier transformsProceedings of the 2014 International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014)20141925
KindratenkoV.V.On using functions to describe the shapeJ. Math. Imaging Vis.200318225245197118010.1023/A:1022843426320
LevinE.LubinskyD.Orthogonal polynomials for exponential weights x2ρe−2Q(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{2\rho }e^{-2\mathcal{Q}(x)}$\end{document} on [0,d)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,d)]$\end{document}J. Approx. Theory2005134199256214229910.1016/j.jat.2005.02.006
BrackxF.De SchepperN.SommenF.The Clifford-Laguerre continuous wavelet transformBull. Belg. Math. Soc.2003102012151077.42026
De SchepperN.The generalized Clifford-Gegenbauer polynomials revisitedAdv. Appl. Clifford Algebras200919253268252466910.1007/s00006-009-0152-9
Moussa, M.-M.: Calcul efficace et direct des représentations de maillages 3D utilisant les harmoniques sphériques. Thèse de Doctorat de l’université Claude Bernard, Lyon 1, France (2007)
HeydariM.H.HooshmandaslM.R.ShakibaA.CattaniC.Legendre wavelets Galerkin method for solving nonlinear stochastic integral equationsNonlinear Dyn.20168511851202351143310.1007/s11071-016-2753-x
CattaniC.Signorini cylindrical waves and Shannon waveletsAdv. Numer. Anal.2012201229483281329.7410524 pages
BujackR.De BieH.De SchepperN.ScheuermannG.Convolution products for hypercomplex Fourier transformsJ. Math. Imaging Vis.201310.1007/s10851-013-0430-y1292.4200719 pages
322_CR7
F. Brackx (322_CR13) 2004; 15
M. Abramowitz (322_CR1) 1964
S. Arfaoui (322_CR8) 2016
F. Brackx (322_CR11) 1982
D. Rizo-Rodríguez (322_CR39) 2013; 45
Y.G. Shi (322_CR42) 2013; 140
322_CR4
V.V. Kindratenko (322_CR30) 2003; 18
S. Arfaoui (322_CR5) 2017; 27
E. Levin (322_CR32) 2005; 134
V. Michel (322_CR34) 2013
K. Sau (322_CR41) 2013
M.H. Heydari (322_CR27) 2013; 2013
J.A. Stratton (322_CR45) 1956
C. Cattani (322_CR21) 2010; 215
F. Brackx (322_CR10) 2001; 11
F. Brackx (322_CR15) 2006
J. Morais (322_CR35) 2013; 65
S. Arfaoui (322_CR6) 2017
E.M. Stein (322_CR43) 1971
322_CR31
C. Cattani (322_CR20) 2012; 2012
N. De Schepper (322_CR25) 2009; 19
P. Carré (322_CR19) 2013
B. Yang (322_CR47) 2014
F. Brackx (322_CR17) 2009; 156
322_CR36
F. Brackx (322_CR14) 2006; 26
322_CR38
M.H. Heydari (322_CR28) 2016; 85
R. Abreu-Blaya (322_CR2) 2010; 2010
F. Colombo (322_CR22) 2004
F. Brackx (322_CR16) 2006
R. Bujack (322_CR18) 2013
J.A. Stratton (322_CR44) 1935; 21
E. Hitzer (322_CR29) 2014
D. Van De Ville (322_CR46) 2008
R. Delanghe (322_CR26) 2001; 1
L.-W. Li (322_CR33) 2002
A. Osipov (322_CR37) 2013
322_CR40
J.-P. Antoine (322_CR3) 1996; 7
F. Brackx (322_CR9) 2000; 6
F. Brackx (322_CR12) 2003; 10
322_CR23
322_CR24
References_xml – reference: MichelV.Lectures on Constructive Approximation2013BaselBirkhäuser10.1007/978-0-8176-8403-7
– reference: SteinE.M.WeissG.Introduction to Fourier Analysis on Euclidean Spaces1971PrincetonPrinceton University Press0232.42007
– reference: StrattonJ.A.MorseP.M.ChuL.J.LittleJ.D.C.CorbatoF.J.Spheroidal Wave Functions1956New YorkWiley10.1063/1.3060000
– reference: LevinE.LubinskyD.Orthogonal polynomials for exponential weights x2ρe−2Q(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{2\rho }e^{-2\mathcal{Q}(x)}$\end{document} on [0,d)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,d)]$\end{document}J. Approx. Theory2005134199256214229910.1016/j.jat.2005.02.006
– reference: LiL.-W.KangX.-K.LeongM.-S.Spheroidal Wave Functions in Electromagnetic Theory2002New YorkWiley
– reference: BrackxF.SommenF.The generalized Clifford-Hermite continuous wavelet transformAdv. Appl. Clifford Algebras20011151219231210672110.1007/BF03042219(Special Issue: Clifford Analysis, Proceedings of the Clifford Analysis Conference, Cetraro (Italy), October 1998)
– reference: ArfaouiS.Ben MabroukA.Some old orthogonal polynomials revisited and associated wavelets: two-parameters Clifford-Jacobi polynomials and associated spheroidal waveletsActa Appl. Math.201710.1007/s10440-017-0150-11407.42028
– reference: BujackR.De BieH.De SchepperN.ScheuermannG.Convolution products for hypercomplex Fourier transformsJ. Math. Imaging Vis.201310.1007/s10851-013-0430-y1292.4200719 pages
– reference: HitzerE.MastorakisN.E.PardalosP.M.AgarwalR.P.KocinacL.New developments in Clifford Fourier transformsProceedings of the 2014 International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014)20141925
– reference: BrackxF.De SchepperN.SommenF.Clifford-Jacobi polynomials and the associated continuous wavelet transform in Euclidean spaceWavelet Analysis and Applications200618519810.1007/978-3-7643-7778-6_16
– reference: OsipovA.RokhlinV.XiaoH.Prolate spheroidal wave functions of order zero. Mathematical tools for bandlimited approximationApplied Mathematical Sciences2013BerlinSpringer
– reference: BrackxF.DelangheR.SommenF.Clifford Analysis1982LondonPitman Publication0529.30001
– reference: AntoineJ.-P.MurenziR.VandergheynstP.Two-dimensional directional wavelets in image processingInt. J. Imaging Syst. Technol.19967315216510.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO;2-7
– reference: CattaniC.KudreykoA.Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kindAppl. Math. Comput.2010215124164417125960921186.65160
– reference: BrackxF.De SchepperN.SommenF.The Clifford-Laguerre continuous wavelet transformBull. Belg. Math. Soc.2003102012151077.42026
– reference: De Bie, H., Xu, Y.: On the Clifford-Fourier transform. arXiv:1003.0689, December 2010, 30 pages
– reference: Arfaoui, S.: New monogenic Gegenbauer Jacobi polynomials and associated spheroidal wavelets. Doctoral Thesis in Mathematics, University of Monastir, Tunisia, Faculty of Sciences, July 26, 2017
– reference: CarréP.BerthierM.Fernandez-MaloigneC.Color representation and processes with Clifford algebraAdvanced Color Image Processing and Analysis2013New YorkSpringer14717910.1007/978-1-4419-6190-7_6Chap. 6
– reference: HeydariM.H.HooshmandaslM.R.CattaniC.LiM.Legendre wavelets method for solving fractional population growth model in a closed systemMath. Probl. Eng.20132013310798610.1155/2013/1610308 pages
– reference: De SchepperN.The generalized Clifford-Gegenbauer polynomials revisitedAdv. Appl. Clifford Algebras200919253268252466910.1007/s00006-009-0152-9
– reference: ArfaouiS.Ben MabroukA.Some ultraspheroidal monogenic Clifford Gegenbauer Jacobi polynomials and associated waveletsAdv. Appl. Clifford Algebras201727322872306368882410.1007/s00006-017-0788-9
– reference: BrackxF.De SchepperN.SommenF.The two-dimensional Clifford-Fourier transformJ. Math. Imaging Vis.200626518228386810.1007/s10851-006-3605-y
– reference: CattaniC.Signorini cylindrical waves and Shannon waveletsAdv. Numer. Anal.2012201229483281329.7410524 pages
– reference: KindratenkoV.V.On using functions to describe the shapeJ. Math. Imaging Vis.200318225245197118010.1023/A:1022843426320
– reference: Pena, D.P.: Cauchy-Kowalevski extensions, Fueter’s theorems and boundary values of special systems in Clifford analysis. A PhD thesis, in Mathematics, Ghent University (2008)
– reference: Abreu-BlayaR.Bory-ReyesJ.BoschP.Extension theorem for complex Clifford algebras-valued functions on fractal domainsBound. Value Probl.20102010260891610.1155/2010/5131869 pages
– reference: BrackxF.De SchepperN.SommenF.The Clifford-Gegenbauer polynomials and the associated continuous wavelet transformIntegral Transforms Spec. Funct.2004155387404208665110.1080/10652460410001727536
– reference: SauK.BasakaR.K.ChandaA.Image compression based on block truncation coding using Clifford algebraInternational Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 20132013699706
– reference: Moussa, M.-M.: Calcul efficace et direct des représentations de maillages 3D utilisant les harmoniques sphériques. Thèse de Doctorat de l’université Claude Bernard, Lyon 1, France (2007)
– reference: Rizo-RodríguezD.Mendez-VazquezH.Garcia-ReyesE.Illumination invariant face recognition using quaternion-based correlation filtersJ. Math. Imaging Vis.201345164175301740510.1007/s10851-012-0352-0
– reference: BrackxF.De SchepperN.SommenF.GürlebeckK.KönkeC.Clifford-Hermite and two-dimensional Clifford-Gabor filters for early vision(digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering2006Bauhaus-Universität Weimar
– reference: YangB.SukT.DaiM.FlusserJ.PapakostasG.A.2D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2D$\end{document} and 3D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3D$\end{document} image analysis by Gaussian-Hermite momentsMoments and Moment Invariants - Theory and Applications2014143173Science Gate Publishing, Chap. 7
– reference: Arfaoui, S., Ben Mabrouk, A.: Some generalized Clifford-Jacobi polynomials and associated spheroidal wavelets. arxiv:1704.03513, April 06, 2017, 24 pages.
– reference: De Bie, H.: Clifford algebras, Fourier transforms and quantum mechanics. arXiv:1209.6434v1, September 2012, 39 pages
– reference: Lahar, S.: Clifford algebra: a visual introduction. A topnotch WordPress.com site, March 18, 2014
– reference: BrackxF.SommenF.Clifford-Hermite wavelets in Euclidean spaceJ. Fourier Anal. Appl.200063299310175514510.1007/BF02511157
– reference: ColomboF.Sa BadiniI.SommenF.StruppaD.C.Analysis of Dirac Systems and Computational Algebra2004BostonBirkhäuser10.1007/978-0-8176-8166-1
– reference: Van De VilleD.SageD.BalacK.UnserM.The Marr wavelet pyramid and multiscale directional image analysis16th European Signal Processing Conference (EUSIPCO 2008)20085 pages
– reference: BrackxF.De SchepperN.SommenF.The Fourier transform in Clifford analysisAdv. Imaging Electron Phys.20091565520110.1016/S1076-5670(08)01402-X
– reference: DelangheR.Clifford analysis: history and perspectiveComput. Methods Funct. Theory200111107153193160710.1007/BF03320981
– reference: HeydariM.H.HooshmandaslM.R.ShakibaA.CattaniC.Legendre wavelets Galerkin method for solving nonlinear stochastic integral equationsNonlinear Dyn.20168511851202351143310.1007/s11071-016-2753-x
– reference: AbramowitzM.StegunI.A.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables1964WashingtonNational Bureau of Standards0171.38503
– reference: MoraisJ.KouK.I.SprößigW.Generalized holomorphic Szegö kernel in 3D spheroidsComput. Math. Appl.2013654576588301144210.1016/j.camwa.2012.10.011
– reference: Saillard, J., Bunel, G.: Apport des fonctions sphéroidales pour l’estimation des paramètres d’une cible radar. 12ème Colloque Gretsi-Juan-Les-Pins, 12-19 Juin 1989, 4 pages
– reference: ShiY.G.Orthogonal polynomials for Jacobi-exponential weightsActa Math. Hung.20131404363376308569110.1007/s10474-013-0338-4
– reference: ArfaouiS.RezguiI.Ben MabroukA.Harmonic Wavelet Analysis on the Sphere, Spheroidal Wavelets2016Berlinde Gruyter1369.42026ISBN 978-11-048188-4
– reference: StrattonJ.A.Spheroidal functionsPhysics19352151560010.35801
– volume: 18
  start-page: 225
  year: 2003
  ident: 322_CR30
  publication-title: J. Math. Imaging Vis.
  doi: 10.1023/A:1022843426320
– ident: 322_CR4
– volume-title: Spheroidal Wave Functions
  year: 1956
  ident: 322_CR45
  doi: 10.1063/1.3060000
– volume-title: Lectures on Constructive Approximation
  year: 2013
  ident: 322_CR34
  doi: 10.1007/978-0-8176-8403-7
– volume: 1
  start-page: 107
  issue: 1
  year: 2001
  ident: 322_CR26
  publication-title: Comput. Methods Funct. Theory
  doi: 10.1007/BF03320981
– volume: 15
  start-page: 387
  issue: 5
  year: 2004
  ident: 322_CR13
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652460410001727536
– volume-title: Introduction to Fourier Analysis on Euclidean Spaces
  year: 1971
  ident: 322_CR43
– volume: 6
  start-page: 299
  issue: 3
  year: 2000
  ident: 322_CR9
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02511157
– volume-title: Spheroidal Wave Functions in Electromagnetic Theory
  year: 2002
  ident: 322_CR33
– volume: 7
  start-page: 152
  issue: 3
  year: 1996
  ident: 322_CR3
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/(SICI)1098-1098(199623)7:3<152::AID-IMA1>3.0.CO;2-7
– start-page: 19
  volume-title: Proceedings of the 2014 International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014)
  year: 2014
  ident: 322_CR29
– volume: 27
  start-page: 2287
  issue: 3
  year: 2017
  ident: 322_CR5
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-017-0788-9
– volume-title: (digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering
  year: 2006
  ident: 322_CR16
– volume-title: Analysis of Dirac Systems and Computational Algebra
  year: 2004
  ident: 322_CR22
  doi: 10.1007/978-0-8176-8166-1
– volume: 65
  start-page: 576
  issue: 4
  year: 2013
  ident: 322_CR35
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.10.011
– ident: 322_CR23
– ident: 322_CR40
– ident: 322_CR7
– volume: 45
  start-page: 164
  year: 2013
  ident: 322_CR39
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-012-0352-0
– start-page: 699
  volume-title: International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 2013
  year: 2013
  ident: 322_CR41
– year: 2013
  ident: 322_CR18
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-013-0430-y
– start-page: 185
  volume-title: Wavelet Analysis and Applications
  year: 2006
  ident: 322_CR15
  doi: 10.1007/978-3-7643-7778-6_16
– volume: 134
  start-page: 199
  year: 2005
  ident: 322_CR32
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2005.02.006
– volume: 19
  start-page: 253
  year: 2009
  ident: 322_CR25
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/s00006-009-0152-9
– volume-title: Harmonic Wavelet Analysis on the Sphere, Spheroidal Wavelets
  year: 2016
  ident: 322_CR8
– volume: 26
  start-page: 5
  year: 2006
  ident: 322_CR14
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-006-3605-y
– volume: 2012
  year: 2012
  ident: 322_CR20
  publication-title: Adv. Numer. Anal.
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: 322_CR1
– volume: 2010
  year: 2010
  ident: 322_CR2
  publication-title: Bound. Value Probl.
  doi: 10.1155/2010/513186
– volume: 2013
  year: 2013
  ident: 322_CR27
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/161030
– volume: 10
  start-page: 201
  year: 2003
  ident: 322_CR12
  publication-title: Bull. Belg. Math. Soc.
– volume: 11
  start-page: 219
  issue: 51
  year: 2001
  ident: 322_CR10
  publication-title: Adv. Appl. Clifford Algebras
  doi: 10.1007/BF03042219
– volume: 21
  start-page: 51
  year: 1935
  ident: 322_CR44
  publication-title: Physics
– volume: 215
  start-page: 4164
  issue: 12
  year: 2010
  ident: 322_CR21
  publication-title: Appl. Math. Comput.
– start-page: 143
  volume-title: Moments and Moment Invariants - Theory and Applications
  year: 2014
  ident: 322_CR47
– volume: 140
  start-page: 363
  issue: 4
  year: 2013
  ident: 322_CR42
  publication-title: Acta Math. Hung.
  doi: 10.1007/s10474-013-0338-4
– volume: 156
  start-page: 55
  year: 2009
  ident: 322_CR17
  publication-title: Adv. Imaging Electron Phys.
  doi: 10.1016/S1076-5670(08)01402-X
– start-page: 147
  volume-title: Advanced Color Image Processing and Analysis
  year: 2013
  ident: 322_CR19
  doi: 10.1007/978-1-4419-6190-7_6
– volume-title: Applied Mathematical Sciences
  year: 2013
  ident: 322_CR37
– volume-title: Clifford Analysis
  year: 1982
  ident: 322_CR11
– ident: 322_CR31
  doi: 10.1201/b18273-5
– ident: 322_CR24
  doi: 10.1093/imrn/rnq288
– ident: 322_CR36
– ident: 322_CR38
– volume-title: 16th European Signal Processing Conference (EUSIPCO 2008)
  year: 2008
  ident: 322_CR46
– volume: 85
  start-page: 1185
  year: 2016
  ident: 322_CR28
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2753-x
– year: 2017
  ident: 322_CR6
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-017-0150-1
SSID ssj0003966
Score 2.2784855
Snippet Recently 3D image processing has interested researchers in both theoretical and applied fields and thus has constituted a challenging subject. Theoretically,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
Probability Theory and Stochastic Processes
Subtitle Some Monogenic Clifford Polynomials and Associated Wavelets
Title New Type of Gegenbauer-Jacobi-Hermite Monogenic Polynomials and Associated Continuous Clifford Wavelet Transform
URI https://link.springer.com/article/10.1007/s10440-020-00322-0
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8MwDDZbe9kOY0_WPYoPu22GxG7S-FjK2tKxsUPLulOwHRsCJSlteti_n5Qm3QqjsHMUH2RZ0oekT4Q8dJGAxCjFksA4BhYSMI1MmJAbSBsJw6Uruy3ewtG0M54Fs2oobFV3u9clydJT_xp2wzokwh2wRIBQANSbAWJ3sOIp7239r5CbCiUyeoP_ldWozN9n7Iaj3VpoGWIGp-Skyg1pb3OZZ-TAZufk-HVLrLq6IAtwShSxI80dHQLiz7Ra2yUbg2PTKRtha0thKbzUHL6lhr7n8y-cPAYroypLaH0dNqFITJVma4D-tD9PHXa50w-FiygKOqnz2UsyHTxP-iNWLU1goFe_YBbyEW4A5RgIQ6F1ETeaO-GMtKbTTXwtfOdEAELdJAl5x3mAUYQ0MtCQ3SVaXJFGlmf2mtDIGE8h4Z2QgKINVyEICR15QsH5LmoRv9ZdbCpGcVxsMY9_uJBR3zHoOy71HXst8rj9Z7Hh09gr_VRfSVy9rdUe8Zv_id-SI46mUDan3JFGsVzbe0gxCt0mh9Fg2CbN3vDz5bld2tc32JLITw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQGYAB8SnKpwc2sJTETRqPVUUJpa0YWtEtsh1bilQlVZsO_Hvu0qRQCVVizsXD-Xx-T3f3TMhjGwVItJQs8bVlECE-U6iECdhAmJBrT9iy22IURJNWf-pPq6GwZd3tXpcky0z9a9gN65BIdyASgUIBUd8HMBBiI9fE62zyLxfrCiUqekP-FdWozN9rbF9H27XQ8orpnZDjChvSznozT8meyc7I0XAjrLo8J3NIShS5I80tfQXGnym5MgvWh8SmUhZha0thKJzUHL6lmn7ksy-cPIYoozJLaL0dJqEoTJVmK6D-tDtLLXa500-JD1EUdFzj2Qsy6b2MuxGrHk1g4Fe3YAbwiKeB5Wi4hgJjQ08rz3KrhdGtduIq7lrLfTBqJ0ngtawDHIULLXwF6C5R_JI0sjwzV4SGWjsSBe-4ABatPRmAEVehwyWsb8MmcWvfxbpSFMeHLWbxjxYy-jsGf8elv2OnSZ42_8zXeho7rZ_rLYmrs7XcYX79P_MHchCNh4N48DZ6vyGHHoZF2ahySxrFYmXuAG4U6r6Mrm9zssjI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QSAgOiKcYzxy4QbS2WbvmOA3GGDDtsIndqiZNpEpTO23tgX-P3cfYJDSJc90cHMf2J9ufCXloIwGJCkMWucowsBCXSWTChNxAaJ8rR5ii22Lo9SetwdSdrk3xF93udUmynGlAlqYka84j01wbfMOaJEIfsEqAUwDa98Ad22jXE6ez8sVclNVKZPcGXyyqsZm_z9gMTZt10SLc9I7JUZUn0k55sSdkRyen5PBzRbK6PCNzcFAUcSRNDX0F9J_IMNcLNgAnJ2PWxzaXTFN4tSl8ixUdpbNvnEIGi6NhEtH6anREkaQqTvI0X9LuLDbY8U6_QlxKkdFxnduek0nvZdzts2qBAgMd2xnTkJs4ChCPgpDkaeM7SjqGGyW0arUjW3LbGO6CUDuKPKdlLMArXCjhSsj0IskvyG6SJvqSUF8pK0TyOy4AUSsn9ECIS9_iIZxv_Aaxa90FqmIXxyUXs-CXFxn1HYC-g0LfgdUgj6t_5iW3xlbpp_pKguqdLbeIX_1P_J7sj557wcfb8P2aHDhoFUXPyg3ZzRa5voXMI5N3hXH9AGNpzQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Type+of+Gegenbauer-Jacobi-Hermite+Monogenic+Polynomials+and+Associated+Continuous+Clifford+Wavelet+Transform&rft.jtitle=Acta+applicandae+mathematicae&rft.au=Arfaoui%2C+Sabrine&rft.au=Ben+Mabrouk%2C+Anouar&rft.au=Cattani%2C+Carlo&rft.date=2020-12-01&rft.pub=Springer+Netherlands&rft.issn=0167-8019&rft.eissn=1572-9036&rft.volume=170&rft.issue=1&rft.spage=1&rft.epage=35&rft_id=info:doi/10.1007%2Fs10440-020-00322-0&rft.externalDocID=10_1007_s10440_020_00322_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8019&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8019&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8019&client=summon