VirtualHAR: Virtual Sensing Device and Correlation-Based Learning Approach for Multiwearable Sensing Device-Based Human Activity Recognition
Human activity recognition (HAR) is a prominent research direction in ubiquitous computing. Current state-of-the-art HAR models achieve great success by learning the correlations between the regions of the body parts by using the attached sensing devices for feature extraction. However, explicitly c...
Saved in:
Published in | IEEE internet of things journal Vol. 12; no. 13; pp. 23577 - 23597 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human activity recognition (HAR) is a prominent research direction in ubiquitous computing. Current state-of-the-art HAR models achieve great success by learning the correlations between the regions of the body parts by using the attached sensing devices for feature extraction. However, explicitly computing the correlations between whole body parts and whole sub-body parts, which is crucial for extracting discriminatory features for some activities, has not been investigated due to the lack of sensing devices that capture the movements of the whole (sub-)body parts. This study proposes an effective yet lightweight VirtualHAR framework, which automatically models correlations between the whole body parts, whole sub-body parts, and regions based on the concept of virtual sensing devices. The VirtualHAR framework mainly encompasses three modules. The backbone feature extraction (BEF) module extracts the features from a physical sensing device, based on which the Multipurpose Correlations Learning module constructs virtual sensing devices for body parts and sub-body parts and then exploits the explicit correlations between body parts, sub-body parts as well as in regions by using their attached physical sensing devices. Finally, the global aggregation (GA) module learns the GA representation for each physical sensing device by collecting the learned correlated representation from each virtual sensing device and physical sensing device. Comprehensive experiments on benchmark HAR datasets and a resource-constrained device confirm that VirtualHAR outperforms SOTA models in recognition performance and computational complexity. Through thorough quantitative and qualitative analysis, we validate the proposed VirtualHAR framework's effectiveness and efficiency. |
---|---|
AbstractList | Human activity recognition (HAR) is a prominent research direction in ubiquitous computing. Current state-of-the-art HAR models achieve great success by learning the correlations between the regions of the body parts by using the attached sensing devices for feature extraction. However, explicitly computing the correlations between whole body parts and whole sub-body parts, which is crucial for extracting discriminatory features for some activities, has not been investigated due to the lack of sensing devices that capture the movements of the whole (sub-)body parts. This study proposes an effective yet lightweight VirtualHAR framework, which automatically models correlations between the whole body parts, whole sub-body parts, and regions based on the concept of virtual sensing devices. The VirtualHAR framework mainly encompasses three modules. The backbone feature extraction (BEF) module extracts the features from a physical sensing device, based on which the Multipurpose Correlations Learning module constructs virtual sensing devices for body parts and sub-body parts and then exploits the explicit correlations between body parts, sub-body parts as well as in regions by using their attached physical sensing devices. Finally, the global aggregation (GA) module learns the GA representation for each physical sensing device by collecting the learned correlated representation from each virtual sensing device and physical sensing device. Comprehensive experiments on benchmark HAR datasets and a resource-constrained device confirm that VirtualHAR outperforms SOTA models in recognition performance and computational complexity. Through thorough quantitative and qualitative analysis, we validate the proposed VirtualHAR framework's effectiveness and efficiency. |
Author | Farnia, Farzan Ahmad, Nafees Leung, Ho-Fung |
Author_xml | – sequence: 1 givenname: Nafees orcidid: 0000-0001-5650-8602 surname: Ahmad fullname: Ahmad, Nafees email: nafees@link.cuhk.edu.hk organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong SAR, China – sequence: 2 givenname: Ho-Fung orcidid: 0000-0003-4914-2934 surname: Leung fullname: Leung, Ho-Fung email: ho-fung.leung@outlook.com – sequence: 3 givenname: Farzan orcidid: 0000-0002-6049-9232 surname: Farnia fullname: Farnia, Farzan email: farnia@cse.cuhk.edu.hk organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong SAR, China |
BookMark | eNpdkN1OwkAQhTcGExF5ABMvNvG6uD_dtusd4g8YDAmit81QprikbHHbYngHH9o29IJ4NSeZ75yZnEvSsblFQq45G3DO9N3rZLYYCCbUQCqlQq3PSFdIEXp-EIjOib4g_aLYMMZqm-I66JLfT-PKCrLxcH5PW03f0RbGrukj7k2CFOyKjnLnMIPS5NZ7gAJXdIrgbEMNdzuXQ_JF09zRtyorzU-9gmWG_4Ja47jagqXDpDR7Ux7oHJN8bU2TfEXOU8gK7LezRz6enxajsTedvUxGw6mXCM1LD3mkg6VKEwGwYgFnbKmFCkFqxkBJX0Rcy2DJV1oyqQTXqRQRQ9SQAiD3ZY_cHnPrx78rLMp4k1fO1idjKYQIQhZxVVP8SCUuLwqHabxzZgvuEHMWN73HTe9x03vc9l57bo4eg4gnvA59n0n5B6QdgQw |
CODEN | IITJAU |
Cites_doi | 10.1145/3411818 10.3390/s140610146 10.1145/3448083 10.1145/3038912.3052577 10.1609/aaai.v24i1.7724 10.1109/PERCOM56429.2023.10099138 10.1145/3267242.3267287 10.1109/KSE.2015.43 10.3390/electronics8080881 10.1016/j.future.2020.01.003 10.1016/B978-0-12-809393-1.00009-X 10.1145/3550331 10.1145/3643511 10.3390/s16010115 10.1145/3463508 10.3390/s151229858 10.1145/3447744 10.24963/ijcai.2019/431 10.1145/3090076 10.1145/2370216.2370437 10.3390/s21082814 10.1109/ACCESS.2020.3010715 10.1186/s13673-017-0097-2 10.1109/JSEN.2021.3067690 10.1109/PERCOMW.2018.8480292 10.1007/s40860-021-00147-0 10.1109/GLOBECOM38437.2019.9013934 10.1371/journal.pone.0185670 10.1016/j.patrec.2018.02.010 10.1007/978-3-319-26561-2_6 10.1145/3380999 10.1109/ISWC.2010.5665868 10.1016/j.patrec.2012.12.014 10.1109/INFOCOM.2019.8737500 10.1016/j.procs.2014.07.009 10.1145/3550285 10.1109/PERCOMW.2017.7917643 10.3390/s18020679 10.1016/j.neucom.2015.07.085 10.1109/MPRV.2008.40 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2025.3555799 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 23597 |
ExternalDocumentID | 10_1109_JIOT_2025_3555799 10974403 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-e1896b5fc2aad06100b9257a3900a534281936b1d93035219f3280ee9afaae143 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Thu Aug 28 18:07:27 EDT 2025 Thu Jul 03 08:42:51 EDT 2025 Wed Aug 27 01:46:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e1896b5fc2aad06100b9257a3900a534281936b1d93035219f3280ee9afaae143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4914-2934 0000-0002-6049-9232 0000-0001-5650-8602 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10974403 |
PQID | 3222670815 |
PQPubID | 2040421 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1109_JIOT_2025_3555799 ieee_primary_10974403 proquest_journals_3222670815 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 Chavarriaga (ref18) 2013; 34 ref37 ref14 ref36 ref30 ref11 ref33 ref10 ref32 ref2 Kose (ref24) ref1 ref17 ref39 ref16 ref38 Khan (ref25) Reyes-Ortiz (ref22) 2016; 171 Ordóñez (ref19) 2016; 16 ref23 ref26 ref20 Hammerla (ref31) ref42 ref41 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Raschka (ref40) 2018 ref6 ref5 |
References_xml | – ident: ref35 doi: 10.1145/3411818 – ident: ref11 doi: 10.3390/s140610146 – start-page: 1 volume-title: Proc. 3rd Int. Symp. Qual. Life Technol. (isQoLT) ident: ref25 article-title: A feature extraction method for realtime human activity recognition on cell phones – ident: ref13 doi: 10.1145/3448083 – ident: ref32 doi: 10.1145/3038912.3052577 – ident: ref3 doi: 10.1609/aaai.v24i1.7724 – ident: ref5 doi: 10.1109/PERCOM56429.2023.10099138 – ident: ref38 doi: 10.1145/3267242.3267287 – year: 2018 ident: ref40 article-title: Model evaluation, model selection, and algorithm selection in machine learning publication-title: arXiv:1811.12808 – ident: ref9 doi: 10.1109/KSE.2015.43 – ident: ref12 doi: 10.3390/electronics8080881 – ident: ref26 doi: 10.1016/j.future.2020.01.003 – ident: ref41 doi: 10.1016/B978-0-12-809393-1.00009-X – ident: ref14 doi: 10.1145/3550331 – ident: ref15 doi: 10.1145/3643511 – volume: 16 start-page: 115 issue: 1 year: 2016 ident: ref19 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – start-page: 11 volume-title: Proc. Workshop Mobile Sensing, Smartphones Wearables Big Data ident: ref24 article-title: Online human activity recognition on smart phones – ident: ref34 doi: 10.1145/3463508 – ident: ref10 doi: 10.3390/s151229858 – ident: ref21 doi: 10.1145/3447744 – ident: ref37 doi: 10.24963/ijcai.2019/431 – ident: ref20 doi: 10.1145/3090076 – ident: ref16 doi: 10.1145/2370216.2370437 – ident: ref27 doi: 10.3390/s21082814 – ident: ref39 doi: 10.1109/ACCESS.2020.3010715 – ident: ref29 doi: 10.1186/s13673-017-0097-2 – ident: ref44 doi: 10.1109/JSEN.2021.3067690 – ident: ref1 doi: 10.1109/PERCOMW.2018.8480292 – ident: ref7 doi: 10.1007/s40860-021-00147-0 – ident: ref33 doi: 10.1109/GLOBECOM38437.2019.9013934 – ident: ref4 doi: 10.1371/journal.pone.0185670 – ident: ref6 doi: 10.1016/j.patrec.2018.02.010 – ident: ref30 doi: 10.1007/978-3-319-26561-2_6 – ident: ref42 doi: 10.1145/3380999 – ident: ref23 doi: 10.1109/ISWC.2010.5665868 – start-page: 1533 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref31 article-title: Deep, convolutional, and recurrent models for human activity recognition using wearables – volume: 34 start-page: 2033 issue: 15 year: 2013 ident: ref18 article-title: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2012.12.014 – ident: ref43 doi: 10.1109/INFOCOM.2019.8737500 – ident: ref28 doi: 10.1016/j.procs.2014.07.009 – ident: ref36 doi: 10.1145/3550285 – ident: ref2 doi: 10.1109/PERCOMW.2017.7917643 – ident: ref8 doi: 10.3390/s18020679 – volume: 171 start-page: 754 year: 2016 ident: ref22 article-title: Transition-aware human activity recognition using smartphones publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.085 – ident: ref17 doi: 10.1109/MPRV.2008.40 |
SSID | ssj0001105196 |
Score | 2.3445544 |
Snippet | Human activity recognition (HAR) is a prominent research direction in ubiquitous computing. Current state-of-the-art HAR models achieve great success by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 23577 |
SubjectTerms | Body parts Computational modeling Convolutional neural networks Correlation Data mining Deep learning Devices Effectiveness Feature extraction Human activity recognition human activity recognition (HAR) Human motion Internet of Things Learning Legged locomotion Manuals Modules Performance evaluation Qualitative analysis Representations Soft sensors ubiquitous and mobile computing Ubiquitous computing Virtual sensors wearable sensing devices |
Title | VirtualHAR: Virtual Sensing Device and Correlation-Based Learning Approach for Multiwearable Sensing Device-Based Human Activity Recognition |
URI | https://ieeexplore.ieee.org/document/10974403 https://www.proquest.com/docview/3222670815 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akxfro2K1Sg6ehG2TfXXjrVZLLVihttLbkuxmRYSt1C2Cv8Ef7Uw2S6UieAtsEsJOMvMlM98MIRcJWB2RhJkTyUw5Ppg8J0qVdpirAO26GQ8k8p3vx-Fw5o_mwdyS1Q0XRmttgs90G5vGl58ukhU-lXXQW-r7mNtzG25uJVlr_aDCEY2E1nMJXTuju4cp3ADdoA1GNeia9K5r22OKqfzSwMasDOpkXC2ojCZ5ba8K1U4-N3I1_nvFe2TXAkzaK3fEPtnS-QGpV8UbqD3Lh-Tr6WWJ3JFhb3JFbZs-Yjh7_kxvNCoQKvOU9rF8Rxkw51yDyUupTcn6THs2HzkF4EsNk_cDPiEXa2MiO9A4DGgvKQtW0EkVu7TIG2Q2uJ32h44tzeAkruCFo3kkQhVkiStlCpCAMSXg8EtPMCYDz0f3nBcqngoPE65ykXluxLQWMpNSA0Y7IrV8ketjQkEpMA26JRMJ87nPZeYpV0TdrkyFFtxvkstKaPFbmYEjNjcXJmKUcIwSjq2Em6SBQvjRsfz_TdKq5BzbQ_oeo5Mp7AImCk7-GHZKdnD2Mjy3RWrFcqXPAIQU6txsvm_J9Nqs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-iD_ri58Tp1Dz4JHRL-rXGtzkd29QJcxPfStKmIkInc0Pwb_CP9i5NmUwE3wJN2tBL7n7J3e-OkLMErI5IwsyJZKYcH0yeE6VKO8xVgHbdjAcS-c53g7A79vtPwZMlqxsujNbaBJ_pOjaNLz-dJHO8Kmugt9T3MbfnGhj-gBd0rcWVCkc8ElrfJXRu9Hv3IzgDukEdzGrQNAleF9bHlFP5pYONYelskUE5pSKe5LU-n6l68rmUrfHfc94mmxZi0laxJnbIis53yVZZvoHa3bxHvh5fpsge6baGF9S26QMGtOfP9EqjCqEyT2kbC3gUIXPOJRi9lNqkrM-0ZTOSU4C-1HB5P-ARsrGWXmQHGpcBbSVFyQo6LKOXJnmFjDvXo3bXscUZnMQVfOZoHolQBVniSpkCKGBMCdj-0hOMycDz0UHnhYqnwsOUq1xknhsxrYXMpNSA0vbJaj7J9QGhoBaYBu2SiYT53Ocy85QromZTpkIL7lfJeSm0-K3IwRGbswsTMUo4RgnHVsJVUkEh_OhY_P8qqZVyju02fY_RzRQ2ARUFh38MOyXr3dHdbXzbG9wckQ38UhGsWyOrs-lcHwMkmakTsxC_AVkX3fU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VirtualHAR%3A+Virtual+Sensing+Device+and+Correlation-Based+Learning+Approach+for+Multiwearable+Sensing+Device-Based+Human+Activity+Recognition&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Ahmad%2C+Nafees&rft.au=Leung%2C+Ho-Fung&rft.au=Farnia%2C+Farzan&rft.date=2025-07-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=12&rft.issue=13&rft.spage=23577&rft.epage=23597&rft_id=info:doi/10.1109%2FJIOT.2025.3555799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2025_3555799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |