Simultaneous Viewpoint- and Condition-Invariant Loop Closure Detection Based on LiDAR Descriptor for Outdoor Large-Scale Environments

Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale and complex environments, the existing LiDAR-based methods still inevitably suffer from viewpoint, condition changes, and perceptual aliasing....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 70; no. 2; pp. 2117 - 2127
Main Authors Kong, Dong, Li, Xu, Cen, Yanqing, Xu, Qimin, Wang, Aimin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale and complex environments, the existing LiDAR-based methods still inevitably suffer from viewpoint, condition changes, and perceptual aliasing. To effectively fill the aforementioned drawbacks, in this article, a novel LiDAR-based multimodule cascaded Siamese convolutional neural networks is developed, named MMCS-Net, which simulates the human-eye mechanism to extract more discriminative and generic feature descriptors. The MMCS-Net is mainly composed of three complementary modules: Siamese full convolutional (CA_SFC) module with cascaded attention, rotation-invariant and topological feature enhancement (RT_E) module, and feature uniqueness enhancement and aggregation compression (UE_AC) module. In particular, the graph structure employed in RT_E can explicitly encode the local topological correlations of point clouds in terms of intensity and geometric clues in parallel. Extensive comparative experiments on KITTI, NCLT, LGSVL, and real vehicle datasets prove that our proposed method outperforms the state-of-the-art methods, and shows high robustness while ensuring the real-time requirements of resource-constrained robots.
AbstractList Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale and complex environments, the existing LiDAR-based methods still inevitably suffer from viewpoint, condition changes, and perceptual aliasing. To effectively fill the aforementioned drawbacks, in this article, a novel LiDAR-based multimodule cascaded Siamese convolutional neural networks is developed, named MMCS-Net, which simulates the human-eye mechanism to extract more discriminative and generic feature descriptors. The MMCS-Net is mainly composed of three complementary modules: Siamese full convolutional (CA_SFC) module with cascaded attention, rotation-invariant and topological feature enhancement (RT_E) module, and feature uniqueness enhancement and aggregation compression (UE_AC) module. In particular, the graph structure employed in RT_E can explicitly encode the local topological correlations of point clouds in terms of intensity and geometric clues in parallel. Extensive comparative experiments on KITTI, NCLT, LGSVL, and real vehicle datasets prove that our proposed method outperforms the state-of-the-art methods, and shows high robustness while ensuring the real-time requirements of resource-constrained robots.
Author Kong, Dong
Li, Xu
Xu, Qimin
Cen, Yanqing
Wang, Aimin
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0003-3002-7389
  surname: Kong
  fullname: Kong, Dong
  email: 220193370@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Xu
  orcidid: 0000-0003-2772-7114
  surname: Li
  fullname: Li, Xu
  email: 101010791@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Yanqing
  orcidid: 0000-0002-1864-423X
  surname: Cen
  fullname: Cen, Yanqing
  email: yq.cen@rioh.cn
  organization: Ministry of Transport Research Institute of Highways, Beijing, China
– sequence: 4
  givenname: Qimin
  orcidid: 0000-0002-7159-8666
  surname: Xu
  fullname: Xu, Qimin
  email: 101012500@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Aimin
  surname: Wang
  fullname: Wang, Aimin
  email: wangam@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China
BookMark eNo9kE1LAzEQhoNUsFXvgpeA56353G2OtVYtLAh-XZdsdiopbbImWcUf4P82peJheAfmmRl4JmjkvAOELiiZUkrU9ctqOWWEsSmnJZeUHqExlbIqlBKzERoTVs0KQkR5giYxbgihQlI5Rj_Pdjdsk3bgh4jfLHz13rpUYO06vPCus8l6V6zcpw5Wu4Rr73u82Po4BMC3kMDsAXyjI3Q4N7W9nT_lQTTB9skHvM71OKTO56x1eIfi2egt4KX7tMG7HbgUz9DxWm8jnP_lKXq9W74sHor68X61mNeFYYqmAmhFiWbMtEIKUsoZEcKUHIjmYIzSUmnWcl1J3lWlACNakFnGTLeqFYYCP0VXh7t98B8DxNRs_BBcftmwijEpVEVopsiBMsHHGGDd9MHudPhuKGn2spssu9nLbv5k55XLw4oFgH9cVUKpkvNfxWR97Q
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TII_2023_3240578
crossref_primary_10_1109_TITS_2023_3340676
crossref_primary_10_1109_TIP_2024_3364511
Cites_doi 10.1109/TSMC.2021.3050616
10.1109/TIE.2019.2962416
10.1109/IROS.2016.7759060
10.15607/RSS.2020.XVI.009
10.1007/978-3-642-33709-3_55
10.1109/CVPR.2018.00470
10.1109/LRA.2018.2859916
10.1109/TITS.2017.2685523
10.1109/CVPR42600.2020.01112
10.1109/TIE.2016.2523460
10.1177/0278364908090961
10.1109/TRO.2019.2956352
10.1109/TIE.2021.3070508
10.1109/ICRA40945.2020.9196764
10.1109/ICRA.2017.7989671
10.1145/1877808.1877821
10.1109/LRA.2019.2897340
10.1109/IROS40897.2019.8968094
10.1109/IROS40897.2019.8968140
10.15607/rss.2018.xiv.003
10.1007/s10514-016-9548-2
10.1109/CVPR.2016.572
10.1109/ROBIO.2011.6181760
10.1109/TITS.2019.2905046
10.1109/IROS.2018.8593953
10.1109/IROS.2015.7353986
10.1109/TRO.2021.3075644
10.1109/TPAMI.2019.2913372
10.1109/IROS.2018.8594299
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2022.3163511
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 2127
ExternalDocumentID 10_1109_TIE_2022_3163511
9749963
Genre orig-research
GrantInformation_xml – fundername: Key R&D program of Jiangsu Province
  grantid: BE2019106
– fundername: National Natural Science Foundation of China
  grantid: 61973079
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1600803
– fundername: Program for Special Talents in Six Major Fields of Jiangsu Province
  grantid: 2017 JXQC-003
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
TWZ
VH1
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-e1710a22cb4540658044c63e0a3ecc9a59a2b3a753d764ec4be56358ab9b4c1e3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Oct 10 19:24:26 EDT 2024
Fri Aug 23 02:26:55 EDT 2024
Wed Jun 26 19:25:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e1710a22cb4540658044c63e0a3ecc9a59a2b3a753d764ec4be56358ab9b4c1e3
ORCID 0000-0002-7159-8666
0000-0003-3002-7389
0000-0003-2772-7114
0000-0002-1864-423X
PQID 2722549701
PQPubID 85464
PageCount 11
ParticipantIDs ieee_primary_9749963
crossref_primary_10_1109_TIE_2022_3163511
proquest_journals_2722549701
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
Qi (ref26)
ref10
ref32
ref2
ref1
ref17
Dube (ref20)
ref16
ref19
ref18
Chen (ref27) 2014
ref24
ref23
ref25
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TSMC.2021.3050616
– ident: ref17
  doi: 10.1109/TIE.2019.2962416
– ident: ref14
  doi: 10.1109/IROS.2016.7759060
– ident: ref25
  doi: 10.15607/RSS.2020.XVI.009
– ident: ref28
  doi: 10.1007/978-3-642-33709-3_55
– ident: ref19
  doi: 10.1109/CVPR.2018.00470
– ident: ref9
  doi: 10.1109/LRA.2018.2859916
– ident: ref30
  doi: 10.1109/TITS.2017.2685523
– ident: ref31
  doi: 10.1109/CVPR42600.2020.01112
– ident: ref2
  doi: 10.1109/TIE.2016.2523460
– ident: ref6
  doi: 10.1177/0278364908090961
– ident: ref11
  doi: 10.1109/TRO.2019.2956352
– ident: ref1
  doi: 10.1109/TIE.2021.3070508
– ident: ref16
  doi: 10.1109/ICRA40945.2020.9196764
– ident: ref7
  doi: 10.1109/ICRA.2017.7989671
– ident: ref13
  doi: 10.1145/1877808.1877821
– ident: ref24
  doi: 10.1109/LRA.2019.2897340
– ident: ref18
  doi: 10.1109/IROS40897.2019.8968094
– ident: ref22
  doi: 10.1109/IROS40897.2019.8968140
– ident: ref21
  doi: 10.15607/rss.2018.xiv.003
– ident: ref4
  doi: 10.1007/s10514-016-9548-2
– ident: ref10
  doi: 10.1109/CVPR.2016.572
– ident: ref12
  doi: 10.1109/ROBIO.2011.6181760
– ident: ref23
  doi: 10.1109/TITS.2019.2905046
– ident: ref15
  doi: 10.1109/IROS.2018.8593953
– start-page: 652
  volume-title: Proc. Conf. Comput. Vis. Pattern Recognit.
  ident: ref26
  article-title: Pointnet: Deep learning on point sets for 3D classification and segmentation
  contributor:
    fullname: Qi
– ident: ref8
  doi: 10.1109/IROS.2015.7353986
– ident: ref5
  doi: 10.1109/TRO.2021.3075644
– year: 2014
  ident: ref27
  article-title: Convolutional neural network-based place recognition
  contributor:
    fullname: Chen
– ident: ref29
  doi: 10.1109/TPAMI.2019.2913372
– ident: ref32
  doi: 10.1109/IROS.2018.8594299
– start-page: 5266
  volume-title: Proc. Conf. Robot. Automat.
  ident: ref20
  article-title: SegMatch: Segment based PR in 3D point clouds
  contributor:
    fullname: Dube
SSID ssj0014515
Score 2.4908972
Snippet Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 2117
SubjectTerms Artificial neural networks
Cascaded Siamese network
Feature extraction
Global navigation satellite system
Invariants
keypoints- and graph-based neighborhood aggregation
Laser radar
Lidar
Liquid crystal displays
loop closure detection (LCD)
mobile robots
Modules
Point cloud compression
Robotics
Robustness
Simultaneous localization and mapping
Topology
Title Simultaneous Viewpoint- and Condition-Invariant Loop Closure Detection Based on LiDAR Descriptor for Outdoor Large-Scale Environments
URI https://ieeexplore.ieee.org/document/9749963
https://www.proquest.com/docview/2722549701
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHLwIdm3TtLs56u6KyqrgC28laaawKM2iXQXv_m8nbXdZHwdPDbSFMDPJfF_mEYD9zBBO0JKMVxI3ESI0tA-qyDMy87OYK1pfrsD58io-uxcXj9HjDBxOamEQsUw-w6YblrF8Y9OROyo7IuxL8DychdmWlFWt1iRiIKLqtgLuOsYS6RuHJH15dHfeIyLIOfHT2MXNvrmg8k6VXxtx6V1Ol-ByPK8qqeSpOSp0M_340bLxvxNfhsUaZrLjyi5WYAbzVViYaj64Bp-3A5dNqHIk8s8eBvg-tIO88JjKDetYF8omnXnn-RvRaZI_61s7ZJ1n684UWReLMokrZyfkBw2jQX_QPb6hF9VGZF8Y4WF2PSqMpWffZZx7t2QRyHpTxXXrcH_au-ucefWlDF7KZVB4GBAmUZyn2vXuI_ziC5HGIfoqJGuQKpKK61ARCzKtWGAqNEYk9bbSUos0wHAD5nKb4yYwoQIdaKnamSQUFAaapz43bcSMI5J3bcDBWE_JsOq9kZScxZcJ6TRxOk1qnTZgzYl98l0t8QbsjBWb1IvzNeEt7mhxyw-2_v5rG-bdrfJVcvYOzBUvI9wl7FHovdLovgD5mNdm
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_i4wA7bIwP0Y2BD1wmkZI4TlofWSlqWQoSFMQtsuMXqQLFFUs3iTv_956TtGKDA6dYSiJZfs9-v5_fF8BhbggnaEnKK4mbCBEaOgdV5BmZ-3nMFe0vl-A8uogHN-L8LrpbgqNFLgwiVsFn2HbDypdvbDZzV2XHhH0JnofLsBo5XFFnay18BiKq-xVwVzOWaN_cKenL4_GwT1SQc2KosfOc_WOEqq4qr47iyr6cfYLRfGZ1WMl9e1bqdvb0X9HG9059Az42QJOd1JrxGZaw2IQPL8oPbsHz9cTFE6oCif6z2wn-mdpJUXpMFYb1rHNmk9S8YfGbCDVJgCXWTlnvwbpbRXaKZRXGVbAfZAkNo0EyOT25ohf1UWQfGSFidjkrjaVn4mLOvWvSCWT9F-l123Bz1h_3Bl7TlsHLuAxKDwNCJYrzTLvqfYRgfCGyOERfhaQPUkVScR0q4kGmEwvMhMaIVr2rtNQiCzDcgZXCFrgLTKhAB1qqbi4JB4WB5pnPTRcx54hkX1vwfS6ndFpX30gr1uLLlGSaOpmmjUxbsOWWffFds-It2JsLNm2256-Ud7gjxh0_-PL2XwewNhiPkjQZXvz8Cuuux3wdqr0HK-XjDL8REin1fqWAfwFnhtqz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Viewpoint-+and+Condition-Invariant+Loop+Closure+Detection+Based+on+LiDAR+Descriptor+for+Outdoor+Large-Scale+Environments&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Kong%2C+Dong&rft.au=Li%2C+Xu&rft.au=Cen%2C+Yanqing&rft.au=Xu%2C+Qimin&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=70&rft.issue=2&rft.spage=2117&rft.epage=2127&rft_id=info:doi/10.1109%2FTIE.2022.3163511&rft.externalDocID=9749963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon