Simultaneous Viewpoint- and Condition-Invariant Loop Closure Detection Based on LiDAR Descriptor for Outdoor Large-Scale Environments
Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale and complex environments, the existing LiDAR-based methods still inevitably suffer from viewpoint, condition changes, and perceptual aliasing....
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 70; no. 2; pp. 2117 - 2127 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale and complex environments, the existing LiDAR-based methods still inevitably suffer from viewpoint, condition changes, and perceptual aliasing. To effectively fill the aforementioned drawbacks, in this article, a novel LiDAR-based multimodule cascaded Siamese convolutional neural networks is developed, named MMCS-Net, which simulates the human-eye mechanism to extract more discriminative and generic feature descriptors. The MMCS-Net is mainly composed of three complementary modules: Siamese full convolutional (CA_SFC) module with cascaded attention, rotation-invariant and topological feature enhancement (RT_E) module, and feature uniqueness enhancement and aggregation compression (UE_AC) module. In particular, the graph structure employed in RT_E can explicitly encode the local topological correlations of point clouds in terms of intensity and geometric clues in parallel. Extensive comparative experiments on KITTI, NCLT, LGSVL, and real vehicle datasets prove that our proposed method outperforms the state-of-the-art methods, and shows high robustness while ensuring the real-time requirements of resource-constrained robots. |
---|---|
AbstractList | Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale and complex environments, the existing LiDAR-based methods still inevitably suffer from viewpoint, condition changes, and perceptual aliasing. To effectively fill the aforementioned drawbacks, in this article, a novel LiDAR-based multimodule cascaded Siamese convolutional neural networks is developed, named MMCS-Net, which simulates the human-eye mechanism to extract more discriminative and generic feature descriptors. The MMCS-Net is mainly composed of three complementary modules: Siamese full convolutional (CA_SFC) module with cascaded attention, rotation-invariant and topological feature enhancement (RT_E) module, and feature uniqueness enhancement and aggregation compression (UE_AC) module. In particular, the graph structure employed in RT_E can explicitly encode the local topological correlations of point clouds in terms of intensity and geometric clues in parallel. Extensive comparative experiments on KITTI, NCLT, LGSVL, and real vehicle datasets prove that our proposed method outperforms the state-of-the-art methods, and shows high robustness while ensuring the real-time requirements of resource-constrained robots. |
Author | Kong, Dong Li, Xu Xu, Qimin Cen, Yanqing Wang, Aimin |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0003-3002-7389 surname: Kong fullname: Kong, Dong email: 220193370@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Xu orcidid: 0000-0003-2772-7114 surname: Li fullname: Li, Xu email: 101010791@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Yanqing orcidid: 0000-0002-1864-423X surname: Cen fullname: Cen, Yanqing email: yq.cen@rioh.cn organization: Ministry of Transport Research Institute of Highways, Beijing, China – sequence: 4 givenname: Qimin orcidid: 0000-0002-7159-8666 surname: Xu fullname: Xu, Qimin email: 101012500@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Aimin surname: Wang fullname: Wang, Aimin email: wangam@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, China |
BookMark | eNo9kE1LAzEQhoNUsFXvgpeA56353G2OtVYtLAh-XZdsdiopbbImWcUf4P82peJheAfmmRl4JmjkvAOELiiZUkrU9ctqOWWEsSmnJZeUHqExlbIqlBKzERoTVs0KQkR5giYxbgihQlI5Rj_Pdjdsk3bgh4jfLHz13rpUYO06vPCus8l6V6zcpw5Wu4Rr73u82Po4BMC3kMDsAXyjI3Q4N7W9nT_lQTTB9skHvM71OKTO56x1eIfi2egt4KX7tMG7HbgUz9DxWm8jnP_lKXq9W74sHor68X61mNeFYYqmAmhFiWbMtEIKUsoZEcKUHIjmYIzSUmnWcl1J3lWlACNakFnGTLeqFYYCP0VXh7t98B8DxNRs_BBcftmwijEpVEVopsiBMsHHGGDd9MHudPhuKGn2spssu9nLbv5k55XLw4oFgH9cVUKpkvNfxWR97Q |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1109_TII_2023_3240578 crossref_primary_10_1109_TITS_2023_3340676 crossref_primary_10_1109_TIP_2024_3364511 |
Cites_doi | 10.1109/TSMC.2021.3050616 10.1109/TIE.2019.2962416 10.1109/IROS.2016.7759060 10.15607/RSS.2020.XVI.009 10.1007/978-3-642-33709-3_55 10.1109/CVPR.2018.00470 10.1109/LRA.2018.2859916 10.1109/TITS.2017.2685523 10.1109/CVPR42600.2020.01112 10.1109/TIE.2016.2523460 10.1177/0278364908090961 10.1109/TRO.2019.2956352 10.1109/TIE.2021.3070508 10.1109/ICRA40945.2020.9196764 10.1109/ICRA.2017.7989671 10.1145/1877808.1877821 10.1109/LRA.2019.2897340 10.1109/IROS40897.2019.8968094 10.1109/IROS40897.2019.8968140 10.15607/rss.2018.xiv.003 10.1007/s10514-016-9548-2 10.1109/CVPR.2016.572 10.1109/ROBIO.2011.6181760 10.1109/TITS.2019.2905046 10.1109/IROS.2018.8593953 10.1109/IROS.2015.7353986 10.1109/TRO.2021.3075644 10.1109/TPAMI.2019.2913372 10.1109/IROS.2018.8594299 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2022.3163511 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 2127 |
ExternalDocumentID | 10_1109_TIE_2022_3163511 9749963 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key R&D program of Jiangsu Province grantid: BE2019106 – fundername: National Natural Science Foundation of China grantid: 61973079 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFB1600803 – fundername: Program for Special Talents in Six Major Fields of Jiangsu Province grantid: 2017 JXQC-003 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 TWZ VH1 VJK XFK AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-e1710a22cb4540658044c63e0a3ecc9a59a2b3a753d764ec4be56358ab9b4c1e3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Thu Oct 10 19:24:26 EDT 2024 Fri Aug 23 02:26:55 EDT 2024 Wed Jun 26 19:25:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e1710a22cb4540658044c63e0a3ecc9a59a2b3a753d764ec4be56358ab9b4c1e3 |
ORCID | 0000-0002-7159-8666 0000-0003-3002-7389 0000-0003-2772-7114 0000-0002-1864-423X |
PQID | 2722549701 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9749963 crossref_primary_10_1109_TIE_2022_3163511 proquest_journals_2722549701 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 Qi (ref26) ref10 ref32 ref2 ref1 ref17 Dube (ref20) ref16 ref19 ref18 Chen (ref27) 2014 ref24 ref23 ref25 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1109/TSMC.2021.3050616 – ident: ref17 doi: 10.1109/TIE.2019.2962416 – ident: ref14 doi: 10.1109/IROS.2016.7759060 – ident: ref25 doi: 10.15607/RSS.2020.XVI.009 – ident: ref28 doi: 10.1007/978-3-642-33709-3_55 – ident: ref19 doi: 10.1109/CVPR.2018.00470 – ident: ref9 doi: 10.1109/LRA.2018.2859916 – ident: ref30 doi: 10.1109/TITS.2017.2685523 – ident: ref31 doi: 10.1109/CVPR42600.2020.01112 – ident: ref2 doi: 10.1109/TIE.2016.2523460 – ident: ref6 doi: 10.1177/0278364908090961 – ident: ref11 doi: 10.1109/TRO.2019.2956352 – ident: ref1 doi: 10.1109/TIE.2021.3070508 – ident: ref16 doi: 10.1109/ICRA40945.2020.9196764 – ident: ref7 doi: 10.1109/ICRA.2017.7989671 – ident: ref13 doi: 10.1145/1877808.1877821 – ident: ref24 doi: 10.1109/LRA.2019.2897340 – ident: ref18 doi: 10.1109/IROS40897.2019.8968094 – ident: ref22 doi: 10.1109/IROS40897.2019.8968140 – ident: ref21 doi: 10.15607/rss.2018.xiv.003 – ident: ref4 doi: 10.1007/s10514-016-9548-2 – ident: ref10 doi: 10.1109/CVPR.2016.572 – ident: ref12 doi: 10.1109/ROBIO.2011.6181760 – ident: ref23 doi: 10.1109/TITS.2019.2905046 – ident: ref15 doi: 10.1109/IROS.2018.8593953 – start-page: 652 volume-title: Proc. Conf. Comput. Vis. Pattern Recognit. ident: ref26 article-title: Pointnet: Deep learning on point sets for 3D classification and segmentation contributor: fullname: Qi – ident: ref8 doi: 10.1109/IROS.2015.7353986 – ident: ref5 doi: 10.1109/TRO.2021.3075644 – year: 2014 ident: ref27 article-title: Convolutional neural network-based place recognition contributor: fullname: Chen – ident: ref29 doi: 10.1109/TPAMI.2019.2913372 – ident: ref32 doi: 10.1109/IROS.2018.8594299 – start-page: 5266 volume-title: Proc. Conf. Robot. Automat. ident: ref20 article-title: SegMatch: Segment based PR in 3D point clouds contributor: fullname: Dube |
SSID | ssj0014515 |
Score | 2.4908972 |
Snippet | Loop closure detection is the crucial issue of simultaneous localization and mapping in the field of autonomous driving and robotics. In outdoor large-scale... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2117 |
SubjectTerms | Artificial neural networks Cascaded Siamese network Feature extraction Global navigation satellite system Invariants keypoints- and graph-based neighborhood aggregation Laser radar Lidar Liquid crystal displays loop closure detection (LCD) mobile robots Modules Point cloud compression Robotics Robustness Simultaneous localization and mapping Topology |
Title | Simultaneous Viewpoint- and Condition-Invariant Loop Closure Detection Based on LiDAR Descriptor for Outdoor Large-Scale Environments |
URI | https://ieeexplore.ieee.org/document/9749963 https://www.proquest.com/docview/2722549701 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHLwIdm3TtLs56u6KyqrgC28laaawKM2iXQXv_m8nbXdZHwdPDbSFMDPJfF_mEYD9zBBO0JKMVxI3ESI0tA-qyDMy87OYK1pfrsD58io-uxcXj9HjDBxOamEQsUw-w6YblrF8Y9OROyo7IuxL8DychdmWlFWt1iRiIKLqtgLuOsYS6RuHJH15dHfeIyLIOfHT2MXNvrmg8k6VXxtx6V1Ol-ByPK8qqeSpOSp0M_340bLxvxNfhsUaZrLjyi5WYAbzVViYaj64Bp-3A5dNqHIk8s8eBvg-tIO88JjKDetYF8omnXnn-RvRaZI_61s7ZJ1n684UWReLMokrZyfkBw2jQX_QPb6hF9VGZF8Y4WF2PSqMpWffZZx7t2QRyHpTxXXrcH_au-ucefWlDF7KZVB4GBAmUZyn2vXuI_ziC5HGIfoqJGuQKpKK61ARCzKtWGAqNEYk9bbSUos0wHAD5nKb4yYwoQIdaKnamSQUFAaapz43bcSMI5J3bcDBWE_JsOq9kZScxZcJ6TRxOk1qnTZgzYl98l0t8QbsjBWb1IvzNeEt7mhxyw-2_v5rG-bdrfJVcvYOzBUvI9wl7FHovdLovgD5mNdm |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_i4wA7bIwP0Y2BD1wmkZI4TlofWSlqWQoSFMQtsuMXqQLFFUs3iTv_956TtGKDA6dYSiJZfs9-v5_fF8BhbggnaEnKK4mbCBEaOgdV5BmZ-3nMFe0vl-A8uogHN-L8LrpbgqNFLgwiVsFn2HbDypdvbDZzV2XHhH0JnofLsBo5XFFnay18BiKq-xVwVzOWaN_cKenL4_GwT1SQc2KosfOc_WOEqq4qr47iyr6cfYLRfGZ1WMl9e1bqdvb0X9HG9059Az42QJOd1JrxGZaw2IQPL8oPbsHz9cTFE6oCif6z2wn-mdpJUXpMFYb1rHNmk9S8YfGbCDVJgCXWTlnvwbpbRXaKZRXGVbAfZAkNo0EyOT25ohf1UWQfGSFidjkrjaVn4mLOvWvSCWT9F-l123Bz1h_3Bl7TlsHLuAxKDwNCJYrzTLvqfYRgfCGyOERfhaQPUkVScR0q4kGmEwvMhMaIVr2rtNQiCzDcgZXCFrgLTKhAB1qqbi4JB4WB5pnPTRcx54hkX1vwfS6ndFpX30gr1uLLlGSaOpmmjUxbsOWWffFds-It2JsLNm2256-Ud7gjxh0_-PL2XwewNhiPkjQZXvz8Cuuux3wdqr0HK-XjDL8REin1fqWAfwFnhtqz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Viewpoint-+and+Condition-Invariant+Loop+Closure+Detection+Based+on+LiDAR+Descriptor+for+Outdoor+Large-Scale+Environments&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Kong%2C+Dong&rft.au=Li%2C+Xu&rft.au=Cen%2C+Yanqing&rft.au=Xu%2C+Qimin&rft.date=2023-02-01&rft.pub=IEEE&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=70&rft.issue=2&rft.spage=2117&rft.epage=2127&rft_id=info:doi/10.1109%2FTIE.2022.3163511&rft.externalDocID=9749963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |