Sparse Multigraph Embedding for Multimodal Feature Representation

Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvem...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 19; no. 7; pp. 1454 - 1466
Main Authors Wang, Shiping, Guo, Wenzhong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvement of classification and clustering performance of learning algorithms. However, it is a challenging issue since varying modality favors different structural learning. In this paper, we propose an efficient feature learning method to represent multimodal images as a sparse multigraph structure embedding problem. First, an effective algorithm is proposed to learn a sparse multigraph construction from multimodal data, where each modality corresponds to one regularized graph structure. Second, incorporating the learned multigraph structure, the feature learning problem for multimodal images is formulated as a form of matrix factorization. An efficient corresponding algorithm is developed to optimize the problem and its convergence is also proved. Finally, the proposed method is compared with several state-of-the-art single-modal and multimodal feature learning techniques in eight publicly available face image datasets. Comprehensive experimental results demonstrate that the proposed method outperforms the existing ones in terms of clustering performance for all tested datasets.
AbstractList Data fusion is used to integrate features from heterogenous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvement of classification and clustering performance of learning algorithms. However, it is a challenging issue since varying modality favors different structural learning. In this paper, we propose an efficient feature learning method to represent multimodal images as a sparse multigraph structure embedding problem. First, an effective algorithm is proposed to learn a sparse multigraph construction from multimodal data, where each modality corresponds to one regularized graph structure. Second, incorporating the learned multigraph structure, the feature learning problem for multimodal images is formulated as a form of matrix factorization. An efficient corresponding algorithm is developed to optimize the problem and its convergence is also proved. Finally, the proposed method is compared with several state-of-the-art single-modal and multimodal feature learning techniques in eight publicly available face image datasets. Comprehensive experimental results demonstrate that the proposed method outperforms the existing ones in terms of clustering performance for all tested datasets.
Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvement of classification and clustering performance of learning algorithms. However, it is a challenging issue since varying modality favors different structural learning. In this paper, we propose an efficient feature learning method to represent multimodal images as a sparse multigraph structure embedding problem. First, an effective algorithm is proposed to learn a sparse multigraph construction from multimodal data, where each modality corresponds to one regularized graph structure. Second, incorporating the learned multigraph structure, the feature learning problem for multimodal images is formulated as a form of matrix factorization. An efficient corresponding algorithm is developed to optimize the problem and its convergence is also proved. Finally, the proposed method is compared with several state-of-the-art single-modal and multimodal feature learning techniques in eight publicly available face image datasets. Comprehensive experimental results demonstrate that the proposed method outperforms the existing ones in terms of clustering performance for all tested datasets.
Author Shiping Wang
Wenzhong Guo
Author_xml – sequence: 1
  givenname: Shiping
  surname: Wang
  fullname: Wang, Shiping
– sequence: 2
  givenname: Wenzhong
  surname: Guo
  fullname: Guo, Wenzhong
BookMark eNp9kEFLw0AQhRepYFu9C14CnlNndpPd7LGUVoUWQet52SSTmtImcTc5-O9NTfHgQRiYgXlvHvNN2KiqK2LsFmGGCPphu9nMOKCacSmF4NEFG6OOMARQatTPMYdQc4QrNvF-D4BRDGrM5m-NdZ6CTXdoy52zzUewPKaU52W1C4raDYtjndtDsCLbdo6CV2oceapa25Z1dc0uC3vwdHPuU_a-Wm4XT-H65fF5MV-HGdfYhgRJDplQGMuYUCdFGqOAqCApSVhpgYQgqXgRpyrKpCh4RFLo2KaJEH2JKbsf7jau_uzIt2Zfd67qIw1q5CKS8KOCQZW52ntHhWlcebTuyyCYEyjTgzInUOYMqrfIP5asHF5rnS0P_xnvBmNJRL85KhFaKy2-ARrBdis
CODEN ITMUF8
CitedBy_id crossref_primary_10_1007_s11227_020_03149_6
crossref_primary_10_1109_ACCESS_2024_3481311
crossref_primary_10_1109_ACCESS_2020_3038695
crossref_primary_10_1016_j_knosys_2017_09_033
crossref_primary_10_1007_s12652_020_02582_y
crossref_primary_10_1016_j_neucom_2024_127579
crossref_primary_10_1109_TMM_2020_3046855
crossref_primary_10_1016_j_knosys_2019_105165
crossref_primary_10_1007_s11704_019_8395_7
crossref_primary_10_1145_3404374
crossref_primary_10_1016_j_knosys_2021_106748
crossref_primary_10_1007_s12652_020_02543_5
crossref_primary_10_1109_ACCESS_2020_2992269
crossref_primary_10_1007_s11227_020_03151_y
crossref_primary_10_1016_j_neucom_2020_02_104
crossref_primary_10_1109_TMM_2022_3185886
crossref_primary_10_1109_ACCESS_2020_3035654
crossref_primary_10_1016_j_knosys_2019_105259
crossref_primary_10_1109_ACCESS_2019_2916887
crossref_primary_10_1016_j_engappai_2020_103803
crossref_primary_10_1007_s12652_019_01666_8
crossref_primary_10_1016_j_knosys_2017_03_002
crossref_primary_10_1016_j_eswa_2019_112878
crossref_primary_10_1007_s11554_020_01046_y
crossref_primary_10_1109_TKDE_2022_3172687
crossref_primary_10_1007_s12652_019_01594_7
crossref_primary_10_1007_s12652_020_02246_x
crossref_primary_10_1002_cpe_7844
crossref_primary_10_1109_ACCESS_2019_2926839
crossref_primary_10_1016_j_engappai_2018_04_006
crossref_primary_10_1007_s11042_019_07751_6
crossref_primary_10_1007_s12652_020_02748_8
crossref_primary_10_1007_s11042_020_09983_3
crossref_primary_10_1016_j_eswa_2021_115685
crossref_primary_10_1016_j_neucom_2018_10_027
crossref_primary_10_1080_17517575_2019_1701715
crossref_primary_10_1109_TBDATA_2020_3009983
crossref_primary_10_1109_TIP_2022_3171081
crossref_primary_10_1109_TSMC_2019_2946398
crossref_primary_10_1016_j_bdr_2021_100305
crossref_primary_10_1109_TMM_2019_2916093
crossref_primary_10_1109_ACCESS_2018_2884697
crossref_primary_10_1007_s11227_020_03511_8
crossref_primary_10_1109_TMM_2020_3034540
crossref_primary_10_3390_electronics9050750
crossref_primary_10_1109_TCSS_2019_2910599
crossref_primary_10_1109_TMM_2021_3086727
crossref_primary_10_3390_app122111130
crossref_primary_10_1109_ACCESS_2023_3243854
crossref_primary_10_1145_3542927
crossref_primary_10_1016_j_patcog_2021_108386
crossref_primary_10_1007_s12652_020_02504_y
crossref_primary_10_1109_ACCESS_2019_2898991
crossref_primary_10_1016_j_asoc_2019_106038
crossref_primary_10_1109_TNSE_2019_2903913
crossref_primary_10_1016_j_ins_2020_11_039
crossref_primary_10_1016_j_asoc_2020_106071
crossref_primary_10_1109_TMM_2017_2759500
crossref_primary_10_1016_j_ins_2022_12_036
Cites_doi 10.1109/34.927459
10.1109/TMM.2012.2234731
10.1109/CVPR.2012.6247814
10.1007/s13735-012-0006-4
10.1109/IJCNN.2013.6706748
10.1016/j.patcog.2014.08.004
10.1109/JPROC.2006.885134
10.1109/TIP.2013.2244222
10.1090/chel/367
10.1109/TMM.2016.2522763
10.1007/978-1-4419-7970-4
10.1145/2623330.2623726
10.1109/IGARSS.2002.1026180
10.1109/TPAMI.2005.33
10.1126/science.295.5552.7a
10.1109/TIP.2013.2285598
10.1016/j.imavis.2013.10.002
10.1109/34.908974
10.1109/ICPR.2014.312
10.1109/CVPR.2013.398
10.1145/2505515.2505589
10.1002/jcc.10234
10.1126/science.290.5500.2323
10.1016/j.patcog.2014.03.007
10.1109/CVPR.2005.241
10.1145/1386352.1386373
10.1109/TSMC.2016.2605132
10.1016/j.inffus.2015.03.003
10.1109/TPAMI.2005.92
10.1109/TPAMI.2010.231
10.1109/CVPR.2011.5995740
10.1109/3468.798073
10.1561/2200000016
10.1109/TMM.2016.2538722
10.1109/TPAMI.2007.1105
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2017.2663324
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 1466
ExternalDocumentID 10_1109_TMM_2017_2663324
7839979
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61502104; 61672159
  funderid: 10.13039/501100001809
– fundername: Fujian Collaborative Innovation Center for Big Data Application in Governments
– fundername: Technology Innovation Platform Project of Fujian Province
  grantid: 2014H2005
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-e08d0c371565e198fb51304fe66e3a6a0e33e672f5b74c63f24e6395ab8338333
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Mon Jun 30 05:54:22 EDT 2025
Tue Jul 01 00:53:25 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Tue Aug 26 16:38:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e08d0c371565e198fb51304fe66e3a6a0e33e672f5b74c63f24e6395ab8338333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1912346033
PQPubID 75737
PageCount 13
ParticipantIDs ieee_primary_7839979
crossref_primary_10_1109_TMM_2017_2663324
proquest_journals_1912346033
crossref_citationtrail_10_1109_TMM_2017_2663324
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref11
ref32
ref10
cai (ref37) 2011; 33
ref2
ref1
ref17
ref38
ref16
ref19
ref18
cai (ref21) 0
belkin (ref33) 0
he (ref31) 0; 2
su (ref26) 0
roweis (ref28) 2002; 290
ref24
ref23
ref25
nie (ref39) 0
ref20
ref42
ref41
ref22
wright (ref40) 0
ref27
he (ref29) 0
ref8
ref7
ref9
ref4
ref3
ref6
ref5
balasubramanian (ref30) 2002; 295
References_xml – ident: ref12
  doi: 10.1109/34.927459
– ident: ref15
  doi: 10.1109/TMM.2012.2234731
– ident: ref16
  doi: 10.1109/CVPR.2012.6247814
– ident: ref17
  doi: 10.1007/s13735-012-0006-4
– ident: ref22
  doi: 10.1109/IJCNN.2013.6706748
– ident: ref2
  doi: 10.1016/j.patcog.2014.08.004
– ident: ref3
  doi: 10.1109/JPROC.2006.885134
– ident: ref24
  doi: 10.1109/TIP.2013.2244222
– ident: ref41
  doi: 10.1090/chel/367
– start-page: 213
  year: 0
  ident: ref26
  article-title: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories
  publication-title: Proc IEEE 12th Int Conf Comput Vis
– ident: ref4
  doi: 10.1109/TMM.2016.2522763
– ident: ref42
  doi: 10.1007/978-1-4419-7970-4
– ident: ref27
  doi: 10.1145/2623330.2623726
– ident: ref9
  doi: 10.1109/IGARSS.2002.1026180
– ident: ref38
  doi: 10.1109/TPAMI.2005.33
– volume: 2
  start-page: 1208
  year: 0
  ident: ref31
  article-title: Neighborhood preserving embedding
  publication-title: Proc IEEE Int Conf Comput Vis
– volume: 295
  year: 2002
  ident: ref30
  article-title: The isomap algorithm and topological stability
  publication-title: Science
  doi: 10.1126/science.295.5552.7a
– ident: ref10
  doi: 10.1109/TIP.2013.2285598
– ident: ref18
  doi: 10.1016/j.imavis.2013.10.002
– ident: ref36
  doi: 10.1109/34.908974
– ident: ref13
  doi: 10.1109/ICPR.2014.312
– ident: ref8
  doi: 10.1109/CVPR.2013.398
– ident: ref20
  doi: 10.1145/2505515.2505589
– start-page: 585
  year: 0
  ident: ref33
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Neural Inf Process Syst
– ident: ref32
  doi: 10.1002/jcc.10234
– volume: 290
  start-page: 2323
  year: 2002
  ident: ref28
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref19
  doi: 10.1016/j.patcog.2014.03.007
– start-page: 1062
  year: 0
  ident: ref39
  article-title: Optimal mean robust principal component analysis
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref5
  doi: 10.1109/CVPR.2005.241
– ident: ref14
  doi: 10.1145/1386352.1386373
– ident: ref1
  doi: 10.1109/TSMC.2016.2605132
– start-page: 153
  year: 0
  ident: ref29
  article-title: Locality preserving projections
  publication-title: Proc Neural Inf Process Syst
– ident: ref25
  doi: 10.1016/j.inffus.2015.03.003
– ident: ref35
  doi: 10.1109/TPAMI.2005.92
– start-page: 2598
  year: 0
  ident: ref21
  article-title: Multi-view k-means clustering on big data
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– volume: 33
  start-page: 1548
  year: 2011
  ident: ref37
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– ident: ref23
  doi: 10.1109/CVPR.2011.5995740
– ident: ref11
  doi: 10.1109/3468.798073
– ident: ref34
  doi: 10.1561/2200000016
– ident: ref7
  doi: 10.1109/TMM.2016.2538722
– ident: ref6
  doi: 10.1109/TPAMI.2007.1105
– start-page: 2080
  year: 0
  ident: ref40
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014507
Score 2.4507768
Snippet Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an...
Data fusion is used to integrate features from heterogenous data sources into a consistent and accurate representation for certain learning tasks. As an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1454
SubjectTerms Algorithms
Classification
Clustering
Clustering algorithms
Convergence
Correlation
Data integration
Data sources
Datasets
Factorization
Feature extraction
Feature fusion
graph embedding
Learning systems
Machine learning
multimodal data
Multisensor fusion
Optimization
Sparse matrices
sparse representation
State of the art
Title Sparse Multigraph Embedding for Multimodal Feature Representation
URI https://ieeexplore.ieee.org/document/7839979
https://www.proquest.com/docview/1912346033
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz2IgkYUzR68mLjQ3XZb9mgMhJjgwUDCbUPL9KI8gnDx1zvt7hJfMd426SNNp-03384L4GYmImulYSEKhaFAa0KdMGIpPWmUYFxZn6dg9CSHE_E4TaYVuNvHwiCidz7Djvv0tvz5yuzcr7KuIjRPVVqFKhG3PFZrbzEQiQ-NJjhiYUo8pjRJsrQ7Ho2cD5fqEBhxHosvEORrqvx4iD26DOowKteVO5W8dHZb3THv31I2_nfhx3BUqJnBfX4uTqCCywbUyxIOQXGjG3D4KR9hk97YNfFcDHxUrk9lHfQXGucO3wLSbvOGxWpOUzvdcbfB4Nm70hYRTMtTmAz644dhWNRYCE2cRtsQWW_ODFdE4xKM0p7VCaGasCgl8pmcMeQcpYptopUwkttYICk1yUz3HLnl_Axqy9USzyGIbWzRaIbILAldaVIG0RC9jAyzMtIt6JbbnpkiAbmrg_GaeSLC0owElTlBZYWgWnC7H7HOk2_80bfp9n3fr9jyFrRLyWbF7XzLiKPGXEjG-cXvoy7hwM2du-W2obbd7PCKlI-tvvan7gMqg9VA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBRwuiPDOwIJHWiR27GRGiKo8woFbqFtXueQFaBO3Cr-fsJBUvIbZIsRPrzvZ3n30PgNORiKyVhoUoFIYCrQl1woildKRRgnFlfZ6C7F72BuJmmAxrcL6IhUFE73yGLffo7_LHUzN3R2VtRWieqnQJVgj3k7iI1lrcGYjEB0cTILEwJSZTXUqytN3PMufFpVoER5zH4gsI-aoqP7Zijy_dTciqkRVuJY-t-Uy3zPu3pI3_HfoWbJSGZnBRzIxtqOGkDptVEYegXNN1WP-UkbBBu-wLMV0MfFyuT2YdXD1rHDuEC8i-LV48T8f0aWc9zl8xePDOtGUM02QHBt2r_mUvLKsshCZOo1mIrDNmhisicglGacfqhHBNWJQS-UiOGHKOUsU20UoYyW0skMyaZKQ7jt5yvgvLk-kE9yCIbWzRaIbILKldaTIH0RDBjAyzMtJNaFdiz02ZgtxVwnjKPRVhaU6Kyp2i8lJRTThb9Hgp0m_80bbh5L5oV4q8CYeVZvNyfb7lxFJjLiTjfP_3Xiew2utnd_nd9f3tAay5_xROuoewPHud4xGZIjN97GfgB3fh2Io
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Multigraph+Embedding+for+Multimodal+Feature+Representation&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Wang%2C+Shiping&rft.au=Guo%2C+Wenzhong&rft.date=2017-07-01&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=19&rft.issue=7&rft.spage=1454&rft.epage=1466&rft_id=info:doi/10.1109%2FTMM.2017.2663324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2017_2663324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon