Sparse Multigraph Embedding for Multimodal Feature Representation
Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvem...
Saved in:
Published in | IEEE transactions on multimedia Vol. 19; no. 7; pp. 1454 - 1466 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvement of classification and clustering performance of learning algorithms. However, it is a challenging issue since varying modality favors different structural learning. In this paper, we propose an efficient feature learning method to represent multimodal images as a sparse multigraph structure embedding problem. First, an effective algorithm is proposed to learn a sparse multigraph construction from multimodal data, where each modality corresponds to one regularized graph structure. Second, incorporating the learned multigraph structure, the feature learning problem for multimodal images is formulated as a form of matrix factorization. An efficient corresponding algorithm is developed to optimize the problem and its convergence is also proved. Finally, the proposed method is compared with several state-of-the-art single-modal and multimodal feature learning techniques in eight publicly available face image datasets. Comprehensive experimental results demonstrate that the proposed method outperforms the existing ones in terms of clustering performance for all tested datasets. |
---|---|
AbstractList | Data fusion is used to integrate features from heterogenous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvement of classification and clustering performance of learning algorithms. However, it is a challenging issue since varying modality favors different structural learning. In this paper, we propose an efficient feature learning method to represent multimodal images as a sparse multigraph structure embedding problem. First, an effective algorithm is proposed to learn a sparse multigraph construction from multimodal data, where each modality corresponds to one regularized graph structure. Second, incorporating the learned multigraph structure, the feature learning problem for multimodal images is formulated as a form of matrix factorization. An efficient corresponding algorithm is developed to optimize the problem and its convergence is also proved. Finally, the proposed method is compared with several state-of-the-art single-modal and multimodal feature learning techniques in eight publicly available face image datasets. Comprehensive experimental results demonstrate that the proposed method outperforms the existing ones in terms of clustering performance for all tested datasets. Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an effective technique for data fusion, unsupervised multimodal feature representation aims to learn discriminative features, indicating the improvement of classification and clustering performance of learning algorithms. However, it is a challenging issue since varying modality favors different structural learning. In this paper, we propose an efficient feature learning method to represent multimodal images as a sparse multigraph structure embedding problem. First, an effective algorithm is proposed to learn a sparse multigraph construction from multimodal data, where each modality corresponds to one regularized graph structure. Second, incorporating the learned multigraph structure, the feature learning problem for multimodal images is formulated as a form of matrix factorization. An efficient corresponding algorithm is developed to optimize the problem and its convergence is also proved. Finally, the proposed method is compared with several state-of-the-art single-modal and multimodal feature learning techniques in eight publicly available face image datasets. Comprehensive experimental results demonstrate that the proposed method outperforms the existing ones in terms of clustering performance for all tested datasets. |
Author | Shiping Wang Wenzhong Guo |
Author_xml | – sequence: 1 givenname: Shiping surname: Wang fullname: Wang, Shiping – sequence: 2 givenname: Wenzhong surname: Guo fullname: Guo, Wenzhong |
BookMark | eNp9kEFLw0AQhRepYFu9C14CnlNndpPd7LGUVoUWQet52SSTmtImcTc5-O9NTfHgQRiYgXlvHvNN2KiqK2LsFmGGCPphu9nMOKCacSmF4NEFG6OOMARQatTPMYdQc4QrNvF-D4BRDGrM5m-NdZ6CTXdoy52zzUewPKaU52W1C4raDYtjndtDsCLbdo6CV2oceapa25Z1dc0uC3vwdHPuU_a-Wm4XT-H65fF5MV-HGdfYhgRJDplQGMuYUCdFGqOAqCApSVhpgYQgqXgRpyrKpCh4RFLo2KaJEH2JKbsf7jau_uzIt2Zfd67qIw1q5CKS8KOCQZW52ntHhWlcebTuyyCYEyjTgzInUOYMqrfIP5asHF5rnS0P_xnvBmNJRL85KhFaKy2-ARrBdis |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_1007_s11227_020_03149_6 crossref_primary_10_1109_ACCESS_2024_3481311 crossref_primary_10_1109_ACCESS_2020_3038695 crossref_primary_10_1016_j_knosys_2017_09_033 crossref_primary_10_1007_s12652_020_02582_y crossref_primary_10_1016_j_neucom_2024_127579 crossref_primary_10_1109_TMM_2020_3046855 crossref_primary_10_1016_j_knosys_2019_105165 crossref_primary_10_1007_s11704_019_8395_7 crossref_primary_10_1145_3404374 crossref_primary_10_1016_j_knosys_2021_106748 crossref_primary_10_1007_s12652_020_02543_5 crossref_primary_10_1109_ACCESS_2020_2992269 crossref_primary_10_1007_s11227_020_03151_y crossref_primary_10_1016_j_neucom_2020_02_104 crossref_primary_10_1109_TMM_2022_3185886 crossref_primary_10_1109_ACCESS_2020_3035654 crossref_primary_10_1016_j_knosys_2019_105259 crossref_primary_10_1109_ACCESS_2019_2916887 crossref_primary_10_1016_j_engappai_2020_103803 crossref_primary_10_1007_s12652_019_01666_8 crossref_primary_10_1016_j_knosys_2017_03_002 crossref_primary_10_1016_j_eswa_2019_112878 crossref_primary_10_1007_s11554_020_01046_y crossref_primary_10_1109_TKDE_2022_3172687 crossref_primary_10_1007_s12652_019_01594_7 crossref_primary_10_1007_s12652_020_02246_x crossref_primary_10_1002_cpe_7844 crossref_primary_10_1109_ACCESS_2019_2926839 crossref_primary_10_1016_j_engappai_2018_04_006 crossref_primary_10_1007_s11042_019_07751_6 crossref_primary_10_1007_s12652_020_02748_8 crossref_primary_10_1007_s11042_020_09983_3 crossref_primary_10_1016_j_eswa_2021_115685 crossref_primary_10_1016_j_neucom_2018_10_027 crossref_primary_10_1080_17517575_2019_1701715 crossref_primary_10_1109_TBDATA_2020_3009983 crossref_primary_10_1109_TIP_2022_3171081 crossref_primary_10_1109_TSMC_2019_2946398 crossref_primary_10_1016_j_bdr_2021_100305 crossref_primary_10_1109_TMM_2019_2916093 crossref_primary_10_1109_ACCESS_2018_2884697 crossref_primary_10_1007_s11227_020_03511_8 crossref_primary_10_1109_TMM_2020_3034540 crossref_primary_10_3390_electronics9050750 crossref_primary_10_1109_TCSS_2019_2910599 crossref_primary_10_1109_TMM_2021_3086727 crossref_primary_10_3390_app122111130 crossref_primary_10_1109_ACCESS_2023_3243854 crossref_primary_10_1145_3542927 crossref_primary_10_1016_j_patcog_2021_108386 crossref_primary_10_1007_s12652_020_02504_y crossref_primary_10_1109_ACCESS_2019_2898991 crossref_primary_10_1016_j_asoc_2019_106038 crossref_primary_10_1109_TNSE_2019_2903913 crossref_primary_10_1016_j_ins_2020_11_039 crossref_primary_10_1016_j_asoc_2020_106071 crossref_primary_10_1109_TMM_2017_2759500 crossref_primary_10_1016_j_ins_2022_12_036 |
Cites_doi | 10.1109/34.927459 10.1109/TMM.2012.2234731 10.1109/CVPR.2012.6247814 10.1007/s13735-012-0006-4 10.1109/IJCNN.2013.6706748 10.1016/j.patcog.2014.08.004 10.1109/JPROC.2006.885134 10.1109/TIP.2013.2244222 10.1090/chel/367 10.1109/TMM.2016.2522763 10.1007/978-1-4419-7970-4 10.1145/2623330.2623726 10.1109/IGARSS.2002.1026180 10.1109/TPAMI.2005.33 10.1126/science.295.5552.7a 10.1109/TIP.2013.2285598 10.1016/j.imavis.2013.10.002 10.1109/34.908974 10.1109/ICPR.2014.312 10.1109/CVPR.2013.398 10.1145/2505515.2505589 10.1002/jcc.10234 10.1126/science.290.5500.2323 10.1016/j.patcog.2014.03.007 10.1109/CVPR.2005.241 10.1145/1386352.1386373 10.1109/TSMC.2016.2605132 10.1016/j.inffus.2015.03.003 10.1109/TPAMI.2005.92 10.1109/TPAMI.2010.231 10.1109/CVPR.2011.5995740 10.1109/3468.798073 10.1561/2200000016 10.1109/TMM.2016.2538722 10.1109/TPAMI.2007.1105 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2017.2663324 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 1466 |
ExternalDocumentID | 10_1109_TMM_2017_2663324 7839979 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61502104; 61672159 funderid: 10.13039/501100001809 – fundername: Fujian Collaborative Innovation Center for Big Data Application in Governments – fundername: Technology Innovation Platform Project of Fujian Province grantid: 2014H2005 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-e08d0c371565e198fb51304fe66e3a6a0e33e672f5b74c63f24e6395ab8338333 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Mon Jun 30 05:54:22 EDT 2025 Tue Jul 01 00:53:25 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Tue Aug 26 16:38:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-e08d0c371565e198fb51304fe66e3a6a0e33e672f5b74c63f24e6395ab8338333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1912346033 |
PQPubID | 75737 |
PageCount | 13 |
ParticipantIDs | ieee_primary_7839979 crossref_primary_10_1109_TMM_2017_2663324 proquest_journals_1912346033 crossref_citationtrail_10_1109_TMM_2017_2663324 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref11 ref32 ref10 cai (ref37) 2011; 33 ref2 ref1 ref17 ref38 ref16 ref19 ref18 cai (ref21) 0 belkin (ref33) 0 he (ref31) 0; 2 su (ref26) 0 roweis (ref28) 2002; 290 ref24 ref23 ref25 nie (ref39) 0 ref20 ref42 ref41 ref22 wright (ref40) 0 ref27 he (ref29) 0 ref8 ref7 ref9 ref4 ref3 ref6 ref5 balasubramanian (ref30) 2002; 295 |
References_xml | – ident: ref12 doi: 10.1109/34.927459 – ident: ref15 doi: 10.1109/TMM.2012.2234731 – ident: ref16 doi: 10.1109/CVPR.2012.6247814 – ident: ref17 doi: 10.1007/s13735-012-0006-4 – ident: ref22 doi: 10.1109/IJCNN.2013.6706748 – ident: ref2 doi: 10.1016/j.patcog.2014.08.004 – ident: ref3 doi: 10.1109/JPROC.2006.885134 – ident: ref24 doi: 10.1109/TIP.2013.2244222 – ident: ref41 doi: 10.1090/chel/367 – start-page: 213 year: 0 ident: ref26 article-title: Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories publication-title: Proc IEEE 12th Int Conf Comput Vis – ident: ref4 doi: 10.1109/TMM.2016.2522763 – ident: ref42 doi: 10.1007/978-1-4419-7970-4 – ident: ref27 doi: 10.1145/2623330.2623726 – ident: ref9 doi: 10.1109/IGARSS.2002.1026180 – ident: ref38 doi: 10.1109/TPAMI.2005.33 – volume: 2 start-page: 1208 year: 0 ident: ref31 article-title: Neighborhood preserving embedding publication-title: Proc IEEE Int Conf Comput Vis – volume: 295 year: 2002 ident: ref30 article-title: The isomap algorithm and topological stability publication-title: Science doi: 10.1126/science.295.5552.7a – ident: ref10 doi: 10.1109/TIP.2013.2285598 – ident: ref18 doi: 10.1016/j.imavis.2013.10.002 – ident: ref36 doi: 10.1109/34.908974 – ident: ref13 doi: 10.1109/ICPR.2014.312 – ident: ref8 doi: 10.1109/CVPR.2013.398 – ident: ref20 doi: 10.1145/2505515.2505589 – start-page: 585 year: 0 ident: ref33 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Proc Neural Inf Process Syst – ident: ref32 doi: 10.1002/jcc.10234 – volume: 290 start-page: 2323 year: 2002 ident: ref28 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: ref19 doi: 10.1016/j.patcog.2014.03.007 – start-page: 1062 year: 0 ident: ref39 article-title: Optimal mean robust principal component analysis publication-title: Proc 31st Int Conf Mach Learn – ident: ref5 doi: 10.1109/CVPR.2005.241 – ident: ref14 doi: 10.1145/1386352.1386373 – ident: ref1 doi: 10.1109/TSMC.2016.2605132 – start-page: 153 year: 0 ident: ref29 article-title: Locality preserving projections publication-title: Proc Neural Inf Process Syst – ident: ref25 doi: 10.1016/j.inffus.2015.03.003 – ident: ref35 doi: 10.1109/TPAMI.2005.92 – start-page: 2598 year: 0 ident: ref21 article-title: Multi-view k-means clustering on big data publication-title: Proc 23rd Int Joint Conf Artif Intell – volume: 33 start-page: 1548 year: 2011 ident: ref37 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – ident: ref23 doi: 10.1109/CVPR.2011.5995740 – ident: ref11 doi: 10.1109/3468.798073 – ident: ref34 doi: 10.1561/2200000016 – ident: ref7 doi: 10.1109/TMM.2016.2538722 – ident: ref6 doi: 10.1109/TPAMI.2007.1105 – start-page: 2080 year: 0 ident: ref40 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0014507 |
Score | 2.4507768 |
Snippet | Data fusion is used to integrate features from heterogeneous data sources into a consistent and accurate representation for certain learning tasks. As an... Data fusion is used to integrate features from heterogenous data sources into a consistent and accurate representation for certain learning tasks. As an... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1454 |
SubjectTerms | Algorithms Classification Clustering Clustering algorithms Convergence Correlation Data integration Data sources Datasets Factorization Feature extraction Feature fusion graph embedding Learning systems Machine learning multimodal data Multisensor fusion Optimization Sparse matrices sparse representation State of the art |
Title | Sparse Multigraph Embedding for Multimodal Feature Representation |
URI | https://ieeexplore.ieee.org/document/7839979 https://www.proquest.com/docview/1912346033 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz2IgkYUzR68mLjQ3XZb9mgMhJjgwUDCbUPL9KI8gnDx1zvt7hJfMd426SNNp-03384L4GYmImulYSEKhaFAa0KdMGIpPWmUYFxZn6dg9CSHE_E4TaYVuNvHwiCidz7Djvv0tvz5yuzcr7KuIjRPVVqFKhG3PFZrbzEQiQ-NJjhiYUo8pjRJsrQ7Ho2cD5fqEBhxHosvEORrqvx4iD26DOowKteVO5W8dHZb3THv31I2_nfhx3BUqJnBfX4uTqCCywbUyxIOQXGjG3D4KR9hk97YNfFcDHxUrk9lHfQXGucO3wLSbvOGxWpOUzvdcbfB4Nm70hYRTMtTmAz644dhWNRYCE2cRtsQWW_ODFdE4xKM0p7VCaGasCgl8pmcMeQcpYptopUwkttYICk1yUz3HLnl_Axqy9USzyGIbWzRaIbILAldaVIG0RC9jAyzMtIt6JbbnpkiAbmrg_GaeSLC0owElTlBZYWgWnC7H7HOk2_80bfp9n3fr9jyFrRLyWbF7XzLiKPGXEjG-cXvoy7hwM2du-W2obbd7PCKlI-tvvan7gMqg9VA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VGICBRwuiPDOwIJHWiR27GRGiKo8woFbqFtXueQFaBO3Cr-fsJBUvIbZIsRPrzvZ3n30PgNORiKyVhoUoFIYCrQl1woildKRRgnFlfZ6C7F72BuJmmAxrcL6IhUFE73yGLffo7_LHUzN3R2VtRWieqnQJVgj3k7iI1lrcGYjEB0cTILEwJSZTXUqytN3PMufFpVoER5zH4gsI-aoqP7Zijy_dTciqkRVuJY-t-Uy3zPu3pI3_HfoWbJSGZnBRzIxtqOGkDptVEYegXNN1WP-UkbBBu-wLMV0MfFyuT2YdXD1rHDuEC8i-LV48T8f0aWc9zl8xePDOtGUM02QHBt2r_mUvLKsshCZOo1mIrDNmhisicglGacfqhHBNWJQS-UiOGHKOUsU20UoYyW0skMyaZKQ7jt5yvgvLk-kE9yCIbWzRaIbILKldaTIH0RDBjAyzMtJNaFdiz02ZgtxVwnjKPRVhaU6Kyp2i8lJRTThb9Hgp0m_80bbh5L5oV4q8CYeVZvNyfb7lxFJjLiTjfP_3Xiew2utnd_nd9f3tAay5_xROuoewPHud4xGZIjN97GfgB3fh2Io |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Multigraph+Embedding+for+Multimodal+Feature+Representation&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Wang%2C+Shiping&rft.au=Guo%2C+Wenzhong&rft.date=2017-07-01&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=19&rft.issue=7&rft.spage=1454&rft.epage=1466&rft_id=info:doi/10.1109%2FTMM.2017.2663324&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2017_2663324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |