Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods
In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 7; p. 2483 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This work discusses twelve initialisation strategies for nonlinear MPC. In general, three categories of strategies are discussed: (a) five simple strategies, including constant and random guesses as well as the one based on the previous optimal solution, (b) three strategies that utilise a neural approximator and an inverse nonlinear static model of the process and (c) four hybrid original methods developed by the authors in which an auxiliary quadratic optimisation task is solved or an explicit MPC controller is used; in both approaches, linear or successively linearised on-line models can be used. Efficiency of all methods is thoroughly discussed for a neutralisation reactor benchmark process and some of them are evaluated for a robot manipulator, which is a multivariable process. Two strategies are found to be the fastest and most robust to model imperfections and disturbances acting on the process: the hybrid strategy with an auxiliary explicit MPC controller based on a successively linearised model and the method which uses the optimal solution obtained at the previous sampling instant. Concerning the hybrid strategies, since a simplified model is used in the auxiliary controller, they perform much better than the approximation-based ones with complex neural networks. It is because the auxiliary controller has a negative feedback mechanism that allows it to compensate model errors and disturbances efficiently. Thus, when the auxiliary MPC controller based on a successively linearised model is available, it may be successfully and efficiently used for the initialisation of nonlinear MPC, whereas quite sophisticated methods based on a neural approximator are very disappointing. |
---|---|
AbstractList | In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This work discusses twelve initialisation strategies for nonlinear MPC. In general, three categories of strategies are discussed: (a) five simple strategies, including constant and random guesses as well as the one based on the previous optimal solution, (b) three strategies that utilise a neural approximator and an inverse nonlinear static model of the process and (c) four hybrid original methods developed by the authors in which an auxiliary quadratic optimisation task is solved or an explicit MPC controller is used; in both approaches, linear or successively linearised on-line models can be used. Efficiency of all methods is thoroughly discussed for a neutralisation reactor benchmark process and some of them are evaluated for a robot manipulator, which is a multivariable process. Two strategies are found to be the fastest and most robust to model imperfections and disturbances acting on the process: the hybrid strategy with an auxiliary explicit MPC controller based on a successively linearised model and the method which uses the optimal solution obtained at the previous sampling instant. Concerning the hybrid strategies, since a simplified model is used in the auxiliary controller, they perform much better than the approximation-based ones with complex neural networks. It is because the auxiliary controller has a negative feedback mechanism that allows it to compensate model errors and disturbances efficiently. Thus, when the auxiliary MPC controller based on a successively linearised model is available, it may be successfully and efficiently used for the initialisation of nonlinear MPC, whereas quite sophisticated methods based on a neural approximator are very disappointing. |
Author | Ławryńczuk, Maciej Seredyński, Dawid Chaber, Patryk Marusak, Piotr M. |
Author_xml | – sequence: 1 givenname: Maciej orcidid: 0000-0002-6846-2004 surname: Ławryńczuk fullname: Ławryńczuk, Maciej – sequence: 2 givenname: Piotr M. orcidid: 0000-0002-6556-7919 surname: Marusak fullname: Marusak, Piotr M. – sequence: 3 givenname: Patryk orcidid: 0000-0003-0257-8255 surname: Chaber fullname: Chaber, Patryk – sequence: 4 givenname: Dawid orcidid: 0000-0003-2528-6335 surname: Seredyński fullname: Seredyński, Dawid |
BookMark | eNpNkUlrHDEQhUWwId4u-QWC3AzjaOlutXIzgxMPeAMnZ6FWlWKNZWkiaQb87z32ZHFdauHxvYJ3SPZSTkjIJ87OpNTsCybeMyW6UX4gB1zrYcaZknvv5o_kpNYl25aUXEp5QB4XKbRgY6i2hZxo9vR21cLT3_0-xw2WSn0u9CanGBLaQq8zYKR3BSG4FjZI5zm1kuNXOo-21uBspJt6Ri-fpxKAXmN7yFCPyb63seLJn35Efn67-DG_nF3dfl_Mz69mTmjeZuB7pzrsmFBOcDVJO6pJcK6th6G32lveKa4A3AiT0iAtiAFwxNH7kfUgj8hix4Vsl2ZVwpMtzybbYN4OufwytrTgIpoewOIw8nHL7LwG7TROHbBBTDAM0yvr8461Kvn3Gmszy7wuafu-EUOnmWC801vV6U7lSq61oP_nypl5zcb8z0a-AFiIhEM |
CitedBy_id | crossref_primary_10_3390_en15186702 crossref_primary_10_3390_math10152571 crossref_primary_10_1109_LCSYS_2024_3408711 crossref_primary_10_3390_en16134962 |
Cites_doi | 10.3182/20140824-6-ZA-1003.01329 10.1049/ip-cta:20040438 10.1007/978-3-642-21697-8_30 10.1007/978-3-319-04229-9 10.1007/978-3-642-28780-0 10.34768/amcs-2021-0005 10.1016/0005-1098(95)00044-W 10.1016/j.conengprac.2011.10.014 10.1016/j.automatica.2003.09.021 10.1016/j.neucom.2016.03.066 10.1016/j.conengprac.2020.104362 10.1016/j.jfranklin.2017.10.002 10.3390/a13060143 10.3390/en13051275 10.1016/j.compchemeng.2004.09.023 10.1016/j.jprocont.2020.06.012 10.1016/S0959-1524(02)00121-X 10.1109/TVT.2012.2197767 10.1109/EPEC.2016.7771775 10.1016/S0959-1524(97)80001-B 10.1155/2019/5219867 10.3390/en14227505 10.3390/en14196386 10.1109/TCST.2011.2134852 10.3182/20100712-3-DE-2013.00066 10.1016/j.conengprac.2013.09.004 10.1016/j.jpowsour.2014.01.118 10.1109/TVT.2005.847211 10.3390/en14134041 10.1016/S0959-1524(99)00036-0 10.2478/amcs-2019-0042 10.3390/en14237974 10.3390/en9110973 10.1109/ACCESS.2019.2901767 10.1016/j.jpowsour.2016.11.106 10.1109/TIE.2016.2547870 10.1007/978-1-4471-3398-8 10.3390/en14237953 10.1016/j.engappai.2018.09.014 10.1016/j.rser.2020.110422 10.1016/j.jprocont.2013.02.004 10.1007/978-3-030-83815-7 10.1016/j.cej.2008.05.013 10.34768/amcs-2020-0002 10.3390/en11071812 10.1109/IROS.2016.7759115 10.1016/j.jprocont.2012.07.011 10.1016/j.solener.2019.03.094 10.1109/TITS.2020.2994772 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15072483 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic ProQuest Central China |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_5ddae6818a144f9d9c9eb4d062bd66bd 10_3390_en15072483 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ I-F IAO ITC KQ8 L6V L8X M7S MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY RIG TR2 TUS ABUWG AZQEC COVID DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c291t-df5c74e4027c217b3a87b2119afd65a9fa14717ddc8db79d3ad26de8e8ff805d3 |
IEDL.DBID | COVID |
ISSN | 1996-1073 |
IngestDate | Tue Oct 22 15:13:45 EDT 2024 Tue Oct 29 17:56:06 EDT 2024 Wed Sep 25 14:09:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-df5c74e4027c217b3a87b2119afd65a9fa14717ddc8db79d3ad26de8e8ff805d3 |
ORCID | 0000-0003-0257-8255 0000-0003-2528-6335 0000-0002-6556-7919 0000-0002-6846-2004 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2649020149?pq-origsite=%requestingapplication% |
PQID | 2649020149 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ddae6818a144f9d9c9eb4d062bd66bd proquest_journals_2649020149 crossref_primary_10_3390_en15072483 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Debert (ref_30) 2010; 43 Toivonen (ref_47) 2005; 29 ref_50 Nebeluk (ref_4) 2020; 30 Ding (ref_36) 2012; 22 ref_14 Cervantes (ref_33) 2003; 13 ref_13 ref_10 ref_54 Valverde (ref_11) 2016; 63 (ref_40) 2013; 23 Gallego (ref_9) 2019; 184 Yan (ref_26) 2012; 61 Parisini (ref_48) 1995; 31 Chatterjee (ref_53) 2021; 1 ref_59 Ogonowski (ref_7) 2020; 30 Hu (ref_37) 2011; Volume 97 Zhou (ref_43) 2019; 7 Marusak (ref_41) 2021; 31 ref_60 Chanfreut (ref_15) 2019; 22 Bania (ref_16) 2020; 30 Shafiee (ref_35) 2008; 143 ref_25 ref_24 ref_23 ref_22 ref_21 Borhan (ref_19) 2012; 20 Josevski (ref_28) 2014; 47 (ref_56) 2016; 205 Fruzzetti (ref_32) 1997; 7 Johansen (ref_46) 2004; 40 Vaishnav (ref_55) 2021; 1 Gruber (ref_12) 2012; 20 Zhou (ref_44) 2017; 354 Kumar (ref_49) 2021; 1 Assandri (ref_5) 2013; 21 Koot (ref_29) 2005; 54 Chairez (ref_8) 2020; 98 ref_39 Huang (ref_17) 2017; 341 ref_38 Janczak (ref_58) 2019; 29 Jutan (ref_57) 2004; 151 Zhang (ref_20) 2019; 2019 ref_45 Hu (ref_18) 2021; 136 ref_42 Li (ref_31) 2015; 16 ref_1 Santucci (ref_27) 2014; 258 ref_3 ref_2 Vaupel (ref_51) 2020; 92 Kvasnica (ref_52) 2019; 77 Norquay (ref_34) 1999; 9 ref_6 |
References_xml | – volume: 47 start-page: 2132 year: 2014 ident: ref_28 article-title: Energy Management of Parallel Hybrid Electric Vehicles based on Stochastic Model Predictive Control publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-ZA-1003.01329 contributor: fullname: Josevski – volume: 151 start-page: 329 year: 2004 ident: ref_57 article-title: Wiener model identification and predictive control of a pH neutralisation process publication-title: Proc. IEE Part Control Theory Appl. doi: 10.1049/ip-cta:20040438 contributor: fullname: Jutan – volume: 30 start-page: 471 year: 2020 ident: ref_7 article-title: Control of complex dynamic nonlinear loading process for electromagnetic mill publication-title: Arch. Control Sci. contributor: fullname: Ogonowski – volume: Volume 97 start-page: 235 year: 2011 ident: ref_37 article-title: Hammerstein-Wiener model predictive control of continuous stirred tank reactor publication-title: Electronics and Signal Processing doi: 10.1007/978-3-642-21697-8_30 contributor: fullname: Hu – ident: ref_39 doi: 10.1007/978-3-319-04229-9 – ident: ref_45 doi: 10.1007/978-3-642-28780-0 – volume: 31 start-page: 59 year: 2021 ident: ref_41 article-title: A numerically efficient fuzzy MPC algorithms with fast generation of the control signal publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.34768/amcs-2021-0005 contributor: fullname: Marusak – volume: 31 start-page: 1443 year: 1995 ident: ref_48 article-title: A receding-horizon regulator for nonlinear systems and a neural approximation publication-title: Automatica doi: 10.1016/0005-1098(95)00044-W contributor: fullname: Parisini – volume: 20 start-page: 205 year: 2012 ident: ref_12 article-title: Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2011.10.014 contributor: fullname: Gruber – volume: 40 start-page: 293 year: 2004 ident: ref_46 article-title: Approximate explicit receding horizon control of constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2003.09.021 contributor: fullname: Johansen – volume: 205 start-page: 311 year: 2016 ident: ref_56 article-title: Modelling and predictive control of a neutralisation reactor using sparse Support Vector Machine Wiener models publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.066 – volume: 98 start-page: 104362 year: 2020 ident: ref_8 article-title: Output based bilateral adaptive control of partially known robotic systems publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104362 contributor: fullname: Chairez – volume: 354 start-page: 8072 year: 2017 ident: ref_44 article-title: RBF-ARX model-based robust MPC for nonlinear systems with unknown and bounded disturbance publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.10.002 contributor: fullname: Zhou – ident: ref_42 doi: 10.3390/a13060143 – ident: ref_24 doi: 10.3390/en13051275 – volume: 1 start-page: 22 year: 2021 ident: ref_55 article-title: Analytical review analysis for screening COVID-19 disease publication-title: Int. J. Mod. Res. contributor: fullname: Vaishnav – volume: 29 start-page: 323 year: 2005 ident: ref_47 article-title: Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.09.023 contributor: fullname: Toivonen – volume: 92 start-page: 261 year: 2020 ident: ref_51 article-title: Accelerating nonlinear model predictive control through machine learning publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.06.012 contributor: fullname: Vaupel – volume: 13 start-page: 655 year: 2003 ident: ref_33 article-title: A nonlinear model predictive control system based on Wiener piecewise linear models publication-title: J. Process Control doi: 10.1016/S0959-1524(02)00121-X contributor: fullname: Cervantes – volume: 61 start-page: 2458 year: 2012 ident: ref_26 article-title: Hybrid Electric Vehicle Model Predictive Control Torque-Split Strategy Incorporating Engine Transient Characteristics publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2012.2197767 contributor: fullname: Yan – ident: ref_25 doi: 10.1109/EPEC.2016.7771775 – volume: 7 start-page: 31 year: 1997 ident: ref_32 article-title: Nonlinear model predictive control using Hammerstein models publication-title: J. Process Control doi: 10.1016/S0959-1524(97)80001-B contributor: fullname: Fruzzetti – volume: 2019 start-page: 5219867 year: 2019 ident: ref_20 article-title: Model–Predictive Optimization for Pure Electric Vehicle during a Vehicle–Following Process publication-title: Math. Probl. Eng. doi: 10.1155/2019/5219867 contributor: fullname: Zhang – ident: ref_13 doi: 10.3390/en14227505 – ident: ref_6 doi: 10.3390/en14196386 – volume: 1 start-page: 1 year: 2021 ident: ref_49 article-title: A comparative study of fuzzy optimization through fuzzy number publication-title: Int. J. Mod. Res. contributor: fullname: Kumar – volume: 20 start-page: 593 year: 2012 ident: ref_19 article-title: MPC–Based Energy Management of a Power–Split Hybrid Electric Vehicle publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2011.2134852 contributor: fullname: Borhan – volume: 43 start-page: 270 year: 2010 ident: ref_30 article-title: Predictive energy management for hybrid electric vehicles—Prediction horizon and battery capacity sensitivity publication-title: IFAC Proc. Vol. doi: 10.3182/20100712-3-DE-2013.00066 contributor: fullname: Debert – volume: 21 start-page: 1795 year: 2013 ident: ref_5 article-title: Nonlinear parametric predictive temperature control of a distillation column publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2013.09.004 contributor: fullname: Assandri – volume: 258 start-page: 395 year: 2014 ident: ref_27 article-title: Power split strategies for hybrid energy storage systems for vehicular applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.118 contributor: fullname: Santucci – volume: 54 start-page: 771 year: 2005 ident: ref_29 article-title: Energy management strategies for vehicular electric power systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2005.847211 contributor: fullname: Koot – ident: ref_22 doi: 10.3390/en14134041 – ident: ref_3 – volume: 9 start-page: 461 year: 1999 ident: ref_34 article-title: Application of Wiener model predictive control (WMPC) to an industrial C2 splitter publication-title: J. Process Control doi: 10.1016/S0959-1524(99)00036-0 contributor: fullname: Norquay – volume: 29 start-page: 571 year: 2019 ident: ref_58 article-title: Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.2478/amcs-2019-0042 contributor: fullname: Janczak – ident: ref_14 doi: 10.3390/en14237974 – ident: ref_21 doi: 10.3390/en9110973 – volume: 7 start-page: 27231 year: 2019 ident: ref_43 article-title: Robust predictive control algorithm based on parameter variation rate information of functional-coefficient ARX model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901767 contributor: fullname: Zhou – volume: 341 start-page: 91 year: 2017 ident: ref_17 article-title: Model predictive control power management strategies for HEVs: A review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.106 contributor: fullname: Huang – volume: 63 start-page: 4919 year: 2016 ident: ref_11 article-title: Optimal Load Sharing of Hydrogen-Based Microgrids with Hybrid Storage Using Model-Predictive Control publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2547870 contributor: fullname: Valverde – ident: ref_1 doi: 10.1007/978-1-4471-3398-8 – ident: ref_10 doi: 10.3390/en14237953 – volume: 77 start-page: 1 year: 2019 ident: ref_52 article-title: Machine learning-based warm starting of active set methods in embedded model predictive control publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.014 contributor: fullname: Kvasnica – volume: 30 start-page: 325 year: 2020 ident: ref_4 article-title: Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors publication-title: Arch. Control Sci. contributor: fullname: Nebeluk – ident: ref_50 – volume: 136 start-page: 110422 year: 2021 ident: ref_18 article-title: Model predictive control of microgrids—An overview publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110422 contributor: fullname: Hu – ident: ref_54 – ident: ref_2 – volume: 23 start-page: 696 year: 2013 ident: ref_40 article-title: Practical nonlinear predictive control algorithms for neural Wiener models publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.02.004 – ident: ref_38 doi: 10.1007/978-3-030-83815-7 – volume: 143 start-page: 282 year: 2008 ident: ref_35 article-title: Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.05.013 contributor: fullname: Shafiee – volume: 30 start-page: 47 year: 2020 ident: ref_16 article-title: An information based approach to stochastic control problems publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.34768/amcs-2020-0002 contributor: fullname: Bania – volume: 1 start-page: 15 year: 2021 ident: ref_53 article-title: Artificial intelligence and patentability: Review and discussions publication-title: Int. J. Mod. Res. contributor: fullname: Chatterjee – ident: ref_23 doi: 10.3390/en11071812 – volume: 16 start-page: 1199 year: 2015 ident: ref_31 article-title: Fast online computation of a model predictive controller and its application to fuel economy-oriented adaptive cruise control publication-title: IEEE Trans. Ind. Informat. contributor: fullname: Li – ident: ref_60 – ident: ref_59 doi: 10.1109/IROS.2016.7759115 – volume: 22 start-page: 1773 year: 2012 ident: ref_36 article-title: Dynamic output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.07.011 contributor: fullname: Ding – volume: 184 start-page: 105 year: 2019 ident: ref_9 article-title: Adaptive incremental state space MPC for collector defocusing of a parabolic trough plant publication-title: Sol. Energy doi: 10.1016/j.solener.2019.03.094 contributor: fullname: Gallego – volume: 22 start-page: 6772 year: 2019 ident: ref_15 article-title: Coalitional model predictive control on freeways traffic networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2994772 contributor: fullname: Chanfreut |
SSID | ssj0000331333 |
Score | 2.3640933 |
Snippet | In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2483 |
SubjectTerms | Algorithms Approximation computational efficiency Controllers Disturbances Electric vehicles Energy management Linearization model predictive control Negative feedback Neural networks neutralisation reactor Nonlinear control optimisation Process controls Robot arms robot manipulator Static models |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidEtBr3dakaeJNh2MKm4IOditJXnJRO9mm4H_vS9rpxIMXjy2Flu8lL99H3_seIWfCaO19qhOd6jxBRox7TnV4wq1hXW5yaU1ocB6OxGDMbyfZZGXUV6gJq-yBK-DaGYB2Ao8VjdTfK1BWOcOhI1IDQhiI2bejVsRUzMGMofhilR8pQ13fdmWgPimX7McJFI36f-XheLj0t8hmzQrpZfU122TNlTtkY8UrcJc83YQyn2BXGLGkU0_vcLu_LK8fpqHGeU6RhNJR5X-hZzSMOnum97PwOyYkNtqrStMvaJyGGSJE3-fndPAROrfoMM6Tnu-Rcf_6sTdI6kkJiU1Vd5GAz2zOHWrB3KLGMEzL3ATvNu1BZFp5BA91G4CVYHIFTEMqwEknvZedDNg-aZTT0h0QKjVyGpY5DkilrOQqlVkGOhcOvLPeNMnpEr3itTLEKFBIBIyLb4yb5CoA-_VEMLGONzC0RR3a4q_QNklrGZai3lnzAgmcQoqLwu7wP95xRNbT0NAQa3FapLGYvbljpBkLcxJX1CfwydRb priority: 102 providerName: Directory of Open Access Journals |
Title | Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods |
URI | https://www.proquest.com/docview/2649020149 https://doaj.org/article/5ddae6818a144f9d9c9eb4d062bd66bd |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5i7QUOjJ-ibFSW4Jquje3E4YJYt65DWjcBQ71Ftp_NYdCMpkOCv55nJ9kYSBy4REqcg6Xv-b3v2c_fA3iVGa29T3WiU50nxIhpzRVjkQhr-ESYXFkTLjifLLL5uXi3lMt2w61uyyo7nxgdNVY27JHvUeAuiNoQoX9z-S0JXaPC6WrbQmML-lzJVPWgPz39dHxwvcsy5pySMN7oknLK7_fcKlCgVCh-KxJFwf6__HEMMrNtKLvpNbUlF6OrjRnZn38oN_7__B_A_ZZ_sreNwTyEO271CO79pkr4GC6OQ0FREEaMqLHKs1NyLF-79w9VqKauGdFdtmiUNvSahaZqX9jZOhz8BBfKpk0R_GsW-24GW2Df6xGb_wh3xNhJ7FxdP4Hz2eHH6TxpezIkNi0mmwS9tLlwlHXmlrIZw7XKTVCJ0x4zqQuvJxTuckSr0OQFco1phk455b0aS-RPobeqVu4ZMKWJPXHpBBJps0oUqZISdZ459M56M4CXHT7lZSO9UVLKElAsb1AcwH6A7vqPIJcdP1Trz2W7-kqJqF1G3IRmJ3yBhS2cETjOUoNZZnAAux1oZbuG6_IGsef_Ht6Bu2m4FBHreXaht1lfuRdEVTZmCFtqdjSE_v7h4uz9sLXOYUz86Xm0nPwCAwfzNQ |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74363,74630,74740 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagPQAH3ohAAUtw3XSz9nptLggCVQJNikSLerNsj82hkC3ZFAl-PTP7aHlIHDiu1wdLnz3zjT3zDWPPlHcupcJlrnBVhowYz5zJZSaDFxPpKx08FTgvlmp2JN8el8f9hVvTp1UONrE11FAHuiPfRcdtkNogoX9x-jWjrlH0utq30LjMttGx5hh8bU8PPs5fn9-y5EJgECY6XVKBU3bjiihQIbX4zRO1gv1_2ePWyezdYHZYXpdbcjI-2_hx-PGHcuP_r_8mu97zT_6y2zC32KW4us2u_aJKeIedzCmhiIQRW9R4nfgBGpYvw_eHmrKpG450ly87pQ235tRU7TN_v6aHHzKhfNolwT_nbd9N2gv8WzPms-9UI8YXbefq5i472ntzOJ1lfU-GLBRmsskglaGSEaPOKmA044XTlSeVOJdAlc4kN0F3VwEEDb4yIBwUCqKOOiWdlyDusa1VvYr3GdcO2ZMoowQkbUFLU-iyBFepCCmG5Efs6YCPPe2kNyyGLISivUBxxF4RdOczSC67HajXn2x_-mwJ4KJCboKrk8mACSZ6CbkqPCjlYcR2BtBsf4Ybe4HYg3__fsKuzA4X-3Z_vnz3kF0tqECize3ZYVub9Vl8hLRl4x_3e_Mn1Yvxtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RTxQxEG4UEyMPRFHDAWITfF3ubtvttrwYRc5D5SRBEt42baflAbg9bk8T_j0z3T3QmPC4u33YTKcz37Rfv2Hsg3LWxpjbzOa2zBAR45ozA5lJ78RQulJ7RxecjydqfCa_nRfnHf-p6WiVy5iYAjXUnvbI-5i4DUIbBPT92NEiTr6MPs5uMuogRSetXTuNp-wZZkVFPq9HX-_3WwZCYDkmWoVSgZV-P0wJDOVSi39yUpLu_y8yp3QzesnWOpzIP7UT-4o9CdN1tvqXeuBrdnlExB8SMEzW5XXkPzEAXC-fT2tiPTccYSmftIoYds6p-dkVP5nTAQ2FOn7QktX3eeqPSXPG_zR7fHxLd7n4ceow3bxhZ6PDXwfjrOudkPncDBcZxMKXMmB1WHqsOpywunSk5mYjqMKaaIeYlkoAr8GVBoSFXEHQQceoBwWIt2xlWk_DBuPaIsoRRZCA4MpraXJdFGBLFSAGH12P7S6tV81aiYwKSwuycfVg4x77TIa9H0Gy1ulFPb-oulVSFQA2KMQQ-HcyGjDeBCdhoHIHSjnose3ltFTdWmuqB8_YfPzze_YcXab6cTT5vsVe5HSPIVFwttnKYv47vEN0sXA7yW3uAO0w0aI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initialisation+of+Optimisation+Solvers+for+Nonlinear+Model+Predictive+Control%3A+Classical+vs.+Hybrid+Methods&rft.jtitle=Energies+%28Basel%29&rft.au=%C5%81awry%C5%84czuk%2C+Maciej&rft.au=Marusak%2C+Piotr+M&rft.au=Chaber%2C+Patryk&rft.au=Seredy%C5%84ski%2C+Dawid&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=7&rft.spage=2483&rft_id=info:doi/10.3390%2Fen15072483&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |