Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods

In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 7; p. 2483
Main Authors Ławryńczuk, Maciej, Marusak, Piotr M., Chaber, Patryk, Seredyński, Dawid
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This work discusses twelve initialisation strategies for nonlinear MPC. In general, three categories of strategies are discussed: (a) five simple strategies, including constant and random guesses as well as the one based on the previous optimal solution, (b) three strategies that utilise a neural approximator and an inverse nonlinear static model of the process and (c) four hybrid original methods developed by the authors in which an auxiliary quadratic optimisation task is solved or an explicit MPC controller is used; in both approaches, linear or successively linearised on-line models can be used. Efficiency of all methods is thoroughly discussed for a neutralisation reactor benchmark process and some of them are evaluated for a robot manipulator, which is a multivariable process. Two strategies are found to be the fastest and most robust to model imperfections and disturbances acting on the process: the hybrid strategy with an auxiliary explicit MPC controller based on a successively linearised model and the method which uses the optimal solution obtained at the previous sampling instant. Concerning the hybrid strategies, since a simplified model is used in the auxiliary controller, they perform much better than the approximation-based ones with complex neural networks. It is because the auxiliary controller has a negative feedback mechanism that allows it to compensate model errors and disturbances efficiently. Thus, when the auxiliary MPC controller based on a successively linearised model is available, it may be successfully and efficiently used for the initialisation of nonlinear MPC, whereas quite sophisticated methods based on a neural approximator are very disappointing.
AbstractList In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial solution to the nonlinear optimisation task. Since calculations must be performed fast on-line, the objective is to minimise these indicators. This work discusses twelve initialisation strategies for nonlinear MPC. In general, three categories of strategies are discussed: (a) five simple strategies, including constant and random guesses as well as the one based on the previous optimal solution, (b) three strategies that utilise a neural approximator and an inverse nonlinear static model of the process and (c) four hybrid original methods developed by the authors in which an auxiliary quadratic optimisation task is solved or an explicit MPC controller is used; in both approaches, linear or successively linearised on-line models can be used. Efficiency of all methods is thoroughly discussed for a neutralisation reactor benchmark process and some of them are evaluated for a robot manipulator, which is a multivariable process. Two strategies are found to be the fastest and most robust to model imperfections and disturbances acting on the process: the hybrid strategy with an auxiliary explicit MPC controller based on a successively linearised model and the method which uses the optimal solution obtained at the previous sampling instant. Concerning the hybrid strategies, since a simplified model is used in the auxiliary controller, they perform much better than the approximation-based ones with complex neural networks. It is because the auxiliary controller has a negative feedback mechanism that allows it to compensate model errors and disturbances efficiently. Thus, when the auxiliary MPC controller based on a successively linearised model is available, it may be successfully and efficiently used for the initialisation of nonlinear MPC, whereas quite sophisticated methods based on a neural approximator are very disappointing.
Author Ławryńczuk, Maciej
Seredyński, Dawid
Chaber, Patryk
Marusak, Piotr M.
Author_xml – sequence: 1
  givenname: Maciej
  orcidid: 0000-0002-6846-2004
  surname: Ławryńczuk
  fullname: Ławryńczuk, Maciej
– sequence: 2
  givenname: Piotr M.
  orcidid: 0000-0002-6556-7919
  surname: Marusak
  fullname: Marusak, Piotr M.
– sequence: 3
  givenname: Patryk
  orcidid: 0000-0003-0257-8255
  surname: Chaber
  fullname: Chaber, Patryk
– sequence: 4
  givenname: Dawid
  orcidid: 0000-0003-2528-6335
  surname: Seredyński
  fullname: Seredyński, Dawid
BookMark eNpNkUlrHDEQhUWwId4u-QWC3AzjaOlutXIzgxMPeAMnZ6FWlWKNZWkiaQb87z32ZHFdauHxvYJ3SPZSTkjIJ87OpNTsCybeMyW6UX4gB1zrYcaZknvv5o_kpNYl25aUXEp5QB4XKbRgY6i2hZxo9vR21cLT3_0-xw2WSn0u9CanGBLaQq8zYKR3BSG4FjZI5zm1kuNXOo-21uBspJt6Ri-fpxKAXmN7yFCPyb63seLJn35Efn67-DG_nF3dfl_Mz69mTmjeZuB7pzrsmFBOcDVJO6pJcK6th6G32lveKa4A3AiT0iAtiAFwxNH7kfUgj8hix4Vsl2ZVwpMtzybbYN4OufwytrTgIpoewOIw8nHL7LwG7TROHbBBTDAM0yvr8461Kvn3Gmszy7wuafu-EUOnmWC801vV6U7lSq61oP_nypl5zcb8z0a-AFiIhEM
CitedBy_id crossref_primary_10_3390_en15186702
crossref_primary_10_3390_math10152571
crossref_primary_10_1109_LCSYS_2024_3408711
crossref_primary_10_3390_en16134962
Cites_doi 10.3182/20140824-6-ZA-1003.01329
10.1049/ip-cta:20040438
10.1007/978-3-642-21697-8_30
10.1007/978-3-319-04229-9
10.1007/978-3-642-28780-0
10.34768/amcs-2021-0005
10.1016/0005-1098(95)00044-W
10.1016/j.conengprac.2011.10.014
10.1016/j.automatica.2003.09.021
10.1016/j.neucom.2016.03.066
10.1016/j.conengprac.2020.104362
10.1016/j.jfranklin.2017.10.002
10.3390/a13060143
10.3390/en13051275
10.1016/j.compchemeng.2004.09.023
10.1016/j.jprocont.2020.06.012
10.1016/S0959-1524(02)00121-X
10.1109/TVT.2012.2197767
10.1109/EPEC.2016.7771775
10.1016/S0959-1524(97)80001-B
10.1155/2019/5219867
10.3390/en14227505
10.3390/en14196386
10.1109/TCST.2011.2134852
10.3182/20100712-3-DE-2013.00066
10.1016/j.conengprac.2013.09.004
10.1016/j.jpowsour.2014.01.118
10.1109/TVT.2005.847211
10.3390/en14134041
10.1016/S0959-1524(99)00036-0
10.2478/amcs-2019-0042
10.3390/en14237974
10.3390/en9110973
10.1109/ACCESS.2019.2901767
10.1016/j.jpowsour.2016.11.106
10.1109/TIE.2016.2547870
10.1007/978-1-4471-3398-8
10.3390/en14237953
10.1016/j.engappai.2018.09.014
10.1016/j.rser.2020.110422
10.1016/j.jprocont.2013.02.004
10.1007/978-3-030-83815-7
10.1016/j.cej.2008.05.013
10.34768/amcs-2020-0002
10.3390/en11071812
10.1109/IROS.2016.7759115
10.1016/j.jprocont.2012.07.011
10.1016/j.solener.2019.03.094
10.1109/TITS.2020.2994772
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15072483
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
ProQuest Central China
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_5ddae6818a144f9d9c9eb4d062bd66bd
10_3390_en15072483
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
I-F
IAO
ITC
KQ8
L6V
L8X
M7S
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
RIG
TR2
TUS
ABUWG
AZQEC
COVID
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c291t-df5c74e4027c217b3a87b2119afd65a9fa14717ddc8db79d3ad26de8e8ff805d3
IEDL.DBID COVID
ISSN 1996-1073
IngestDate Tue Oct 22 15:13:45 EDT 2024
Tue Oct 29 17:56:06 EDT 2024
Wed Sep 25 14:09:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-df5c74e4027c217b3a87b2119afd65a9fa14717ddc8db79d3ad26de8e8ff805d3
ORCID 0000-0003-0257-8255
0000-0003-2528-6335
0000-0002-6556-7919
0000-0002-6846-2004
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2649020149?pq-origsite=%requestingapplication%
PQID 2649020149
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_5ddae6818a144f9d9c9eb4d062bd66bd
proquest_journals_2649020149
crossref_primary_10_3390_en15072483
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Debert (ref_30) 2010; 43
Toivonen (ref_47) 2005; 29
ref_50
Nebeluk (ref_4) 2020; 30
Ding (ref_36) 2012; 22
ref_14
Cervantes (ref_33) 2003; 13
ref_13
ref_10
ref_54
Valverde (ref_11) 2016; 63
(ref_40) 2013; 23
Gallego (ref_9) 2019; 184
Yan (ref_26) 2012; 61
Parisini (ref_48) 1995; 31
Chatterjee (ref_53) 2021; 1
ref_59
Ogonowski (ref_7) 2020; 30
Hu (ref_37) 2011; Volume 97
Zhou (ref_43) 2019; 7
Marusak (ref_41) 2021; 31
ref_60
Chanfreut (ref_15) 2019; 22
Bania (ref_16) 2020; 30
Shafiee (ref_35) 2008; 143
ref_25
ref_24
ref_23
ref_22
ref_21
Borhan (ref_19) 2012; 20
Josevski (ref_28) 2014; 47
(ref_56) 2016; 205
Fruzzetti (ref_32) 1997; 7
Johansen (ref_46) 2004; 40
Vaishnav (ref_55) 2021; 1
Gruber (ref_12) 2012; 20
Zhou (ref_44) 2017; 354
Kumar (ref_49) 2021; 1
Assandri (ref_5) 2013; 21
Koot (ref_29) 2005; 54
Chairez (ref_8) 2020; 98
ref_39
Huang (ref_17) 2017; 341
ref_38
Janczak (ref_58) 2019; 29
Jutan (ref_57) 2004; 151
Zhang (ref_20) 2019; 2019
ref_45
Hu (ref_18) 2021; 136
ref_42
Li (ref_31) 2015; 16
ref_1
Santucci (ref_27) 2014; 258
ref_3
ref_2
Vaupel (ref_51) 2020; 92
Kvasnica (ref_52) 2019; 77
Norquay (ref_34) 1999; 9
ref_6
References_xml – volume: 47
  start-page: 2132
  year: 2014
  ident: ref_28
  article-title: Energy Management of Parallel Hybrid Electric Vehicles based on Stochastic Model Predictive Control
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140824-6-ZA-1003.01329
  contributor:
    fullname: Josevski
– volume: 151
  start-page: 329
  year: 2004
  ident: ref_57
  article-title: Wiener model identification and predictive control of a pH neutralisation process
  publication-title: Proc. IEE Part Control Theory Appl.
  doi: 10.1049/ip-cta:20040438
  contributor:
    fullname: Jutan
– volume: 30
  start-page: 471
  year: 2020
  ident: ref_7
  article-title: Control of complex dynamic nonlinear loading process for electromagnetic mill
  publication-title: Arch. Control Sci.
  contributor:
    fullname: Ogonowski
– volume: Volume 97
  start-page: 235
  year: 2011
  ident: ref_37
  article-title: Hammerstein-Wiener model predictive control of continuous stirred tank reactor
  publication-title: Electronics and Signal Processing
  doi: 10.1007/978-3-642-21697-8_30
  contributor:
    fullname: Hu
– ident: ref_39
  doi: 10.1007/978-3-319-04229-9
– ident: ref_45
  doi: 10.1007/978-3-642-28780-0
– volume: 31
  start-page: 59
  year: 2021
  ident: ref_41
  article-title: A numerically efficient fuzzy MPC algorithms with fast generation of the control signal
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.34768/amcs-2021-0005
  contributor:
    fullname: Marusak
– volume: 31
  start-page: 1443
  year: 1995
  ident: ref_48
  article-title: A receding-horizon regulator for nonlinear systems and a neural approximation
  publication-title: Automatica
  doi: 10.1016/0005-1098(95)00044-W
  contributor:
    fullname: Parisini
– volume: 20
  start-page: 205
  year: 2012
  ident: ref_12
  article-title: Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2011.10.014
  contributor:
    fullname: Gruber
– volume: 40
  start-page: 293
  year: 2004
  ident: ref_46
  article-title: Approximate explicit receding horizon control of constrained nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2003.09.021
  contributor:
    fullname: Johansen
– volume: 205
  start-page: 311
  year: 2016
  ident: ref_56
  article-title: Modelling and predictive control of a neutralisation reactor using sparse Support Vector Machine Wiener models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.066
– volume: 98
  start-page: 104362
  year: 2020
  ident: ref_8
  article-title: Output based bilateral adaptive control of partially known robotic systems
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104362
  contributor:
    fullname: Chairez
– volume: 354
  start-page: 8072
  year: 2017
  ident: ref_44
  article-title: RBF-ARX model-based robust MPC for nonlinear systems with unknown and bounded disturbance
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2017.10.002
  contributor:
    fullname: Zhou
– ident: ref_42
  doi: 10.3390/a13060143
– ident: ref_24
  doi: 10.3390/en13051275
– volume: 1
  start-page: 22
  year: 2021
  ident: ref_55
  article-title: Analytical review analysis for screening COVID-19 disease
  publication-title: Int. J. Mod. Res.
  contributor:
    fullname: Vaishnav
– volume: 29
  start-page: 323
  year: 2005
  ident: ref_47
  article-title: Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.09.023
  contributor:
    fullname: Toivonen
– volume: 92
  start-page: 261
  year: 2020
  ident: ref_51
  article-title: Accelerating nonlinear model predictive control through machine learning
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.06.012
  contributor:
    fullname: Vaupel
– volume: 13
  start-page: 655
  year: 2003
  ident: ref_33
  article-title: A nonlinear model predictive control system based on Wiener piecewise linear models
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(02)00121-X
  contributor:
    fullname: Cervantes
– volume: 61
  start-page: 2458
  year: 2012
  ident: ref_26
  article-title: Hybrid Electric Vehicle Model Predictive Control Torque-Split Strategy Incorporating Engine Transient Characteristics
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2012.2197767
  contributor:
    fullname: Yan
– ident: ref_25
  doi: 10.1109/EPEC.2016.7771775
– volume: 7
  start-page: 31
  year: 1997
  ident: ref_32
  article-title: Nonlinear model predictive control using Hammerstein models
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(97)80001-B
  contributor:
    fullname: Fruzzetti
– volume: 2019
  start-page: 5219867
  year: 2019
  ident: ref_20
  article-title: Model–Predictive Optimization for Pure Electric Vehicle during a Vehicle–Following Process
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/5219867
  contributor:
    fullname: Zhang
– ident: ref_13
  doi: 10.3390/en14227505
– ident: ref_6
  doi: 10.3390/en14196386
– volume: 1
  start-page: 1
  year: 2021
  ident: ref_49
  article-title: A comparative study of fuzzy optimization through fuzzy number
  publication-title: Int. J. Mod. Res.
  contributor:
    fullname: Kumar
– volume: 20
  start-page: 593
  year: 2012
  ident: ref_19
  article-title: MPC–Based Energy Management of a Power–Split Hybrid Electric Vehicle
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2011.2134852
  contributor:
    fullname: Borhan
– volume: 43
  start-page: 270
  year: 2010
  ident: ref_30
  article-title: Predictive energy management for hybrid electric vehicles—Prediction horizon and battery capacity sensitivity
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20100712-3-DE-2013.00066
  contributor:
    fullname: Debert
– volume: 21
  start-page: 1795
  year: 2013
  ident: ref_5
  article-title: Nonlinear parametric predictive temperature control of a distillation column
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2013.09.004
  contributor:
    fullname: Assandri
– volume: 258
  start-page: 395
  year: 2014
  ident: ref_27
  article-title: Power split strategies for hybrid energy storage systems for vehicular applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.118
  contributor:
    fullname: Santucci
– volume: 54
  start-page: 771
  year: 2005
  ident: ref_29
  article-title: Energy management strategies for vehicular electric power systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2005.847211
  contributor:
    fullname: Koot
– ident: ref_22
  doi: 10.3390/en14134041
– ident: ref_3
– volume: 9
  start-page: 461
  year: 1999
  ident: ref_34
  article-title: Application of Wiener model predictive control (WMPC) to an industrial C2 splitter
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(99)00036-0
  contributor:
    fullname: Norquay
– volume: 29
  start-page: 571
  year: 2019
  ident: ref_58
  article-title: Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/amcs-2019-0042
  contributor:
    fullname: Janczak
– ident: ref_14
  doi: 10.3390/en14237974
– ident: ref_21
  doi: 10.3390/en9110973
– volume: 7
  start-page: 27231
  year: 2019
  ident: ref_43
  article-title: Robust predictive control algorithm based on parameter variation rate information of functional-coefficient ARX model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901767
  contributor:
    fullname: Zhou
– volume: 341
  start-page: 91
  year: 2017
  ident: ref_17
  article-title: Model predictive control power management strategies for HEVs: A review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.11.106
  contributor:
    fullname: Huang
– volume: 63
  start-page: 4919
  year: 2016
  ident: ref_11
  article-title: Optimal Load Sharing of Hydrogen-Based Microgrids with Hybrid Storage Using Model-Predictive Control
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2547870
  contributor:
    fullname: Valverde
– ident: ref_1
  doi: 10.1007/978-1-4471-3398-8
– ident: ref_10
  doi: 10.3390/en14237953
– volume: 77
  start-page: 1
  year: 2019
  ident: ref_52
  article-title: Machine learning-based warm starting of active set methods in embedded model predictive control
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.014
  contributor:
    fullname: Kvasnica
– volume: 30
  start-page: 325
  year: 2020
  ident: ref_4
  article-title: Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors
  publication-title: Arch. Control Sci.
  contributor:
    fullname: Nebeluk
– ident: ref_50
– volume: 136
  start-page: 110422
  year: 2021
  ident: ref_18
  article-title: Model predictive control of microgrids—An overview
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110422
  contributor:
    fullname: Hu
– ident: ref_54
– ident: ref_2
– volume: 23
  start-page: 696
  year: 2013
  ident: ref_40
  article-title: Practical nonlinear predictive control algorithms for neural Wiener models
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.02.004
– ident: ref_38
  doi: 10.1007/978-3-030-83815-7
– volume: 143
  start-page: 282
  year: 2008
  ident: ref_35
  article-title: Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.05.013
  contributor:
    fullname: Shafiee
– volume: 30
  start-page: 47
  year: 2020
  ident: ref_16
  article-title: An information based approach to stochastic control problems
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.34768/amcs-2020-0002
  contributor:
    fullname: Bania
– volume: 1
  start-page: 15
  year: 2021
  ident: ref_53
  article-title: Artificial intelligence and patentability: Review and discussions
  publication-title: Int. J. Mod. Res.
  contributor:
    fullname: Chatterjee
– ident: ref_23
  doi: 10.3390/en11071812
– volume: 16
  start-page: 1199
  year: 2015
  ident: ref_31
  article-title: Fast online computation of a model predictive controller and its application to fuel economy-oriented adaptive cruise control
  publication-title: IEEE Trans. Ind. Informat.
  contributor:
    fullname: Li
– ident: ref_60
– ident: ref_59
  doi: 10.1109/IROS.2016.7759115
– volume: 22
  start-page: 1773
  year: 2012
  ident: ref_36
  article-title: Dynamic output feedback model predictive control for nonlinear systems represented by Hammerstein-Wiener model
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.07.011
  contributor:
    fullname: Ding
– volume: 184
  start-page: 105
  year: 2019
  ident: ref_9
  article-title: Adaptive incremental state space MPC for collector defocusing of a parabolic trough plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.03.094
  contributor:
    fullname: Gallego
– volume: 22
  start-page: 6772
  year: 2019
  ident: ref_15
  article-title: Coalitional model predictive control on freeways traffic networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2994772
  contributor:
    fullname: Chanfreut
SSID ssj0000331333
Score 2.3640933
Snippet In nonlinear Model Predictive Control (MPC) algorithms, the number of cost-function evaluations and the resulting calculation time depend on the initial...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2483
SubjectTerms Algorithms
Approximation
computational efficiency
Controllers
Disturbances
Electric vehicles
Energy management
Linearization
model predictive control
Negative feedback
Neural networks
neutralisation reactor
Nonlinear control
optimisation
Process controls
Robot arms
robot manipulator
Static models
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx7EnzidEtBr3dakaeJNh2MKm4IOditJXnJRO9mm4H_vS9rpxIMXjy2Flu8lL99H3_seIWfCaO19qhOd6jxBRox7TnV4wq1hXW5yaU1ocB6OxGDMbyfZZGXUV6gJq-yBK-DaGYB2Ao8VjdTfK1BWOcOhI1IDQhiI2bejVsRUzMGMofhilR8pQ13fdmWgPimX7McJFI36f-XheLj0t8hmzQrpZfU122TNlTtkY8UrcJc83YQyn2BXGLGkU0_vcLu_LK8fpqHGeU6RhNJR5X-hZzSMOnum97PwOyYkNtqrStMvaJyGGSJE3-fndPAROrfoMM6Tnu-Rcf_6sTdI6kkJiU1Vd5GAz2zOHWrB3KLGMEzL3ATvNu1BZFp5BA91G4CVYHIFTEMqwEknvZedDNg-aZTT0h0QKjVyGpY5DkilrOQqlVkGOhcOvLPeNMnpEr3itTLEKFBIBIyLb4yb5CoA-_VEMLGONzC0RR3a4q_QNklrGZai3lnzAgmcQoqLwu7wP95xRNbT0NAQa3FapLGYvbljpBkLcxJX1CfwydRb
  priority: 102
  providerName: Directory of Open Access Journals
Title Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods
URI https://www.proquest.com/docview/2649020149
https://doaj.org/article/5ddae6818a144f9d9c9eb4d062bd66bd
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5i7QUOjJ-ibFSW4Jquje3E4YJYt65DWjcBQ71Ftp_NYdCMpkOCv55nJ9kYSBy4REqcg6Xv-b3v2c_fA3iVGa29T3WiU50nxIhpzRVjkQhr-ESYXFkTLjifLLL5uXi3lMt2w61uyyo7nxgdNVY27JHvUeAuiNoQoX9z-S0JXaPC6WrbQmML-lzJVPWgPz39dHxwvcsy5pySMN7oknLK7_fcKlCgVCh-KxJFwf6__HEMMrNtKLvpNbUlF6OrjRnZn38oN_7__B_A_ZZ_sreNwTyEO271CO79pkr4GC6OQ0FREEaMqLHKs1NyLF-79w9VqKauGdFdtmiUNvSahaZqX9jZOhz8BBfKpk0R_GsW-24GW2Df6xGb_wh3xNhJ7FxdP4Hz2eHH6TxpezIkNi0mmwS9tLlwlHXmlrIZw7XKTVCJ0x4zqQuvJxTuckSr0OQFco1phk455b0aS-RPobeqVu4ZMKWJPXHpBBJps0oUqZISdZ459M56M4CXHT7lZSO9UVLKElAsb1AcwH6A7vqPIJcdP1Trz2W7-kqJqF1G3IRmJ3yBhS2cETjOUoNZZnAAux1oZbuG6_IGsef_Ht6Bu2m4FBHreXaht1lfuRdEVTZmCFtqdjSE_v7h4uz9sLXOYUz86Xm0nPwCAwfzNQ
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74363,74630,74740
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagPQAH3ohAAUtw3XSz9nptLggCVQJNikSLerNsj82hkC3ZFAl-PTP7aHlIHDiu1wdLnz3zjT3zDWPPlHcupcJlrnBVhowYz5zJZSaDFxPpKx08FTgvlmp2JN8el8f9hVvTp1UONrE11FAHuiPfRcdtkNogoX9x-jWjrlH0utq30LjMttGx5hh8bU8PPs5fn9-y5EJgECY6XVKBU3bjiihQIbX4zRO1gv1_2ePWyezdYHZYXpdbcjI-2_hx-PGHcuP_r_8mu97zT_6y2zC32KW4us2u_aJKeIedzCmhiIQRW9R4nfgBGpYvw_eHmrKpG450ly87pQ235tRU7TN_v6aHHzKhfNolwT_nbd9N2gv8WzPms-9UI8YXbefq5i472ntzOJ1lfU-GLBRmsskglaGSEaPOKmA044XTlSeVOJdAlc4kN0F3VwEEDb4yIBwUCqKOOiWdlyDusa1VvYr3GdcO2ZMoowQkbUFLU-iyBFepCCmG5Efs6YCPPe2kNyyGLISivUBxxF4RdOczSC67HajXn2x_-mwJ4KJCboKrk8mACSZ6CbkqPCjlYcR2BtBsf4Ybe4HYg3__fsKuzA4X-3Z_vnz3kF0tqECize3ZYVub9Vl8hLRl4x_3e_Mn1Yvxtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RTxQxEG4UEyMPRFHDAWITfF3ubtvttrwYRc5D5SRBEt42baflAbg9bk8T_j0z3T3QmPC4u33YTKcz37Rfv2Hsg3LWxpjbzOa2zBAR45ozA5lJ78RQulJ7RxecjydqfCa_nRfnHf-p6WiVy5iYAjXUnvbI-5i4DUIbBPT92NEiTr6MPs5uMuogRSetXTuNp-wZZkVFPq9HX-_3WwZCYDkmWoVSgZV-P0wJDOVSi39yUpLu_y8yp3QzesnWOpzIP7UT-4o9CdN1tvqXeuBrdnlExB8SMEzW5XXkPzEAXC-fT2tiPTccYSmftIoYds6p-dkVP5nTAQ2FOn7QktX3eeqPSXPG_zR7fHxLd7n4ceow3bxhZ6PDXwfjrOudkPncDBcZxMKXMmB1WHqsOpywunSk5mYjqMKaaIeYlkoAr8GVBoSFXEHQQceoBwWIt2xlWk_DBuPaIsoRRZCA4MpraXJdFGBLFSAGH12P7S6tV81aiYwKSwuycfVg4x77TIa9H0Gy1ulFPb-oulVSFQA2KMQQ-HcyGjDeBCdhoHIHSjnose3ltFTdWmuqB8_YfPzze_YcXab6cTT5vsVe5HSPIVFwttnKYv47vEN0sXA7yW3uAO0w0aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initialisation+of+Optimisation+Solvers+for+Nonlinear+Model+Predictive+Control%3A+Classical+vs.+Hybrid+Methods&rft.jtitle=Energies+%28Basel%29&rft.au=%C5%81awry%C5%84czuk%2C+Maciej&rft.au=Marusak%2C+Piotr+M&rft.au=Chaber%2C+Patryk&rft.au=Seredy%C5%84ski%2C+Dawid&rft.date=2022-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=7&rft.spage=2483&rft_id=info:doi/10.3390%2Fen15072483&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon