Fusing Frequency-Domain Features and Brain Connectivity Features for Cross-Subject Emotion Recognition
Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity (BC) features involve the coordination of multiple brain regions for generating emotional responses; these two types of features are complementa...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity (BC) features involve the coordination of multiple brain regions for generating emotional responses; these two types of features are complementary to each other. To date, the fusion of these two types of features for electroencephalography (EEG)-based cross-subject emotion recognition remains to be fully investigated due to the intersubject variability in EEG signals. In this article, we first attempt to investigate these fused features for cross-subject emotion recognition from multiple perspectives, including critical frequency bands, complementary characteristics for each emotional state, critical channels, and crucial connections, using a fast and robust approximate empirical kernel map-fusion-based support vector machine (AEKM-Fusion-SVM) method. The experimental results on the SJTU emotion EEG dataset (SEED), BCI2020-A, and BCI2020-B datasets reveal that: 1) the AEKM-fusion method improves the effectiveness and efficiency of the fusion of features of different dimensions; 2) the recognition accuracy of the fused features outperforms each individual feature, and this outperformance is more significant in the high-frequency bands (i.e., the beta and gamma bands); 3) the fused features significantly enhance the classification performance for negative emotion; and 4) the fused features built with 27 selected channels achieve comparable performance to that of the fused features built with the full number of channels (i.e., 62 channels), allowing for easier establishment of brain-computer interface (BCI) systems in real-world scenarios. Our study enriches the research of emotion-related brain mechanisms and provides new insight into affective computing. |
---|---|
AbstractList | Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity (BC) features involve the coordination of multiple brain regions for generating emotional responses; these two types of features are complementary to each other. To date, the fusion of these two types of features for electroencephalography (EEG)-based cross-subject emotion recognition remains to be fully investigated due to the intersubject variability in EEG signals. In this article, we first attempt to investigate these fused features for cross-subject emotion recognition from multiple perspectives, including critical frequency bands, complementary characteristics for each emotional state, critical channels, and crucial connections, using a fast and robust approximate empirical kernel map-fusion-based support vector machine (AEKM-Fusion-SVM) method. The experimental results on the SJTU emotion EEG dataset (SEED), BCI2020-A, and BCI2020-B datasets reveal that: 1) the AEKM-fusion method improves the effectiveness and efficiency of the fusion of features of different dimensions; 2) the recognition accuracy of the fused features outperforms each individual feature, and this outperformance is more significant in the high-frequency bands (i.e., the beta and gamma bands); 3) the fused features significantly enhance the classification performance for negative emotion; and 4) the fused features built with 27 selected channels achieve comparable performance to that of the fused features built with the full number of channels (i.e., 62 channels), allowing for easier establishment of brain–computer interface (BCI) systems in real-world scenarios. Our study enriches the research of emotion-related brain mechanisms and provides new insight into affective computing. |
Author | Chen, Chuangquan Wang, Hongtao Wan, Feng Bezerianos, Anastasios Xu, Leicai Li, Zhencheng |
Author_xml | – sequence: 1 givenname: Chuangquan orcidid: 0000-0002-3811-296X surname: Chen fullname: Chen, Chuangquan organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 2 givenname: Zhencheng orcidid: 0000-0002-8359-8225 surname: Li fullname: Li, Zhencheng organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 3 givenname: Feng orcidid: 0000-0002-9359-0737 surname: Wan fullname: Wan, Feng organization: Department of Electrical and Computer Engineering, Faculty of Science and Technology, and the Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau – sequence: 4 givenname: Leicai orcidid: 0000-0002-0811-8746 surname: Xu fullname: Xu, Leicai organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China – sequence: 5 givenname: Anastasios orcidid: 0000-0002-8199-6000 surname: Bezerianos fullname: Bezerianos, Anastasios organization: Hellenic Institute of Transport (HIT), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece – sequence: 6 givenname: Hongtao orcidid: 0000-0002-6564-5753 surname: Wang fullname: Wang, Hongtao email: nushongtaowang@qq.com organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China |
BookMark | eNp9kNFLwzAQxoNMcJu-C74UfO68pG3SPOpcdTARdD6XLL2MjC2ZaSvsv7dlQ8EHn-64u---u9-IDJx3SMg1hQmlIO-W85cJA8YmCeW5ZOKMDGmWiVhyzgZkCEDzWKYZvyCjut4AgOCpGBJTtLV166gI-Nmi04f40e-UdVGBqmkD1pFyVfQQ-tLUO4e6sV-2Ofz2jQ_RNPi6jt_b1abrR7Odb6x30Rtqv3a2zy_JuVHbGq9OcUw-itly-hwvXp_m0_tFrJmkTVwZxleMMzCyEjqTSiGTCTMUBMskpYkQFBCMFlqiRm6qPE0x0ZCnqkpTlozJ7XHvPvjun7opN74NrrMsGc9kkoHMZTcFxynd3x3QlPtgdyocSgplT7PsaJY9zfJEs5PwPxJtG9W_1nRstv8Jb45Ci4g_PlJwSPIs-QYOsIRr |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1109_ACCESS_2023_3308811 crossref_primary_10_31083_j_jin2301018 crossref_primary_10_2174_0126662558279390240105064917 crossref_primary_10_1109_JBHI_2024_3429169 crossref_primary_10_1109_JBHI_2023_3335854 crossref_primary_10_1109_TIM_2022_3224991 crossref_primary_10_1109_JBHI_2024_3384816 crossref_primary_10_1007_s11042_024_18297_7 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_1109_JSEN_2024_3380749 crossref_primary_10_1109_TIM_2024_3472838 crossref_primary_10_1109_TIM_2023_3277985 crossref_primary_10_3389_fphys_2024_1425582 crossref_primary_10_1109_JBHI_2024_3415163 crossref_primary_10_1109_TIM_2023_3277101 crossref_primary_10_1109_TIM_2023_3336748 crossref_primary_10_1080_10255842_2025_2477801 crossref_primary_10_1109_JBHI_2023_3339382 |
Cites_doi | 10.26599/BSA.2020.9050026 10.1016/j.patrec.2014.05.011 10.1109/ACCESS.2019.2945059 10.1126/science.3992243 10.1109/TPAMI.2008.52 10.1016/j.neucom.2019.09.039 10.1109/TETC.2021.3087174 10.1109/34.824819 10.1109/IMCCC.2016.106 10.1109/TAFFC.2019.2901456 10.1016/j.inffus.2020.01.011 10.1177/1557234X11410385 10.1109/IHMSC.2019.00078 10.1007/978-3-319-70772-3_8 10.1109/TIM.2020.3019849 10.1109/TCYB.2018.2797176 10.1109/TBME.2019.2897651 10.1137/S0097539704442684 10.1109/TIM.2021.3121473 10.1016/j.neucom.2013.06.046 10.1007/978-981-10-8204-7_5 10.1109/EMBC.2013.6611075 10.1155/2015/762769 10.1109/TCDS.2020.3007453 10.1080/02699930802204677 10.1109/TIM.2020.3031835 10.1609/aaai.v32i1.11614 10.1109/T-AFFC.2011.37 10.1111/j.1467-9280.2007.02024.x 10.1109/TIM.2020.3011817 10.3389/fnins.2018.00162 10.1002/hbm.20346 10.1109/TAMD.2015.2431497 10.1109/TCDS.2020.2985539 10.1109/TNNLS.2018.2838140 10.1016/j.neuroimage.2013.02.008 10.1162/0899766042321814 10.1109/EMBC.2016.7591731 10.3390/s18020401 10.1109/TCDS.2021.3071170 10.1109/TAFFC.2017.2712143 10.1109/NER.2013.6695876 10.1109/HSI.2013.6577880 10.1109/TNN.2010.2064786 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2022.3168927 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TIM_2022_3168927 9760385 |
Genre | orig-research |
GrantInformation_xml | – fundername: Special Projects in Key Fields Supported by the Technology Development Project of Guangdong Province grantid: 2020ZDZX3018 – fundername: Educational Commission of Guangdong Province grantid: 2021KTSCX136 funderid: 10.13039/501100010226 – fundername: Wuyi University and Hong Kong and Macao Joint Research Project grantid: 2019WGALH16 funderid: 10.13039/501100007310 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515111154 funderid: 10.13039/501100021171 – fundername: Special Fund for Science and Technology of Guangdong Province grantid: 2020182 – fundername: Jiangmen Science and Technology Project grantid: 2021030100050004285 – fundername: Science and Technology Development Fund, Macau grantid: 0045/2019/AFJ – fundername: European Union’s Horizon 2020 Research and Innovation Program [Proactive Safety Systems and Tools for a Constantly Upgrading Road Environment (SAFE_UP)] grantid: 031019 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-df26b2620f9d7c59aae2932f1072591137710e0fc7c9ece6fd844e3c084ad4423 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:06:36 EDT 2025 Tue Jul 01 03:07:13 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Wed Aug 27 02:40:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-df26b2620f9d7c59aae2932f1072591137710e0fc7c9ece6fd844e3c084ad4423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8199-6000 0000-0002-9359-0737 0000-0002-0811-8746 0000-0002-6564-5753 0000-0002-3811-296X 0000-0002-8359-8225 |
PQID | 2659350989 |
PQPubID | 85462 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2659350989 crossref_citationtrail_10_1109_TIM_2022_3168927 ieee_primary_9760385 crossref_primary_10_1109_TIM_2022_3168927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Williams (ref25); 13 ref2 ref1 ref17 ref16 ref38 ref19 ref18 De Bie (ref42) ref24 ref46 ref23 ref45 ref26 ref48 ref47 ref20 Andrew (ref43) ref41 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Drineas (ref39) 2005; 6 ref40 |
References_xml | – ident: ref11 doi: 10.26599/BSA.2020.9050026 – ident: ref2 doi: 10.1016/j.patrec.2014.05.011 – ident: ref20 doi: 10.1109/ACCESS.2019.2945059 – ident: ref45 doi: 10.1126/science.3992243 – ident: ref6 doi: 10.1109/TPAMI.2008.52 – ident: ref29 doi: 10.1016/j.neucom.2019.09.039 – ident: ref30 doi: 10.1109/TETC.2021.3087174 – ident: ref37 doi: 10.1109/34.824819 – ident: ref4 doi: 10.1109/IMCCC.2016.106 – ident: ref40 doi: 10.1109/TAFFC.2019.2901456 – ident: ref47 doi: 10.1016/j.inffus.2020.01.011 – ident: ref3 doi: 10.1177/1557234X11410385 – ident: ref14 doi: 10.1109/IHMSC.2019.00078 – volume: 6 start-page: 2153 issue: 12 year: 2005 ident: ref39 article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning publication-title: J. Mach. Learn. Res. – ident: ref36 doi: 10.1007/978-3-319-70772-3_8 – start-page: 785 volume-title: Proc. Int. Symp. ICA BSS ident: ref42 article-title: On the regularization of canonical correlation analysis – ident: ref17 doi: 10.1109/TIM.2020.3019849 – ident: ref22 doi: 10.1109/TCYB.2018.2797176 – ident: ref24 doi: 10.1109/TBME.2019.2897651 – ident: ref26 doi: 10.1137/S0097539704442684 – ident: ref12 doi: 10.1109/TIM.2021.3121473 – volume: 13 start-page: 682 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Using the Nyström method to speed up kernel machines – ident: ref31 doi: 10.1016/j.neucom.2013.06.046 – ident: ref8 doi: 10.1007/978-981-10-8204-7_5 – ident: ref32 doi: 10.1109/EMBC.2013.6611075 – ident: ref46 doi: 10.1155/2015/762769 – ident: ref48 doi: 10.1109/TCDS.2020.3007453 – ident: ref1 doi: 10.1080/02699930802204677 – ident: ref9 doi: 10.1109/TIM.2020.3031835 – ident: ref28 doi: 10.1609/aaai.v32i1.11614 – ident: ref21 doi: 10.1109/T-AFFC.2011.37 – ident: ref35 doi: 10.1111/j.1467-9280.2007.02024.x – start-page: 1247 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref43 article-title: Deep canonical correlation analysis – ident: ref5 doi: 10.1109/TIM.2020.3011817 – ident: ref44 doi: 10.3389/fnins.2018.00162 – ident: ref34 doi: 10.1002/hbm.20346 – ident: ref16 doi: 10.1109/TAMD.2015.2431497 – ident: ref18 doi: 10.1109/TCDS.2020.2985539 – ident: ref38 doi: 10.1109/TNNLS.2018.2838140 – ident: ref33 doi: 10.1016/j.neuroimage.2013.02.008 – ident: ref41 doi: 10.1162/0899766042321814 – ident: ref19 doi: 10.1109/EMBC.2016.7591731 – ident: ref7 doi: 10.3390/s18020401 – ident: ref23 doi: 10.1109/TCDS.2021.3071170 – ident: ref13 doi: 10.1109/TAFFC.2017.2712143 – ident: ref15 doi: 10.1109/NER.2013.6695876 – ident: ref10 doi: 10.1109/HSI.2013.6577880 – ident: ref27 doi: 10.1109/TNN.2010.2064786 |
SSID | ssj0007647 |
Score | 2.5386045 |
Snippet | Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Affective computing Approximate empirical kernel map (AEKM) Brain brain connectivity (BC) features Channels cross-subject emotion recognition Datasets Electroencephalography Emotion recognition Emotional factors Emotions Feature extraction Frequencies Frequency domain analysis frequency-domain (FD) features fused features Human-computer interface Kernel Motion pictures Support vector machines |
Title | Fusing Frequency-Domain Features and Brain Connectivity Features for Cross-Subject Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/9760385 https://www.proquest.com/docview/2659350989 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL2MA4IufIujo2ThRjAzfWTaZulrGIVxIQruSpomImpH5rHQr_feph1FRdwVmpSUk8e5yc05AIcyj3WQ25xjtJxwoaTHs0j3uAqF8ELlk-IHZVtcR4M7cXXfu2_A8fwujDGmTD4zHXosz_LzkZ7RVlkXl046yFqABQzc3F2t-awbR8LpY_o4gJEV1EeSnuzeXg4xEAyCDpk0SfKP-bIElZ4qPybicnXpr8KwbpdLKnnqzKZZR79_k2z8b8PXYKWimezE9Yt1aJhiA5a_iA9uwGKZ_Kknm2D7lP3-wPpjl1f9xs9HL-qxYMQPZxiPM1Xk7JTMJFiZGKOd5cTne2S-7Ix-luNERDs77MLZA7GbOkFpVGzBXf_i9mzAK_8FrgPpT3lugygjwXpLiPakUgbJQWAxYsSgySetQt8zntWxlkabyOaJECbUXiJULpCnbUOzGBVmB1gS29iTgVXSZiK0Vhqc8LM4VFLEWgvVgm4NSaorcXLyyHhOyyDFkymCmBKIaQViC47mNV6dMMcfZTcJk3m5Co4WtGvU02rkTtIg6skQWVQid3-vtQdL9G23DdOG5nQ8M_tITKbZQdkjPwBbF9-j |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD7qQNPgAVg7tELH_LCXSXObi3PxIzCqcikPU5H6FjmOPSG2ZIL2AX4958RJV7Fp2luk2Iqjzz4X-_P5AD7JItFBYQuO2XLKhZIez2MdcRUK4YXKp4ofxLa4jic34mIezTvwZXUXxhhTk8_MkB7rs_yi0kvaKhuh66SDrFewiX4_8t1trZXdTWLhKmT6uIQxLmgPJT05mp1PMRUMgiHJNElSkFlzQrWqyh-muPYv412YtiNztJK74XKRD_XTi6KN_zv0PdhpAk127GbGW-iYsgvba-UHu_C6pn_qhx7YMfHfv7PxvWNWP_Kv1U91WzKKEJeYkTNVFuyE5CRYTY3RTnTi93uMfdkp_SxHU0R7O-zMCQSxby1FqSrfwc34bHY64Y0CA9eB9Be8sEGcU8l6S5hGUimD4UFgMWfEtMmnaoW-ZzyrEy2NNrEtUiFMqL1UqEJgpLYPG2VVmvfA0sQmngyskjYXobXSoMnPk1BJkWgtVB9GLSSZbsqTk0rGj6xOUzyZIYgZgZg1IPbh86rHL1ea4x9te4TJql0DRx8GLepZs3YfsiCOZIhxVCoP_t7rI7yZzKZX2dX59eUhbNF33KbMADYW90vzAcOURX5Uz85nLHXi7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Frequency-Domain+Features+and+Brain+Connectivity+Features+for+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Chen%2C+Chuangquan&rft.au=Li%2C+Zhencheng&rft.au=Wan%2C+Feng&rft.au=Xu%2C+Leicai&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2022.3168927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3168927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |