Fusing Frequency-Domain Features and Brain Connectivity Features for Cross-Subject Emotion Recognition

Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity (BC) features involve the coordination of multiple brain regions for generating emotional responses; these two types of features are complementa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 71; pp. 1 - 15
Main Authors Chen, Chuangquan, Li, Zhencheng, Wan, Feng, Xu, Leicai, Bezerianos, Anastasios, Wang, Hongtao
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity (BC) features involve the coordination of multiple brain regions for generating emotional responses; these two types of features are complementary to each other. To date, the fusion of these two types of features for electroencephalography (EEG)-based cross-subject emotion recognition remains to be fully investigated due to the intersubject variability in EEG signals. In this article, we first attempt to investigate these fused features for cross-subject emotion recognition from multiple perspectives, including critical frequency bands, complementary characteristics for each emotional state, critical channels, and crucial connections, using a fast and robust approximate empirical kernel map-fusion-based support vector machine (AEKM-Fusion-SVM) method. The experimental results on the SJTU emotion EEG dataset (SEED), BCI2020-A, and BCI2020-B datasets reveal that: 1) the AEKM-fusion method improves the effectiveness and efficiency of the fusion of features of different dimensions; 2) the recognition accuracy of the fused features outperforms each individual feature, and this outperformance is more significant in the high-frequency bands (i.e., the beta and gamma bands); 3) the fused features significantly enhance the classification performance for negative emotion; and 4) the fused features built with 27 selected channels achieve comparable performance to that of the fused features built with the full number of channels (i.e., 62 channels), allowing for easier establishment of brain-computer interface (BCI) systems in real-world scenarios. Our study enriches the research of emotion-related brain mechanisms and provides new insight into affective computing.
AbstractList Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity (BC) features involve the coordination of multiple brain regions for generating emotional responses; these two types of features are complementary to each other. To date, the fusion of these two types of features for electroencephalography (EEG)-based cross-subject emotion recognition remains to be fully investigated due to the intersubject variability in EEG signals. In this article, we first attempt to investigate these fused features for cross-subject emotion recognition from multiple perspectives, including critical frequency bands, complementary characteristics for each emotional state, critical channels, and crucial connections, using a fast and robust approximate empirical kernel map-fusion-based support vector machine (AEKM-Fusion-SVM) method. The experimental results on the SJTU emotion EEG dataset (SEED), BCI2020-A, and BCI2020-B datasets reveal that: 1) the AEKM-fusion method improves the effectiveness and efficiency of the fusion of features of different dimensions; 2) the recognition accuracy of the fused features outperforms each individual feature, and this outperformance is more significant in the high-frequency bands (i.e., the beta and gamma bands); 3) the fused features significantly enhance the classification performance for negative emotion; and 4) the fused features built with 27 selected channels achieve comparable performance to that of the fused features built with the full number of channels (i.e., 62 channels), allowing for easier establishment of brain–computer interface (BCI) systems in real-world scenarios. Our study enriches the research of emotion-related brain mechanisms and provides new insight into affective computing.
Author Chen, Chuangquan
Wang, Hongtao
Wan, Feng
Bezerianos, Anastasios
Xu, Leicai
Li, Zhencheng
Author_xml – sequence: 1
  givenname: Chuangquan
  orcidid: 0000-0002-3811-296X
  surname: Chen
  fullname: Chen, Chuangquan
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 2
  givenname: Zhencheng
  orcidid: 0000-0002-8359-8225
  surname: Li
  fullname: Li, Zhencheng
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 3
  givenname: Feng
  orcidid: 0000-0002-9359-0737
  surname: Wan
  fullname: Wan, Feng
  organization: Department of Electrical and Computer Engineering, Faculty of Science and Technology, and the Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau
– sequence: 4
  givenname: Leicai
  orcidid: 0000-0002-0811-8746
  surname: Xu
  fullname: Xu, Leicai
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
– sequence: 5
  givenname: Anastasios
  orcidid: 0000-0002-8199-6000
  surname: Bezerianos
  fullname: Bezerianos, Anastasios
  organization: Hellenic Institute of Transport (HIT), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
– sequence: 6
  givenname: Hongtao
  orcidid: 0000-0002-6564-5753
  surname: Wang
  fullname: Wang, Hongtao
  email: nushongtaowang@qq.com
  organization: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China
BookMark eNp9kNFLwzAQxoNMcJu-C74UfO68pG3SPOpcdTARdD6XLL2MjC2ZaSvsv7dlQ8EHn-64u---u9-IDJx3SMg1hQmlIO-W85cJA8YmCeW5ZOKMDGmWiVhyzgZkCEDzWKYZvyCjut4AgOCpGBJTtLV166gI-Nmi04f40e-UdVGBqmkD1pFyVfQQ-tLUO4e6sV-2Ofz2jQ_RNPi6jt_b1abrR7Odb6x30Rtqv3a2zy_JuVHbGq9OcUw-itly-hwvXp_m0_tFrJmkTVwZxleMMzCyEjqTSiGTCTMUBMskpYkQFBCMFlqiRm6qPE0x0ZCnqkpTlozJ7XHvPvjun7opN74NrrMsGc9kkoHMZTcFxynd3x3QlPtgdyocSgplT7PsaJY9zfJEs5PwPxJtG9W_1nRstv8Jb45Ci4g_PlJwSPIs-QYOsIRr
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2024_3369130
crossref_primary_10_1109_ACCESS_2023_3308811
crossref_primary_10_31083_j_jin2301018
crossref_primary_10_2174_0126662558279390240105064917
crossref_primary_10_1109_JBHI_2024_3429169
crossref_primary_10_1109_JBHI_2023_3335854
crossref_primary_10_1109_TIM_2022_3224991
crossref_primary_10_1109_JBHI_2024_3384816
crossref_primary_10_1007_s11042_024_18297_7
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_1007_s10462_023_10690_2
crossref_primary_10_1109_JSEN_2024_3380749
crossref_primary_10_1109_TIM_2024_3472838
crossref_primary_10_1109_TIM_2023_3277985
crossref_primary_10_3389_fphys_2024_1425582
crossref_primary_10_1109_JBHI_2024_3415163
crossref_primary_10_1109_TIM_2023_3277101
crossref_primary_10_1109_TIM_2023_3336748
crossref_primary_10_1080_10255842_2025_2477801
crossref_primary_10_1109_JBHI_2023_3339382
Cites_doi 10.26599/BSA.2020.9050026
10.1016/j.patrec.2014.05.011
10.1109/ACCESS.2019.2945059
10.1126/science.3992243
10.1109/TPAMI.2008.52
10.1016/j.neucom.2019.09.039
10.1109/TETC.2021.3087174
10.1109/34.824819
10.1109/IMCCC.2016.106
10.1109/TAFFC.2019.2901456
10.1016/j.inffus.2020.01.011
10.1177/1557234X11410385
10.1109/IHMSC.2019.00078
10.1007/978-3-319-70772-3_8
10.1109/TIM.2020.3019849
10.1109/TCYB.2018.2797176
10.1109/TBME.2019.2897651
10.1137/S0097539704442684
10.1109/TIM.2021.3121473
10.1016/j.neucom.2013.06.046
10.1007/978-981-10-8204-7_5
10.1109/EMBC.2013.6611075
10.1155/2015/762769
10.1109/TCDS.2020.3007453
10.1080/02699930802204677
10.1109/TIM.2020.3031835
10.1609/aaai.v32i1.11614
10.1109/T-AFFC.2011.37
10.1111/j.1467-9280.2007.02024.x
10.1109/TIM.2020.3011817
10.3389/fnins.2018.00162
10.1002/hbm.20346
10.1109/TAMD.2015.2431497
10.1109/TCDS.2020.2985539
10.1109/TNNLS.2018.2838140
10.1016/j.neuroimage.2013.02.008
10.1162/0899766042321814
10.1109/EMBC.2016.7591731
10.3390/s18020401
10.1109/TCDS.2021.3071170
10.1109/TAFFC.2017.2712143
10.1109/NER.2013.6695876
10.1109/HSI.2013.6577880
10.1109/TNN.2010.2064786
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3168927
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 15
ExternalDocumentID 10_1109_TIM_2022_3168927
9760385
Genre orig-research
GrantInformation_xml – fundername: Special Projects in Key Fields Supported by the Technology Development Project of Guangdong Province
  grantid: 2020ZDZX3018
– fundername: Educational Commission of Guangdong Province
  grantid: 2021KTSCX136
  funderid: 10.13039/501100010226
– fundername: Wuyi University and Hong Kong and Macao Joint Research Project
  grantid: 2019WGALH16
  funderid: 10.13039/501100007310
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515111154
  funderid: 10.13039/501100021171
– fundername: Special Fund for Science and Technology of Guangdong Province
  grantid: 2020182
– fundername: Jiangmen Science and Technology Project
  grantid: 2021030100050004285
– fundername: Science and Technology Development Fund, Macau
  grantid: 0045/2019/AFJ
– fundername: European Union’s Horizon 2020 Research and Innovation Program [Proactive Safety Systems and Tools for a Constantly Upgrading Road Environment (SAFE_UP)]
  grantid: 031019
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-df26b2620f9d7c59aae2932f1072591137710e0fc7c9ece6fd844e3c084ad4423
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:06:36 EDT 2025
Tue Jul 01 03:07:13 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-df26b2620f9d7c59aae2932f1072591137710e0fc7c9ece6fd844e3c084ad4423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8199-6000
0000-0002-9359-0737
0000-0002-0811-8746
0000-0002-6564-5753
0000-0002-3811-296X
0000-0002-8359-8225
PQID 2659350989
PQPubID 85462
PageCount 15
ParticipantIDs proquest_journals_2659350989
crossref_citationtrail_10_1109_TIM_2022_3168927
ieee_primary_9760385
crossref_primary_10_1109_TIM_2022_3168927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Williams (ref25); 13
ref2
ref1
ref17
ref16
ref38
ref19
ref18
De Bie (ref42)
ref24
ref46
ref23
ref45
ref26
ref48
ref47
ref20
Andrew (ref43)
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Drineas (ref39) 2005; 6
ref40
References_xml – ident: ref11
  doi: 10.26599/BSA.2020.9050026
– ident: ref2
  doi: 10.1016/j.patrec.2014.05.011
– ident: ref20
  doi: 10.1109/ACCESS.2019.2945059
– ident: ref45
  doi: 10.1126/science.3992243
– ident: ref6
  doi: 10.1109/TPAMI.2008.52
– ident: ref29
  doi: 10.1016/j.neucom.2019.09.039
– ident: ref30
  doi: 10.1109/TETC.2021.3087174
– ident: ref37
  doi: 10.1109/34.824819
– ident: ref4
  doi: 10.1109/IMCCC.2016.106
– ident: ref40
  doi: 10.1109/TAFFC.2019.2901456
– ident: ref47
  doi: 10.1016/j.inffus.2020.01.011
– ident: ref3
  doi: 10.1177/1557234X11410385
– ident: ref14
  doi: 10.1109/IHMSC.2019.00078
– volume: 6
  start-page: 2153
  issue: 12
  year: 2005
  ident: ref39
  article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning
  publication-title: J. Mach. Learn. Res.
– ident: ref36
  doi: 10.1007/978-3-319-70772-3_8
– start-page: 785
  volume-title: Proc. Int. Symp. ICA BSS
  ident: ref42
  article-title: On the regularization of canonical correlation analysis
– ident: ref17
  doi: 10.1109/TIM.2020.3019849
– ident: ref22
  doi: 10.1109/TCYB.2018.2797176
– ident: ref24
  doi: 10.1109/TBME.2019.2897651
– ident: ref26
  doi: 10.1137/S0097539704442684
– ident: ref12
  doi: 10.1109/TIM.2021.3121473
– volume: 13
  start-page: 682
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Using the Nyström method to speed up kernel machines
– ident: ref31
  doi: 10.1016/j.neucom.2013.06.046
– ident: ref8
  doi: 10.1007/978-981-10-8204-7_5
– ident: ref32
  doi: 10.1109/EMBC.2013.6611075
– ident: ref46
  doi: 10.1155/2015/762769
– ident: ref48
  doi: 10.1109/TCDS.2020.3007453
– ident: ref1
  doi: 10.1080/02699930802204677
– ident: ref9
  doi: 10.1109/TIM.2020.3031835
– ident: ref28
  doi: 10.1609/aaai.v32i1.11614
– ident: ref21
  doi: 10.1109/T-AFFC.2011.37
– ident: ref35
  doi: 10.1111/j.1467-9280.2007.02024.x
– start-page: 1247
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref43
  article-title: Deep canonical correlation analysis
– ident: ref5
  doi: 10.1109/TIM.2020.3011817
– ident: ref44
  doi: 10.3389/fnins.2018.00162
– ident: ref34
  doi: 10.1002/hbm.20346
– ident: ref16
  doi: 10.1109/TAMD.2015.2431497
– ident: ref18
  doi: 10.1109/TCDS.2020.2985539
– ident: ref38
  doi: 10.1109/TNNLS.2018.2838140
– ident: ref33
  doi: 10.1016/j.neuroimage.2013.02.008
– ident: ref41
  doi: 10.1162/0899766042321814
– ident: ref19
  doi: 10.1109/EMBC.2016.7591731
– ident: ref7
  doi: 10.3390/s18020401
– ident: ref23
  doi: 10.1109/TCDS.2021.3071170
– ident: ref13
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref15
  doi: 10.1109/NER.2013.6695876
– ident: ref10
  doi: 10.1109/HSI.2013.6577880
– ident: ref27
  doi: 10.1109/TNN.2010.2064786
SSID ssj0007647
Score 2.5386045
Snippet Frequency-domain (FD) features reveal the activated patterns of individual local brain regions responding to different emotions, whereas brain connectivity...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Affective computing
Approximate empirical kernel map (AEKM)
Brain
brain connectivity (BC) features
Channels
cross-subject emotion recognition
Datasets
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Feature extraction
Frequencies
Frequency domain analysis
frequency-domain (FD) features
fused features
Human-computer interface
Kernel
Motion pictures
Support vector machines
Title Fusing Frequency-Domain Features and Brain Connectivity Features for Cross-Subject Emotion Recognition
URI https://ieeexplore.ieee.org/document/9760385
https://www.proquest.com/docview/2659350989
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL2MA4IufIujo2ThRjAzfWTaZulrGIVxIQruSpomImpH5rHQr_feph1FRdwVmpSUk8e5yc05AIcyj3WQ25xjtJxwoaTHs0j3uAqF8ELlk-IHZVtcR4M7cXXfu2_A8fwujDGmTD4zHXosz_LzkZ7RVlkXl046yFqABQzc3F2t-awbR8LpY_o4gJEV1EeSnuzeXg4xEAyCDpk0SfKP-bIElZ4qPybicnXpr8KwbpdLKnnqzKZZR79_k2z8b8PXYKWimezE9Yt1aJhiA5a_iA9uwGKZ_Kknm2D7lP3-wPpjl1f9xs9HL-qxYMQPZxiPM1Xk7JTMJFiZGKOd5cTne2S-7Ix-luNERDs77MLZA7GbOkFpVGzBXf_i9mzAK_8FrgPpT3lugygjwXpLiPakUgbJQWAxYsSgySetQt8zntWxlkabyOaJECbUXiJULpCnbUOzGBVmB1gS29iTgVXSZiK0Vhqc8LM4VFLEWgvVgm4NSaorcXLyyHhOyyDFkymCmBKIaQViC47mNV6dMMcfZTcJk3m5Co4WtGvU02rkTtIg6skQWVQid3-vtQdL9G23DdOG5nQ8M_tITKbZQdkjPwBbF9-j
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT9swFD7qQNPgAVg7tELH_LCXSXObi3PxIzCqcikPU5H6FjmOPSG2ZIL2AX4958RJV7Fp2luk2Iqjzz4X-_P5AD7JItFBYQuO2XLKhZIez2MdcRUK4YXKp4ofxLa4jic34mIezTvwZXUXxhhTk8_MkB7rs_yi0kvaKhuh66SDrFewiX4_8t1trZXdTWLhKmT6uIQxLmgPJT05mp1PMRUMgiHJNElSkFlzQrWqyh-muPYv412YtiNztJK74XKRD_XTi6KN_zv0PdhpAk127GbGW-iYsgvba-UHu_C6pn_qhx7YMfHfv7PxvWNWP_Kv1U91WzKKEJeYkTNVFuyE5CRYTY3RTnTi93uMfdkp_SxHU0R7O-zMCQSxby1FqSrfwc34bHY64Y0CA9eB9Be8sEGcU8l6S5hGUimD4UFgMWfEtMmnaoW-ZzyrEy2NNrEtUiFMqL1UqEJgpLYPG2VVmvfA0sQmngyskjYXobXSoMnPk1BJkWgtVB9GLSSZbsqTk0rGj6xOUzyZIYgZgZg1IPbh86rHL1ea4x9te4TJql0DRx8GLepZs3YfsiCOZIhxVCoP_t7rI7yZzKZX2dX59eUhbNF33KbMADYW90vzAcOURX5Uz85nLHXi7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+Frequency-Domain+Features+and+Brain+Connectivity+Features+for+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Chen%2C+Chuangquan&rft.au=Li%2C+Zhencheng&rft.au=Wan%2C+Feng&rft.au=Xu%2C+Leicai&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2022.3168927&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3168927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon