Robust Secure Beamforming for Wireless Powered Full-Duplex Systems With Self-Energy Recycling

In this paper, we study a multiuser wireless powered communication system, where an energy-constrained full-duplex information transmitter (IT), powered by wireless energy from a dedicated energy transmitter (ET), intends to send confidential information to the information receiver (IR) in the prese...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 66; no. 11; pp. 10055 - 10069
Main Authors Wu, Wei, Wang, Baoyun, Zeng, Yong, Zhang, Haiyang, Yang, Zhenxing, Deng, Zhixiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2017.2744982

Cover

Loading…
More Information
Summary:In this paper, we study a multiuser wireless powered communication system, where an energy-constrained full-duplex information transmitter (IT), powered by wireless energy from a dedicated energy transmitter (ET), intends to send confidential information to the information receiver (IR) in the presence of multiple idle users that could be the potential eavesdroppers. In the practical scenario of imperfect channel state information and assuming that the idle users need to harvest energy from the ET, we aim to maximize the worst-case secrecy rate at the IR by jointly optimizing the transmit covariance matrix at the ET as well as the information beamforming and artificial noise covariance at the IT, subject to their individual transmit power constraints and the minimum required power transferred to the idle users. We employ the semidefinite relaxation (SDR) and extended S-procedure approaches to transform the original nonconvex optimization problem into convex problem, which can be efficiently solved by solving a sequence of semidefinite programs. Furthermore, we show that the SDR is tight since there always exists a rank-one optimal solution. For performance comparison, two heuristic schemes for ease of implementation are also developed. Numerical results are presented to show the effectiveness of our proposed schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2017.2744982