URLLC-Enabled by Laser Powered UAV Relay: A Quasi-Optimal Design of Resource Allocation, Trajectory Planning and Energy Harvesting

Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional communication systems devised only to support long data packets based on Shannon's capacity formula. This poses a formidable challenge for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 71; no. 1; pp. 753 - 765
Main Authors Ranjha, Ali, Kaddoum, Georges
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional communication systems devised only to support long data packets based on Shannon's capacity formula. This poses a formidable challenge for system designers and network operators. Many URLLC scenarios involve infrastructure-less unmanned aerial vehicle (UAV)-assisted communications. One of the biggest challenges with UAVs is their limited battery capacity, which can cause abrupt disruption of UAV-assisted communications. To overcome these limitations, we consider URLLC-enabled over-the-air charging of UAV relay system using a laser transmitter. Furthermore, we formulate a non-convex optimization problem to minimize the total decoding error rate subject to optimal resource allocation, including blocklength allocation, power control, trajectory planning, and energy harvesting to facilitate URLLC in such systems. In this regard, given its lower complexity, a novel perturbation-based iterative method is proposed to solve the optimization problem. The proposed method yields optimal blocklength allocation and power control for the two transmission phases, i.e., from the source node to the UAV and from the UAV to the robot acting as a ground station. It also maps the UAV trajectory from the initial position to the final position, and the UAV completes the flight using the laser's harvested energy. It is shown that the proposed algorithm and fixed baseline scheme, named fixed blocklength (FB), yield a similar performance as the exhaustive search in terms of UAV energy consumption. In contrast, fixed trajectory (FT) delivers the worst performance. Simultaneously, the proposed method yields the best performance in terms of the lowest average overall decoding error compared to fixed baseline schemes, including FB and FT, showing the efficacy of the proposed technique.
AbstractList Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional communication systems devised only to support long data packets based on Shannon's capacity formula. This poses a formidable challenge for system designers and network operators. Many URLLC scenarios involve infrastructure-less unmanned aerial vehicle (UAV)-assisted communications. One of the biggest challenges with UAVs is their limited battery capacity, which can cause abrupt disruption of UAV-assisted communications. To overcome these limitations, we consider URLLC-enabled over-the-air charging of UAV relay system using a laser transmitter. Furthermore, we formulate a non-convex optimization problem to minimize the total decoding error rate subject to optimal resource allocation, including blocklength allocation, power control, trajectory planning, and energy harvesting to facilitate URLLC in such systems. In this regard, given its lower complexity, a novel perturbation-based iterative method is proposed to solve the optimization problem. The proposed method yields optimal blocklength allocation and power control for the two transmission phases, i.e., from the source node to the UAV and from the UAV to the robot acting as a ground station. It also maps the UAV trajectory from the initial position to the final position, and the UAV completes the flight using the laser's harvested energy. It is shown that the proposed algorithm and fixed baseline scheme, named fixed blocklength (FB), yield a similar performance as the exhaustive search in terms of UAV energy consumption. In contrast, fixed trajectory (FT) delivers the worst performance. Simultaneously, the proposed method yields the best performance in terms of the lowest average overall decoding error compared to fixed baseline schemes, including FB and FT, showing the efficacy of the proposed technique.
Author Ranjha, Ali
Kaddoum, Georges
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0001-6663-3714
  surname: Ranjha
  fullname: Ranjha, Ali
  email: ali-nawaz.ranjha.1@ens.etsmtl.ca
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC, Canada
– sequence: 2
  givenname: Georges
  orcidid: 0000-0002-5025-6624
  surname: Kaddoum
  fullname: Kaddoum, Georges
  email: georges.kaddoum@etsmtl.ca
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC, Canada
BookMark eNp9kM1r20AQxZeSQp2090IvC7lG7n5Ia01uxnGTgiBpsHMVI-3YyCi7zq6comv_8m7ikEMPPQ3zeG8-fqfsxHlHjH2VYiqlgO-rh9VUCSWnWqoiF_IDm0jQkIEu4IRNhJBlBkVefGKnMe5Sm-cgJ-zP-r6qFtnSYdOT5c3IK4wU-J3_TSEJ6_kDv6cex0s-578OGLvsdj90j9jzK4rd1nG_SYboD6ElPu973-LQeXfBVwF31A4-jPyuR-c6t-XoLF86CtuR32B4pjgk9TP7uME-0pe3esbWP5arxU1W3V7_XMyrrFUgh8wCNobETBloTakh16YUjSybZla0UOa6sVgqTWAV0Ax1jlahUdZaiY2yM33Gzo9z98E_HdLuepeudmllrYySpdB5WSSXObra4GMMtKnbbnh9aQjY9bUU9QvvOvGuX3jXb7xTUPwT3IfEKYz_i3w7RjoiereDEaYA0H8BuQGM4w
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_JIOT_2022_3191687
crossref_primary_10_3390_app12199845
crossref_primary_10_1016_j_dsp_2024_104968
crossref_primary_10_1109_TVT_2022_3189627
crossref_primary_10_1109_LCOMM_2022_3180396
crossref_primary_10_54392_irjmt24324
crossref_primary_10_1016_j_comcom_2025_108049
crossref_primary_10_1109_OJCOMS_2022_3232888
crossref_primary_10_1109_TMC_2024_3368159
crossref_primary_10_1109_ACCESS_2023_3294092
crossref_primary_10_1109_TGCN_2023_3330791
crossref_primary_10_1109_JIOT_2022_3186065
crossref_primary_10_1109_TNSE_2023_3282870
crossref_primary_10_1109_TWC_2023_3324190
crossref_primary_10_1016_j_tcs_2022_12_030
crossref_primary_10_1109_TNSM_2024_3454217
crossref_primary_10_1109_JIOT_2022_3232962
crossref_primary_10_1109_TVT_2023_3260826
crossref_primary_10_1145_3561304
crossref_primary_10_1007_s44196_024_00530_8
crossref_primary_10_1109_ACCESS_2023_3316716
crossref_primary_10_1109_LWC_2023_3237637
crossref_primary_10_1109_TCE_2023_3305550
crossref_primary_10_3390_en17236109
crossref_primary_10_3390_sym14102193
crossref_primary_10_1109_JIOT_2022_3188608
crossref_primary_10_1016_j_dcan_2022_08_006
crossref_primary_10_1109_TVT_2022_3232841
crossref_primary_10_1016_j_icte_2023_08_001
crossref_primary_10_1109_JSAC_2022_3196111
crossref_primary_10_1109_TVT_2022_3231376
crossref_primary_10_1109_OJCOMS_2024_3372881
crossref_primary_10_1016_j_iot_2023_100961
crossref_primary_10_1109_TAES_2024_3364135
crossref_primary_10_1109_TCOMM_2023_3300839
crossref_primary_10_1109_JIOT_2023_3281942
Cites_doi 10.1002/9781118671603
10.1109/ICDCS.2018.00114
10.1109/LWC.2019.2960215
10.1109/LWC.2019.2892721
10.1109/JIOT.2020.3027149
10.1109/TWC.2019.2957745
10.1109/JSYST.2017.2777866
10.1109/JSAC.2012.120614
10.1109/TWC.2016.2561273
10.1109/LCOMM.2018.2846241
10.1109/LCOMM.2019.2947039
10.1109/TWC.2017.2688328
10.1109/ICCW.2018.8403572
10.1017/CBO9780511804441
10.1109/LWC.2019.2929391
10.1109/LWC.2020.2973624
10.1109/TCOMM.2019.2900630
10.1109/MCOM.2016.7470933
10.1016/j.adhoc.2012.12.004
10.1109/LWC.2019.2961668
10.1109/LCOMM.2019.2894696
10.1109/JPROC.2018.2867029
10.1109/LWC.2020.3009951
10.1109/TWC.2020.2971987
10.1109/COMST.2015.2495297
10.1109/LCOMM.2017.2776215
10.1109/LWC.2019.2953165
10.1109/TIT.2010.2043769
10.1109/TCOMM.2020.2982152
10.1007/978-3-642-56468-0
10.1109/LWC.2020.2965445
10.1109/TGCN.2017.2767203
10.1017/CBO9781316451090
10.1109/LWC.2018.2879842
10.1109/ACCESS.2018.2868117
10.1109/JIOT.2020.3014039
10.1109/LWC.2020.3012552
10.1109/LCOMM.2016.2609900
10.1109/TWC.2016.2542245
10.1109/TWC.2017.2751045
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3125401
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 765
ExternalDocumentID 10_1109_TVT_2021_3125401
9606599
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-d9ab6e07269c683943680b18bb75c9843bda823e9d29e7a34ad2a62ddd1ab2d73
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:11:48 EDT 2025
Tue Jul 01 01:44:14 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Aug 27 03:02:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d9ab6e07269c683943680b18bb75c9843bda823e9d29e7a34ad2a62ddd1ab2d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6663-3714
0000-0002-5025-6624
PQID 2621803485
PQPubID 85454
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TVT_2021_3125401
ieee_primary_9606599
crossref_primary_10_1109_TVT_2021_3125401
proquest_journals_2621803485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
Cui (ref32) 2005; 23
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref27
  doi: 10.1002/9781118671603
– ident: ref6
  doi: 10.1109/ICDCS.2018.00114
– ident: ref16
  doi: 10.1109/LWC.2019.2960215
– ident: ref25
  doi: 10.1109/LWC.2019.2892721
– ident: ref31
  doi: 10.1109/JIOT.2020.3027149
– ident: ref29
  doi: 10.1109/TWC.2019.2957745
– ident: ref3
  doi: 10.1109/JSYST.2017.2777866
– ident: ref8
  doi: 10.1109/JSAC.2012.120614
– ident: ref28
  doi: 10.1109/TWC.2016.2561273
– ident: ref14
  doi: 10.1109/LCOMM.2018.2846241
– volume: 23
  start-page: 14
  issue: 1
  year: 2005
  ident: ref32
  article-title: Present situation and some problems analysis of small-size unmanned air vehicles
  publication-title: Flight Dyn.
– ident: ref36
  doi: 10.1109/LCOMM.2019.2947039
– ident: ref33
  doi: 10.1109/TWC.2017.2688328
– ident: ref34
  doi: 10.1109/ICCW.2018.8403572
– ident: ref41
  doi: 10.1017/CBO9780511804441
– ident: ref10
  doi: 10.1109/LWC.2019.2929391
– ident: ref13
  doi: 10.1109/LWC.2020.2973624
– ident: ref26
  doi: 10.1109/TCOMM.2019.2900630
– ident: ref7
  doi: 10.1109/MCOM.2016.7470933
– ident: ref5
  doi: 10.1016/j.adhoc.2012.12.004
– ident: ref19
  doi: 10.1109/LWC.2019.2961668
– ident: ref11
  doi: 10.1109/LCOMM.2019.2894696
– ident: ref1
  doi: 10.1109/JPROC.2018.2867029
– ident: ref22
  doi: 10.1109/LWC.2020.3009951
– ident: ref35
  doi: 10.1109/TWC.2020.2971987
– ident: ref4
  doi: 10.1109/COMST.2015.2495297
– ident: ref20
  doi: 10.1109/LCOMM.2017.2776215
– ident: ref37
  doi: 10.1109/LWC.2019.2953165
– ident: ref2
  doi: 10.1109/TIT.2010.2043769
– ident: ref23
  doi: 10.1109/TCOMM.2020.2982152
– ident: ref40
  doi: 10.1007/978-3-642-56468-0
– ident: ref18
  doi: 10.1109/LWC.2020.2965445
– ident: ref38
  doi: 10.1109/TGCN.2017.2767203
– ident: ref39
  doi: 10.1017/CBO9781316451090
– ident: ref21
  doi: 10.1109/LWC.2018.2879842
– ident: ref12
  doi: 10.1109/ACCESS.2018.2868117
– ident: ref30
  doi: 10.1109/JIOT.2020.3014039
– ident: ref24
  doi: 10.1109/LWC.2020.3012552
– ident: ref9
  doi: 10.1109/LCOMM.2016.2609900
– ident: ref15
  doi: 10.1109/TWC.2016.2542245
– ident: ref17
  doi: 10.1109/TWC.2017.2751045
SSID ssj0014491
Score 2.544465
Snippet Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 753
SubjectTerms Algorithms
Batteries
Communications systems
Computational geometry
Convexity
Decoding
Energy consumption
Energy harvesting
Ground stations
Iterative methods
laser powered UAV
Lasers
Optimization
Packets (communication)
Perturbation
Power control
Relay systems
Relays
Resource allocation
Resource management
Traffic planning
Trajectory
Trajectory control
Trajectory planning
Ultra reliable low latency communication
Unmanned aerial vehicles
URLLC
Title URLLC-Enabled by Laser Powered UAV Relay: A Quasi-Optimal Design of Resource Allocation, Trajectory Planning and Energy Harvesting
URI https://ieeexplore.ieee.org/document/9606599
https://www.proquest.com/docview/2621803485
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CTuPAxxiiDJAPuyDh1nGcON6tgiI0lQFTi7hF_iragHSC9tAd-ct5dpMKbQjtFkV2FOn3_D78Pn4AX0YsZ4VhljKmNRWJdVRLJqiVLrEmU5z70I18_j0_G4pvN9nNEhwtemG897H4zLfDY8zlu7GdhquyTvC2M6WWYRkDt3mv1iJjIETNjpfgAUa3oElJMtUZXA8wEOQJxqcYDtX0L40Jipwq_yjiaF1O1-G8-a95Ucldezoxbfvnr5GN__vjG7BWu5mkO5eLTVjy1UdYfTV8cAuehz_6_WPai81TjpgZ6aNFeySXgTcNXwy71ySUys2-ki65muqnn_QC9csDfvYkln2Q8Yg0t_-kex-sYkD5iKD9-xWTATPScCIRXTnSi32GJNARhdke1e0nGJ72BsdntGZkoJarZEKd0ib3TPJc2RxdqzC-npmkMEZmVhUiNU4XPPXKceWlToV2XOfcOZdow51Mt2GlGld-B4iSTHueor4QRqReKmVHuB7lAzWM4bIFnQak0tbjygNrxn0ZwxamSoS1DLCWNawtOFzs-D0f1fHO2q2A0mJdDVAL9ho5KOuz_FTyHN0glooi231712f4wENTRLyY2YOVyePU76OrMjEHUUZfAD4Y5Kk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB615VB64FUQgUJ94IJUJ16vd73mFpVUoWxKi5Kqt5VfQZSyQW1yCEd-OWNnN0IUod5Wq7Flacbz8Dw-gDdTlrPCMEsZ05qKxDqqJRPUSpdYkynOfehGHp3kw4k4vsguNuBg3QvjvY_FZ74bPmMu383sIjyV9YK3nSm1CffQ7mfJqltrnTMQosHHS_AKI0GblGSqNz4fYyjIE4xQMSBqAGBaIxRRVW6p4mhfjh7CqD3ZqqzkW3cxN13786-hjXc9-iN40DiapL-SjMew4esnsPPH-MFd-DX5XJaHdBDbpxwxS1KiTbsmpwE5DX9M-uckFMst35E-OVvom6_0E2qY77jt-1j4QWZT0r7_k_5VsIuBzwcELeBlTAcsSYuKRHTtyCB2GpIASBSme9RfnsLkaDA-HNIGk4FarpI5dUqb3DPJc2VzdK7CAHtmksIYmVlViNQ4XfDUK8eVlzoV2nGdc-dcog13Mn0GW_Ws9s-BKMm05ylqDGFE6qVSdor0KCGoYwyXHei1TKpsM7A84GZcVTFwYapCtlaBrVXD1g68Xa_4sRrW8R_a3cClNV3DoA7stXJQNbf5puI5OkIsFUX24t-r9mF7OB6VVfnh5ONLuM9Di0R8ptmDrfn1wr9Cx2VuXkd5_Q1TzOfy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=URLLC-Enabled+by+Laser+Powered+UAV+Relay%3A+A+Quasi-Optimal+Design+of+Resource+Allocation%2C+Trajectory+Planning+and+Energy+Harvesting&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Ranjha%2C+Ali&rft.au=Kaddoum%2C+Georges&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=1&rft.spage=753&rft_id=info:doi/10.1109%2FTVT.2021.3125401&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon