URLLC-Enabled by Laser Powered UAV Relay: A Quasi-Optimal Design of Resource Allocation, Trajectory Planning and Energy Harvesting
Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional communication systems devised only to support long data packets based on Shannon's capacity formula. This poses a formidable challenge for...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 71; no. 1; pp. 753 - 765 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional communication systems devised only to support long data packets based on Shannon's capacity formula. This poses a formidable challenge for system designers and network operators. Many URLLC scenarios involve infrastructure-less unmanned aerial vehicle (UAV)-assisted communications. One of the biggest challenges with UAVs is their limited battery capacity, which can cause abrupt disruption of UAV-assisted communications. To overcome these limitations, we consider URLLC-enabled over-the-air charging of UAV relay system using a laser transmitter. Furthermore, we formulate a non-convex optimization problem to minimize the total decoding error rate subject to optimal resource allocation, including blocklength allocation, power control, trajectory planning, and energy harvesting to facilitate URLLC in such systems. In this regard, given its lower complexity, a novel perturbation-based iterative method is proposed to solve the optimization problem. The proposed method yields optimal blocklength allocation and power control for the two transmission phases, i.e., from the source node to the UAV and from the UAV to the robot acting as a ground station. It also maps the UAV trajectory from the initial position to the final position, and the UAV completes the flight using the laser's harvested energy. It is shown that the proposed algorithm and fixed baseline scheme, named fixed blocklength (FB), yield a similar performance as the exhaustive search in terms of UAV energy consumption. In contrast, fixed trajectory (FT) delivers the worst performance. Simultaneously, the proposed method yields the best performance in terms of the lowest average overall decoding error compared to fixed baseline schemes, including FB and FT, showing the efficacy of the proposed technique. |
---|---|
AbstractList | Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional communication systems devised only to support long data packets based on Shannon's capacity formula. This poses a formidable challenge for system designers and network operators. Many URLLC scenarios involve infrastructure-less unmanned aerial vehicle (UAV)-assisted communications. One of the biggest challenges with UAVs is their limited battery capacity, which can cause abrupt disruption of UAV-assisted communications. To overcome these limitations, we consider URLLC-enabled over-the-air charging of UAV relay system using a laser transmitter. Furthermore, we formulate a non-convex optimization problem to minimize the total decoding error rate subject to optimal resource allocation, including blocklength allocation, power control, trajectory planning, and energy harvesting to facilitate URLLC in such systems. In this regard, given its lower complexity, a novel perturbation-based iterative method is proposed to solve the optimization problem. The proposed method yields optimal blocklength allocation and power control for the two transmission phases, i.e., from the source node to the UAV and from the UAV to the robot acting as a ground station. It also maps the UAV trajectory from the initial position to the final position, and the UAV completes the flight using the laser's harvested energy. It is shown that the proposed algorithm and fixed baseline scheme, named fixed blocklength (FB), yield a similar performance as the exhaustive search in terms of UAV energy consumption. In contrast, fixed trajectory (FT) delivers the worst performance. Simultaneously, the proposed method yields the best performance in terms of the lowest average overall decoding error compared to fixed baseline schemes, including FB and FT, showing the efficacy of the proposed technique. |
Author | Ranjha, Ali Kaddoum, Georges |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0001-6663-3714 surname: Ranjha fullname: Ranjha, Ali email: ali-nawaz.ranjha.1@ens.etsmtl.ca organization: Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC, Canada – sequence: 2 givenname: Georges orcidid: 0000-0002-5025-6624 surname: Kaddoum fullname: Kaddoum, Georges email: georges.kaddoum@etsmtl.ca organization: Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC, Canada |
BookMark | eNp9kM1r20AQxZeSQp2090IvC7lG7n5Ia01uxnGTgiBpsHMVI-3YyCi7zq6comv_8m7ikEMPPQ3zeG8-fqfsxHlHjH2VYiqlgO-rh9VUCSWnWqoiF_IDm0jQkIEu4IRNhJBlBkVefGKnMe5Sm-cgJ-zP-r6qFtnSYdOT5c3IK4wU-J3_TSEJ6_kDv6cex0s-578OGLvsdj90j9jzK4rd1nG_SYboD6ElPu973-LQeXfBVwF31A4-jPyuR-c6t-XoLF86CtuR32B4pjgk9TP7uME-0pe3esbWP5arxU1W3V7_XMyrrFUgh8wCNobETBloTakh16YUjSybZla0UOa6sVgqTWAV0Ax1jlahUdZaiY2yM33Gzo9z98E_HdLuepeudmllrYySpdB5WSSXObra4GMMtKnbbnh9aQjY9bUU9QvvOvGuX3jXb7xTUPwT3IfEKYz_i3w7RjoiereDEaYA0H8BuQGM4w |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_JIOT_2022_3191687 crossref_primary_10_3390_app12199845 crossref_primary_10_1016_j_dsp_2024_104968 crossref_primary_10_1109_TVT_2022_3189627 crossref_primary_10_1109_LCOMM_2022_3180396 crossref_primary_10_54392_irjmt24324 crossref_primary_10_1016_j_comcom_2025_108049 crossref_primary_10_1109_OJCOMS_2022_3232888 crossref_primary_10_1109_TMC_2024_3368159 crossref_primary_10_1109_ACCESS_2023_3294092 crossref_primary_10_1109_TGCN_2023_3330791 crossref_primary_10_1109_JIOT_2022_3186065 crossref_primary_10_1109_TNSE_2023_3282870 crossref_primary_10_1109_TWC_2023_3324190 crossref_primary_10_1016_j_tcs_2022_12_030 crossref_primary_10_1109_TNSM_2024_3454217 crossref_primary_10_1109_JIOT_2022_3232962 crossref_primary_10_1109_TVT_2023_3260826 crossref_primary_10_1145_3561304 crossref_primary_10_1007_s44196_024_00530_8 crossref_primary_10_1109_ACCESS_2023_3316716 crossref_primary_10_1109_LWC_2023_3237637 crossref_primary_10_1109_TCE_2023_3305550 crossref_primary_10_3390_en17236109 crossref_primary_10_3390_sym14102193 crossref_primary_10_1109_JIOT_2022_3188608 crossref_primary_10_1016_j_dcan_2022_08_006 crossref_primary_10_1109_TVT_2022_3232841 crossref_primary_10_1016_j_icte_2023_08_001 crossref_primary_10_1109_JSAC_2022_3196111 crossref_primary_10_1109_TVT_2022_3231376 crossref_primary_10_1109_OJCOMS_2024_3372881 crossref_primary_10_1016_j_iot_2023_100961 crossref_primary_10_1109_TAES_2024_3364135 crossref_primary_10_1109_TCOMM_2023_3300839 crossref_primary_10_1109_JIOT_2023_3281942 |
Cites_doi | 10.1002/9781118671603 10.1109/ICDCS.2018.00114 10.1109/LWC.2019.2960215 10.1109/LWC.2019.2892721 10.1109/JIOT.2020.3027149 10.1109/TWC.2019.2957745 10.1109/JSYST.2017.2777866 10.1109/JSAC.2012.120614 10.1109/TWC.2016.2561273 10.1109/LCOMM.2018.2846241 10.1109/LCOMM.2019.2947039 10.1109/TWC.2017.2688328 10.1109/ICCW.2018.8403572 10.1017/CBO9780511804441 10.1109/LWC.2019.2929391 10.1109/LWC.2020.2973624 10.1109/TCOMM.2019.2900630 10.1109/MCOM.2016.7470933 10.1016/j.adhoc.2012.12.004 10.1109/LWC.2019.2961668 10.1109/LCOMM.2019.2894696 10.1109/JPROC.2018.2867029 10.1109/LWC.2020.3009951 10.1109/TWC.2020.2971987 10.1109/COMST.2015.2495297 10.1109/LCOMM.2017.2776215 10.1109/LWC.2019.2953165 10.1109/TIT.2010.2043769 10.1109/TCOMM.2020.2982152 10.1007/978-3-642-56468-0 10.1109/LWC.2020.2965445 10.1109/TGCN.2017.2767203 10.1017/CBO9781316451090 10.1109/LWC.2018.2879842 10.1109/ACCESS.2018.2868117 10.1109/JIOT.2020.3014039 10.1109/LWC.2020.3012552 10.1109/LCOMM.2016.2609900 10.1109/TWC.2016.2542245 10.1109/TWC.2017.2751045 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2021.3125401 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 765 |
ExternalDocumentID | 10_1109_TVT_2021_3125401 9606599 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-d9ab6e07269c683943680b18bb75c9843bda823e9d29e7a34ad2a62ddd1ab2d73 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:11:48 EDT 2025 Tue Jul 01 01:44:14 EDT 2025 Thu Apr 24 23:00:38 EDT 2025 Wed Aug 27 03:02:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-d9ab6e07269c683943680b18bb75c9843bda823e9d29e7a34ad2a62ddd1ab2d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6663-3714 0000-0002-5025-6624 |
PQID | 2621803485 |
PQPubID | 85454 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TVT_2021_3125401 ieee_primary_9606599 crossref_primary_10_1109_TVT_2021_3125401 proquest_journals_2621803485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 Cui (ref32) 2005; 23 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref27 doi: 10.1002/9781118671603 – ident: ref6 doi: 10.1109/ICDCS.2018.00114 – ident: ref16 doi: 10.1109/LWC.2019.2960215 – ident: ref25 doi: 10.1109/LWC.2019.2892721 – ident: ref31 doi: 10.1109/JIOT.2020.3027149 – ident: ref29 doi: 10.1109/TWC.2019.2957745 – ident: ref3 doi: 10.1109/JSYST.2017.2777866 – ident: ref8 doi: 10.1109/JSAC.2012.120614 – ident: ref28 doi: 10.1109/TWC.2016.2561273 – ident: ref14 doi: 10.1109/LCOMM.2018.2846241 – volume: 23 start-page: 14 issue: 1 year: 2005 ident: ref32 article-title: Present situation and some problems analysis of small-size unmanned air vehicles publication-title: Flight Dyn. – ident: ref36 doi: 10.1109/LCOMM.2019.2947039 – ident: ref33 doi: 10.1109/TWC.2017.2688328 – ident: ref34 doi: 10.1109/ICCW.2018.8403572 – ident: ref41 doi: 10.1017/CBO9780511804441 – ident: ref10 doi: 10.1109/LWC.2019.2929391 – ident: ref13 doi: 10.1109/LWC.2020.2973624 – ident: ref26 doi: 10.1109/TCOMM.2019.2900630 – ident: ref7 doi: 10.1109/MCOM.2016.7470933 – ident: ref5 doi: 10.1016/j.adhoc.2012.12.004 – ident: ref19 doi: 10.1109/LWC.2019.2961668 – ident: ref11 doi: 10.1109/LCOMM.2019.2894696 – ident: ref1 doi: 10.1109/JPROC.2018.2867029 – ident: ref22 doi: 10.1109/LWC.2020.3009951 – ident: ref35 doi: 10.1109/TWC.2020.2971987 – ident: ref4 doi: 10.1109/COMST.2015.2495297 – ident: ref20 doi: 10.1109/LCOMM.2017.2776215 – ident: ref37 doi: 10.1109/LWC.2019.2953165 – ident: ref2 doi: 10.1109/TIT.2010.2043769 – ident: ref23 doi: 10.1109/TCOMM.2020.2982152 – ident: ref40 doi: 10.1007/978-3-642-56468-0 – ident: ref18 doi: 10.1109/LWC.2020.2965445 – ident: ref38 doi: 10.1109/TGCN.2017.2767203 – ident: ref39 doi: 10.1017/CBO9781316451090 – ident: ref21 doi: 10.1109/LWC.2018.2879842 – ident: ref12 doi: 10.1109/ACCESS.2018.2868117 – ident: ref30 doi: 10.1109/JIOT.2020.3014039 – ident: ref24 doi: 10.1109/LWC.2020.3012552 – ident: ref9 doi: 10.1109/LCOMM.2016.2609900 – ident: ref15 doi: 10.1109/TWC.2016.2542245 – ident: ref17 doi: 10.1109/TWC.2017.2751045 |
SSID | ssj0014491 |
Score | 2.544465 |
Snippet | Ultra-reliable and low-latency (URLLC) traffic in the upcoming sixth-generation (6G) systems utilize short packets, signalling a distancing from traditional... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 753 |
SubjectTerms | Algorithms Batteries Communications systems Computational geometry Convexity Decoding Energy consumption Energy harvesting Ground stations Iterative methods laser powered UAV Lasers Optimization Packets (communication) Perturbation Power control Relay systems Relays Resource allocation Resource management Traffic planning Trajectory Trajectory control Trajectory planning Ultra reliable low latency communication Unmanned aerial vehicles URLLC |
Title | URLLC-Enabled by Laser Powered UAV Relay: A Quasi-Optimal Design of Resource Allocation, Trajectory Planning and Energy Harvesting |
URI | https://ieeexplore.ieee.org/document/9606599 https://www.proquest.com/docview/2621803485 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CTuPAxxiiDJAPuyDh1nGcON6tgiI0lQFTi7hF_iragHSC9tAd-ct5dpMKbQjtFkV2FOn3_D78Pn4AX0YsZ4VhljKmNRWJdVRLJqiVLrEmU5z70I18_j0_G4pvN9nNEhwtemG897H4zLfDY8zlu7GdhquyTvC2M6WWYRkDt3mv1iJjIETNjpfgAUa3oElJMtUZXA8wEOQJxqcYDtX0L40Jipwq_yjiaF1O1-G8-a95Ucldezoxbfvnr5GN__vjG7BWu5mkO5eLTVjy1UdYfTV8cAuehz_6_WPai81TjpgZ6aNFeySXgTcNXwy71ySUys2-ki65muqnn_QC9csDfvYkln2Q8Yg0t_-kex-sYkD5iKD9-xWTATPScCIRXTnSi32GJNARhdke1e0nGJ72BsdntGZkoJarZEKd0ib3TPJc2RxdqzC-npmkMEZmVhUiNU4XPPXKceWlToV2XOfcOZdow51Mt2GlGld-B4iSTHueor4QRqReKmVHuB7lAzWM4bIFnQak0tbjygNrxn0ZwxamSoS1DLCWNawtOFzs-D0f1fHO2q2A0mJdDVAL9ho5KOuz_FTyHN0glooi231712f4wENTRLyY2YOVyePU76OrMjEHUUZfAD4Y5Kk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB615VB64FUQgUJ94IJUJ16vd73mFpVUoWxKi5Kqt5VfQZSyQW1yCEd-OWNnN0IUod5Wq7Flacbz8Dw-gDdTlrPCMEsZ05qKxDqqJRPUSpdYkynOfehGHp3kw4k4vsguNuBg3QvjvY_FZ74bPmMu383sIjyV9YK3nSm1CffQ7mfJqltrnTMQosHHS_AKI0GblGSqNz4fYyjIE4xQMSBqAGBaIxRRVW6p4mhfjh7CqD3ZqqzkW3cxN13786-hjXc9-iN40DiapL-SjMew4esnsPPH-MFd-DX5XJaHdBDbpxwxS1KiTbsmpwE5DX9M-uckFMst35E-OVvom6_0E2qY77jt-1j4QWZT0r7_k_5VsIuBzwcELeBlTAcsSYuKRHTtyCB2GpIASBSme9RfnsLkaDA-HNIGk4FarpI5dUqb3DPJc2VzdK7CAHtmksIYmVlViNQ4XfDUK8eVlzoV2nGdc-dcog13Mn0GW_Ws9s-BKMm05ylqDGFE6qVSdor0KCGoYwyXHei1TKpsM7A84GZcVTFwYapCtlaBrVXD1g68Xa_4sRrW8R_a3cClNV3DoA7stXJQNbf5puI5OkIsFUX24t-r9mF7OB6VVfnh5ONLuM9Di0R8ptmDrfn1wr9Cx2VuXkd5_Q1TzOfy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=URLLC-Enabled+by+Laser+Powered+UAV+Relay%3A+A+Quasi-Optimal+Design+of+Resource+Allocation%2C+Trajectory+Planning+and+Energy+Harvesting&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Ranjha%2C+Ali&rft.au=Kaddoum%2C+Georges&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=1&rft.spage=753&rft_id=info:doi/10.1109%2FTVT.2021.3125401&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |