Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems

This letter investigates the intelligent reflecting surface (IRS)-aided multiple-input single-output wireless transmission system. Particularly, the optimization of the passive phase shift of each element at IRS to maximize the downlink received signal-to-noise ratio is considered. Inspired by the h...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications letters Vol. 9; no. 5; pp. 745 - 749
Main Authors Feng, Keming, Wang, Qisheng, Li, Xiao, Wen, Chao-Kai
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This letter investigates the intelligent reflecting surface (IRS)-aided multiple-input single-output wireless transmission system. Particularly, the optimization of the passive phase shift of each element at IRS to maximize the downlink received signal-to-noise ratio is considered. Inspired by the huge success of deep reinforcement learning (DRL) on resolving complicated control problems, we develop a DRL based framework to solve this non-convex optimization problem. Numerical results reveal that the proposed DRL based framework can achieve almost the upper bound of the received SNR with relatively low time consumption.
AbstractList This letter investigates the intelligent reflecting surface (IRS)-aided multiple-input single-output wireless transmission system. Particularly, the optimization of the passive phase shift of each element at IRS to maximize the downlink received signal-to-noise ratio is considered. Inspired by the huge success of deep reinforcement learning (DRL) on resolving complicated control problems, we develop a DRL based framework to solve this non-convex optimization problem. Numerical results reveal that the proposed DRL based framework can achieve almost the upper bound of the received SNR with relatively low time consumption.
Author Wang, Qisheng
Li, Xiao
Wen, Chao-Kai
Feng, Keming
Author_xml – sequence: 1
  givenname: Keming
  orcidid: 0000-0002-5721-4566
  surname: Feng
  fullname: Feng, Keming
  email: keming_feng@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 2
  givenname: Qisheng
  surname: Wang
  fullname: Wang, Qisheng
  email: qishengw@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 3
  givenname: Xiao
  orcidid: 0000-0001-9660-9053
  surname: Li
  fullname: Li, Xiao
  email: li_xiao@seu.edu.cn
  organization: National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
– sequence: 4
  givenname: Chao-Kai
  orcidid: 0000-0001-5952-232X
  surname: Wen
  fullname: Wen, Chao-Kai
  email: chaokai.wen@mail.nsysu.edu.tw
  organization: Institute of Communications Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
BookMark eNp9UD1PwzAQtVCRKKU7Eksk5hR_5MsjhK9KQZVaEGPkOufKVeIU2x3KrychVQcGbrnT3Xvv7t4lGpnWAELXBM8Iwfyu-MxnFFM8ozzhJEnP0JiShIaURfHoVLP0Ak2d2-IuEkwoycaofgTYBUvQRrVWQgPGBwUIa7TZBA_CQRXMjYe61pt-tARVg_T9cLW3SkgIFjuvG_0tvG5N0IkEb_PVIsjbptkbLYf26uA8NO4KnStRO5ge8wR9PD-9569hsXiZ5_dFKCknPqx4Bt0zlYpktc6UiJmSfC1IpQgRa5xRyhVhMUm4AhnLDsV5HKciYjTLBKNsgm4H3Z1tv_bgfLlt99Z0K0saYUIoS6O4QyUDStrWOQuqlNr_3uut0HVJcNmbW3bmlr255dHcjoj_EHdWN8Ie_qPcDBQNACd4xpOMxZj9ADo7h4w
CODEN IWCLAF
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3384951
crossref_primary_10_1109_TWC_2022_3219140
crossref_primary_10_1109_TIFS_2021_3103062
crossref_primary_10_1109_TNNLS_2021_3117878
crossref_primary_10_1109_OJVT_2020_3044569
crossref_primary_10_1109_TWC_2023_3336742
crossref_primary_10_1109_ACCESS_2023_3312546
crossref_primary_10_1109_COMST_2020_3004197
crossref_primary_10_1109_TWC_2023_3324641
crossref_primary_10_1109_JSTSP_2022_3172587
crossref_primary_10_1109_TGCN_2023_3237132
crossref_primary_10_1109_JIOT_2022_3195543
crossref_primary_10_1631_FITEE_2300136
crossref_primary_10_1109_TCOMM_2024_3409538
crossref_primary_10_3390_s22145405
crossref_primary_10_1109_TVT_2024_3357821
crossref_primary_10_1109_TVT_2023_3332107
crossref_primary_10_1109_TSP_2023_3322830
crossref_primary_10_1109_LWC_2022_3194192
crossref_primary_10_1109_LWC_2023_3278171
crossref_primary_10_1109_ACCESS_2024_3522783
crossref_primary_10_1109_LCOMM_2024_3376713
crossref_primary_10_1109_TVT_2023_3278459
crossref_primary_10_1016_j_procs_2022_04_010
crossref_primary_10_1109_JSTSP_2021_3134162
crossref_primary_10_1109_JSAC_2021_3087259
crossref_primary_10_1109_TWC_2023_3255406
crossref_primary_10_3390_electronics10222786
crossref_primary_10_1109_LWC_2024_3504592
crossref_primary_10_1109_TVT_2023_3275581
crossref_primary_10_1109_JIOT_2022_3177705
crossref_primary_10_1109_TII_2024_3459025
crossref_primary_10_1109_JIOT_2022_3218740
crossref_primary_10_1109_TWC_2022_3159564
crossref_primary_10_1109_LWC_2021_3091164
crossref_primary_10_1109_TGCN_2024_3393554
crossref_primary_10_1002_ett_70007
crossref_primary_10_1109_JSAC_2023_3310050
crossref_primary_10_1109_JIOT_2023_3279196
crossref_primary_10_1109_TWC_2021_3072694
crossref_primary_10_1109_JIOT_2023_3278384
crossref_primary_10_1109_OJCOMS_2022_3210648
crossref_primary_10_1109_TWC_2024_3418011
crossref_primary_10_1109_TVT_2023_3249353
crossref_primary_10_1515_freq_2022_0189
crossref_primary_10_1109_TMC_2021_3114167
crossref_primary_10_1016_j_vehcom_2024_100859
crossref_primary_10_1007_s11276_022_03037_2
crossref_primary_10_1109_JSAC_2023_3240707
crossref_primary_10_1109_OJVT_2024_3447109
crossref_primary_10_1109_JSAC_2020_3041401
crossref_primary_10_1109_LWC_2021_3056702
crossref_primary_10_1109_LCOMM_2020_3042344
crossref_primary_10_1109_LWC_2024_3482720
crossref_primary_10_1109_LWC_2021_3100901
crossref_primary_10_1109_JPROC_2022_3174030
crossref_primary_10_1109_JIOT_2024_3449969
crossref_primary_10_1109_COMST_2021_3077737
crossref_primary_10_1109_LWC_2022_3229441
crossref_primary_10_1109_TII_2023_3280314
crossref_primary_10_1109_JSAC_2021_3078502
crossref_primary_10_1109_TCOMM_2023_3286453
crossref_primary_10_1109_JSEN_2024_3370993
crossref_primary_10_1016_j_procs_2023_01_090
crossref_primary_10_1109_JPROC_2021_3121790
crossref_primary_10_1109_TCOMM_2023_3249227
crossref_primary_10_1109_TWC_2024_3354052
crossref_primary_10_1016_j_dcan_2021_11_002
crossref_primary_10_1109_TVT_2022_3233469
crossref_primary_10_3390_fi17020050
crossref_primary_10_1109_JIOT_2024_3398413
crossref_primary_10_1038_s41377_024_01729_2
crossref_primary_10_1109_TWC_2024_3358372
crossref_primary_10_1109_TCOMM_2023_3233988
crossref_primary_10_3390_s23146321
crossref_primary_10_1109_TWC_2021_3100148
crossref_primary_10_1109_TCOMM_2022_3158954
crossref_primary_10_1109_JIOT_2022_3232587
crossref_primary_10_1109_TWC_2022_3159187
crossref_primary_10_1109_TWC_2022_3217679
crossref_primary_10_1186_s13638_022_02184_6
crossref_primary_10_1109_TCOMM_2022_3162645
crossref_primary_10_1109_TWC_2022_3224009
crossref_primary_10_1109_TWC_2024_3449074
crossref_primary_10_1109_TWC_2021_3103256
crossref_primary_10_1109_TWC_2022_3222864
crossref_primary_10_1109_TIV_2023_3275632
crossref_primary_10_1109_TWC_2023_3245820
crossref_primary_10_1109_TVT_2024_3401750
crossref_primary_10_1016_j_jiixd_2023_06_003
crossref_primary_10_1007_s11277_024_11714_y
crossref_primary_10_1109_LCOMM_2022_3170061
crossref_primary_10_1109_TCOMM_2024_3382332
crossref_primary_10_1109_TVT_2024_3391941
crossref_primary_10_1109_COMST_2023_3340099
crossref_primary_10_3390_app142412014
crossref_primary_10_1109_MNET_211_2100386
crossref_primary_10_1049_cmu2_12674
crossref_primary_10_1109_TWC_2023_3325772
crossref_primary_10_1109_ACCESS_2023_3342320
crossref_primary_10_1109_LWC_2024_3402235
crossref_primary_10_3390_electronics13183732
crossref_primary_10_3390_s21186100
crossref_primary_10_1109_TVT_2024_3486360
crossref_primary_10_1109_TWC_2024_3389026
crossref_primary_10_1109_TWC_2022_3150021
crossref_primary_10_1109_LCOMM_2024_3363450
crossref_primary_10_1049_ell2_13118
crossref_primary_10_3390_sym14051018
crossref_primary_10_1109_TITS_2021_3123072
crossref_primary_10_1109_LWC_2023_3242449
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1109_JSTSP_2022_3162109
crossref_primary_10_3390_s23167164
crossref_primary_10_1109_COMST_2022_3155305
crossref_primary_10_1109_JIOT_2022_3232962
crossref_primary_10_1109_LWC_2021_3135602
crossref_primary_10_1109_LWC_2024_3441605
crossref_primary_10_1109_TWC_2023_3330977
crossref_primary_10_1145_3696414
crossref_primary_10_1109_TWC_2021_3133296
crossref_primary_10_4108_eetinis_v10i1_2864
crossref_primary_10_1109_TWC_2023_3260304
crossref_primary_10_1109_TCOMM_2023_3239621
crossref_primary_10_3390_s22145278
crossref_primary_10_1109_TCOMM_2021_3126626
crossref_primary_10_1109_ACCESS_2021_3053486
crossref_primary_10_1109_LWC_2023_3336999
crossref_primary_10_1109_JSTSP_2022_3195671
crossref_primary_10_3389_fnins_2023_1168864
crossref_primary_10_1109_TWC_2021_3054841
crossref_primary_10_1016_j_dcan_2022_10_031
crossref_primary_10_1016_j_dcan_2022_10_030
crossref_primary_10_1109_TVT_2024_3373819
crossref_primary_10_1016_j_dcan_2022_10_032
crossref_primary_10_1109_LCOMM_2021_3140155
crossref_primary_10_1109_LWC_2021_3056620
crossref_primary_10_1109_TWC_2021_3107306
crossref_primary_10_1109_TCCN_2021_3128605
crossref_primary_10_1109_TWC_2021_3105405
crossref_primary_10_1109_TCOMM_2022_3178755
crossref_primary_10_1109_JIOT_2020_3025365
crossref_primary_10_1109_LCOMM_2021_3117929
crossref_primary_10_1007_s11432_022_3723_5
crossref_primary_10_1109_TCOMM_2023_3242352
crossref_primary_10_1109_TVT_2021_3062870
crossref_primary_10_1109_JIOT_2024_3392358
crossref_primary_10_1587_elex_20_20230315
crossref_primary_10_1109_TCOMM_2022_3171837
crossref_primary_10_1109_JSAC_2021_3118405
crossref_primary_10_1109_TCOMM_2021_3051897
crossref_primary_10_1109_LWC_2023_3275283
crossref_primary_10_3390_s23187793
crossref_primary_10_1109_TCOMM_2021_3100860
crossref_primary_10_1016_j_comnet_2024_110729
crossref_primary_10_3390_s23063034
crossref_primary_10_1109_JIOT_2023_3326174
crossref_primary_10_1109_TCOMM_2022_3194134
crossref_primary_10_1109_JIOT_2023_3265011
crossref_primary_10_1109_ACCESS_2021_3087136
crossref_primary_10_1109_JIOT_2023_3264286
crossref_primary_10_1109_JSAC_2023_3288266
crossref_primary_10_1109_TWC_2021_3081423
crossref_primary_10_1016_j_dcan_2022_10_029
crossref_primary_10_1109_ACCESS_2022_3157651
crossref_primary_10_1109_MCOMSTD_0002_2200007
crossref_primary_10_1109_TVT_2024_3411593
crossref_primary_10_3390_drones8040122
crossref_primary_10_1109_JIOT_2021_3131771
crossref_primary_10_1109_TWC_2021_3098521
crossref_primary_10_3390_drones6120408
crossref_primary_10_1109_OJCOMS_2022_3165590
crossref_primary_10_1002_advs_202203747
crossref_primary_10_1109_TWC_2020_3024860
crossref_primary_10_3390_electronics12214490
crossref_primary_10_1109_JSAC_2020_3007211
crossref_primary_10_1109_TVT_2024_3359117
crossref_primary_10_1109_TWC_2024_3468298
crossref_primary_10_1109_LWC_2021_3100427
crossref_primary_10_1109_TVT_2024_3427001
crossref_primary_10_1109_JSAC_2022_3158696
Cites_doi 10.1109/GLOCOM.2018.8647620
10.1109/ICASSP.2019.8683145
10.1049/el.2019.0400
10.1023/B:BTTJ.0000047603.37042.33
10.1109/TVT.2019.2923997
10.1038/nature14236
10.1109/SPAWC.2019.8815412
10.1109/TCOMM.2016.2530796
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/LWC.2020.2969167
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2162-2345
EndPage 749
ExternalDocumentID 10_1109_LWC_2020_2969167
8968350
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 108-2628-E-110-001-MY3
  funderid: 10.13039/501100004663
– fundername: National Natural Science Foundation of China
  grantid: 61971126; 61831013
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-d98e020df4cdb8fa53fc9ba1df11ab08229f135169fec5c4cd99557a43288a323
IEDL.DBID RIE
ISSN 2162-2337
IngestDate Sun Jun 29 16:42:23 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Tue Jul 01 04:18:22 EDT 2025
Wed Aug 27 02:39:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d98e020df4cdb8fa53fc9ba1df11ab08229f135169fec5c4cd99557a43288a323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9660-9053
0000-0002-5721-4566
0000-0001-5952-232X
PQID 2401123745
PQPubID 2040496
PageCount 5
ParticipantIDs ieee_primary_8968350
crossref_primary_10_1109_LWC_2020_2969167
proquest_journals_2401123745
crossref_citationtrail_10_1109_LWC_2020_2969167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE wireless communications letters
PublicationTitleAbbrev LWC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References lillicrap (ref14) 2015
ref11
ref16
tang (ref2) 2019
yu (ref6) 2019
ref8
ref7
ref9
ref3
sutton (ref13) 2000
ref5
cao (ref15) 2019
wu (ref1) 2019
taha (ref10) 2019
mnih (ref12) 2015; 518
abeywickrama (ref4) 2019
References_xml – ident: ref5
  doi: 10.1109/GLOCOM.2018.8647620
– ident: ref8
  doi: 10.1109/ICASSP.2019.8683145
– year: 2019
  ident: ref15
  article-title: Intelligent reflecting surface aided multi-user millimeter-wave communications for coverage enhancement
– year: 2019
  ident: ref6
  article-title: MISO wireless communication systems via intelligent reflecting surfaces
– ident: ref3
  doi: 10.1049/el.2019.0400
– ident: ref11
  doi: 10.1023/B:BTTJ.0000047603.37042.33
– year: 2019
  ident: ref2
  article-title: Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design
– ident: ref7
  doi: 10.1109/TVT.2019.2923997
– year: 2019
  ident: ref4
  article-title: Intelligent reflecting surface: Practical phase shift model and beamforming optimization
– volume: 518
  start-page: 529
  year: 2015
  ident: ref12
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– year: 2019
  ident: ref1
  article-title: Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network
– ident: ref9
  doi: 10.1109/SPAWC.2019.8815412
– start-page: 1057
  year: 2000
  ident: ref13
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2015
  ident: ref14
  article-title: Continuous control with deep reinforcement learning
– ident: ref16
  doi: 10.1109/TCOMM.2016.2530796
– year: 2019
  ident: ref10
  article-title: Enabling large intelligent surfaces with compressive sensing and deep learning
SSID ssj0000601218
Score 2.6334708
Snippet This letter investigates the intelligent reflecting surface (IRS)-aided multiple-input single-output wireless transmission system. Particularly, the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 745
SubjectTerms Communications systems
Complexity theory
Convexity
Deep learning
deep reinforcement learning
Intelligent reflecting surface
MISO (control systems)
MISO communication
non-convex optimization
Optimization
phase shift design
Reconfigurable intelligent surfaces
Reinforcement learning
Signal to noise ratio
Training
Upper bounds
Wireless communication
Title Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems
URI https://ieeexplore.ieee.org/document/8968350
https://www.proquest.com/docview/2401123745
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAExzYCqJs8oELEmkTO4njI6sAUZBYBLfIKwdKW0F64esZO25EASFukTK2rDzHfjP2vEFoDxit1ITA6ifjIkptwSNpJY0kUSJhguaKuWzk3nV-_pBePmVPM-igyYUxxvjLZ6bjHv1Zvh6qsQuVdQueA2EAB30WHLc6V6uJpzhdEeLDeSTJSUQoZZNTyZh3rx6PwRckcYfwHAgRm9qFfFmVH2ux32DOllBvMrT6XslLZ1zJjvr4ptr437Evo8XANPFhPTVW0IwZrKKFL_qDLdQ_MWaEb41XT1U-UIiD4OozPoL9TeOLRrKzAkPrgvzu5d34zQpl8A2sOK8hlRNDJ7h3cXeDp7JOcBBFX0MPZ6f3x-dRKL8QKcKTKtK8MPDJtE2VloUVGbWKS5FomyRCeqV46-r75dwalSmw4jzLmEgpKQpBCV1Hc4PhwGwgzKiVXPNE2tSmTMeS2ESA75QZYI_CsjbqTuAoVdAmdyUy-qX3UWJeAoClA7AMALbRftNiVOty_GHbcng0dgGKNtqeIF6GH_e9BIIDDJSyNNv8vdUWmnd913cet9Fc9TY2O8BLKrnrJ-QnNjHf2A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ9QAutukBbH3pBanZjO4njI0_twi5IBVRukZ89lC6IZi_99Ywdb1TaquotUsaJlXE834xnvgH4iIhWW8Zw99N5nRW-lpn2mmeaGUWF4pURoRp5dl6Nr4vTm_JmBT71tTDOuZh85obhMp7l2zuzCKGyUS0rBAzooK-h3S9pV63VR1QCswiLAT1GK5YxzsXyXDKXo-mXQ_QGWT5kskJIJJ7YodhY5Y_dOJqYkw2YLSfXZZZ8Gy5aPTQ_f-Nt_N_Zv4T1hDXJfrc4XsGKm2_Ci18YCLfg9si5e_LZRf5UE0OFJFGufiUHaOEsmfSknS0K-hDmDzcvFw9eGUcucM_5noo5CT6EzCaXF-RJ3QlJtOiv4frk-OpwnKUGDJlhkraZlbXDT2Z9YayuvSq5N1Iraj2lSkeueB86_FXSO1MalJKyLIUqOKtrxRl_A6vzu7l7C0Rwr6WVVPvCF8Lmmnmq0HsqHeJH5cUARkt1NCaxk4cmGbdN9FJy2aACm6DAJilwAHv9iPuOmeMfsltBH71cUsUAdpcab9Kv-6NBiIMYlIui3P77qA_wbHw1mzbTyfnZDjwP7-kyIHdhtX1YuHeIUlr9Pi7ORwrI4yE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Based+Intelligent+Reflecting+Surface+Optimization+for+MISO+Communication+Systems&rft.jtitle=IEEE+wireless+communications+letters&rft.au=Feng%2C+Keming&rft.au=Wang%2C+Qisheng&rft.au=Li%2C+Xiao&rft.au=Wen%2C+Chao-Kai&rft.date=2020-05-01&rft.pub=IEEE&rft.issn=2162-2337&rft.volume=9&rft.issue=5&rft.spage=745&rft.epage=749&rft_id=info:doi/10.1109%2FLWC.2020.2969167&rft.externalDocID=8968350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2337&client=summon