DMP-Based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning

For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic movement primitives (DMPs) for a walking exoskeleton robot. The developed exoskeleton robot has eight degrees of freedom (DOFs). The hip and knee...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 67; no. 5; pp. 3830 - 3839
Main Authors Yuan, Yuxia, Li, Zhijun, Zhao, Ting, Gan, Di
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic movement primitives (DMPs) for a walking exoskeleton robot. The developed exoskeleton robot has eight degrees of freedom (DOFs). The hip and knee of each artificial leg can provide two electric-powered DOFs to flexion or extension, two passive-installed DOFs of the ankle are to achieve the motion of inversion/eversion and plantarflexion/dorsiflexion, and two passive DOFs of the hip are to achieve the motion of roll or yaw. A novel trajectory-learning scheme based on reinforcement learning (RL) combined with DMPs is presented for a lower limb exoskeleton robot, aiming to give assistance to human walking. In the proposed strategy, a two-level planning is designed. In the first level, the inverted pendulum approximation under the consideration of the locomotion parameters is utilized to guarantee the zero-moment point within the ankle joint of the support leg in the phase of single support. In the second level, the joint trajectories are modeled and learned by DMPs. Meanwhile, the RL is adopted to learn the trajectories for eliminating the effects of uncertainties in joint space. The experiment involving four subjects based on a lower limb exoskeleton robot demonstrates that the proposed scheme can effectively suppress the disturbances and uncertainties.
AbstractList For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic movement primitives (DMPs) for a walking exoskeleton robot. The developed exoskeleton robot has eight degrees of freedom (DOFs). The hip and knee of each artificial leg can provide two electric-powered DOFs to flexion or extension, two passive-installed DOFs of the ankle are to achieve the motion of inversion/eversion and plantarflexion/dorsiflexion, and two passive DOFs of the hip are to achieve the motion of roll or yaw. A novel trajectory-learning scheme based on reinforcement learning (RL) combined with DMPs is presented for a lower limb exoskeleton robot, aiming to give assistance to human walking. In the proposed strategy, a two-level planning is designed. In the first level, the inverted pendulum approximation under the consideration of the locomotion parameters is utilized to guarantee the zero-moment point within the ankle joint of the support leg in the phase of single support. In the second level, the joint trajectories are modeled and learned by DMPs. Meanwhile, the RL is adopted to learn the trajectories for eliminating the effects of uncertainties in joint space. The experiment involving four subjects based on a lower limb exoskeleton robot demonstrates that the proposed scheme can effectively suppress the disturbances and uncertainties.
Author Li, Zhijun
Zhao, Ting
Yuan, Yuxia
Gan, Di
Author_xml – sequence: 1
  givenname: Yuxia
  orcidid: 0000-0003-2316-7711
  surname: Yuan
  fullname: Yuan, Yuxia
  email: yuxia.yuan2@outlook.com
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Zhijun
  orcidid: 0000-0002-3909-488X
  surname: Li
  fullname: Li, Zhijun
  email: zjli@ieee.org
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Ting
  orcidid: 0000-0002-5193-8088
  surname: Zhao
  fullname: Zhao, Ting
  email: zt20102011@163.com
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Di
  surname: Gan
  fullname: Gan, Di
  email: linhangd@163.com
  organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNp9kM1LAzEQxYNUsK3eBS8Lnrdmsl_JUWuthRaltOhtyW5mZdttUpMt6H9v-oEHD55mmHlv3vDrkY42Ggm5BjoAoOJuMRkNGAUxYALSSKRnpAtJkoVCxLxDupRlPKQ0Ti9Iz7kVpRAnkHTJ--PsNXyQDlUwM21tdDBGjVYe2srYQAZvslnX-iMYfRm3xgZbv5mbwrTB0u3nc6y1V5a4Qd0GU5RW-_ElOa9k4_DqVPtk-TRaDJ_D6ct4MryfhqV_tA2VAEwp5SrLVFZkkVRCJAUroaBYZDEAxlilyFRcMMolR1VKFLHkZZRCBCrqk9vj3a01nzt0bb4yO6t9ZM6ihIGIALhX0aOqtMY5i1W-tfVG2u8caL7nl3t--Z5ffuLnLekfS1m3By6tlXXzn_HmaKwR8TeHZ8ApE9EPFJF_Cg
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_inffus_2024_102379
crossref_primary_10_1109_TCYB_2022_3158029
crossref_primary_10_1007_s00521_024_10944_2
crossref_primary_10_1017_S0263574721001600
crossref_primary_10_1109_TII_2021_3087337
crossref_primary_10_1007_s42235_022_00168_2
crossref_primary_10_1016_j_apm_2020_09_010
crossref_primary_10_1109_TSMC_2024_3454556
crossref_primary_10_1177_10775463211031701
crossref_primary_10_1016_j_mechatronics_2024_103262
crossref_primary_10_3390_biomimetics8080616
crossref_primary_10_1109_LRA_2021_3061382
crossref_primary_10_1007_s42235_023_00363_9
crossref_primary_10_1017_S0263574723001431
crossref_primary_10_1088_1757_899X_1070_1_012075
crossref_primary_10_1177_02783649231201196
crossref_primary_10_1109_ACCESS_2020_2976098
crossref_primary_10_3389_fnbot_2022_1086578
crossref_primary_10_3390_app14062523
crossref_primary_10_1109_TSMC_2024_3369071
crossref_primary_10_3390_biomimetics8040353
crossref_primary_10_1109_TII_2023_3234619
crossref_primary_10_1109_TMECH_2024_3370954
crossref_primary_10_1109_TMECH_2022_3233434
crossref_primary_10_1016_j_neucom_2022_11_076
crossref_primary_10_1109_TIE_2021_3050363
crossref_primary_10_1016_j_robot_2023_104445
crossref_primary_10_1016_j_seta_2023_103122
crossref_primary_10_1007_s10846_022_01763_5
crossref_primary_10_1016_j_neunet_2025_107197
crossref_primary_10_1109_TMECH_2022_3156168
crossref_primary_10_1177_09544119241291194
crossref_primary_10_1016_j_robot_2023_104406
crossref_primary_10_1177_17298806241279777
crossref_primary_10_1631_FITEE_2200065
crossref_primary_10_3390_bios11100393
crossref_primary_10_3390_sym12040631
crossref_primary_10_1109_TIE_2020_3013778
crossref_primary_10_3390_math11061351
crossref_primary_10_1109_TMRB_2024_3385798
crossref_primary_10_1109_TIE_2022_3144586
crossref_primary_10_1109_TII_2023_3280320
Cites_doi 10.1109/TRO.2016.2593483
10.1109/TCST.2008.917870
10.1007/3-540-45491-8_43
10.1109/TAC.2009.2024565
10.1016/j.mechatronics.2017.06.009
10.1016/j.robot.2008.01.003
10.1016/j.robot.2016.10.005
10.1109/TSMC.2015.2497205
10.1186/1743-0003-4-1
10.1007/11008941_60
10.1109/TMECH.2017.2717461
10.1109/ROBOT.1991.131811
10.1177/027836498400300106
10.1007/s11432-018-9717-2
10.1109/TRO.2012.2210294
10.1016/j.robot.2015.09.015
10.1109/TIE.2008.2005150
10.1109/TSMC.2015.2487240
10.1109/TRO.2017.2765334
10.1109/TIE.2009.2026769
10.1109/TIE.2018.2821649
10.1109/TSMC.2017.2695003
10.1109/JAS.2017.7510604
10.1299/jsmec.45.703
10.1109/ROMAN.2004.1374809
10.1016/S0005-1098(98)00019-3
10.1109/ACCESS.2017.2690407
10.1109/TNSRE.2011.2163083
10.1109/TBME.2005.851530
10.1109/TSMCA.2012.2207111
10.1109/TSMC.2016.2571786
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2019.2916396
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Libary (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 3839
ExternalDocumentID 10_1109_TIE_2019_2916396
8718029
Genre orig-research
GrantInformation_xml – fundername: Guangdong Science and Technology Research Collaborative Innovation
  grantid: 2014B090901056; 2015B020214003; 2016A020220003
– fundername: Application Technology Research Foundation
  grantid: 2015B020233006
– fundername: National Natural Science Foundation of China
  grantid: 61573147; 61625303; 61751310
  funderid: 10.13039/501100001809
– fundername: Anhui Science and Technology Major Program
  grantid: 17030901029
– fundername: National Key Research and Development Program of China Stem Cell and Translational Research
  grantid: 2017YFB-1302302
  funderid: 10.13039/501100013290
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-d91e6008d77d7b73ad995b2c1b0eb7411e4ef6e2d4b208a8edcae94a8c36131d3
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:08:49 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 00:16:31 EDT 2025
Wed Aug 27 06:28:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d91e6008d77d7b73ad995b2c1b0eb7411e4ef6e2d4b208a8edcae94a8c36131d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5193-8088
0000-0003-2316-7711
0000-0002-3909-488X
PQID 2352193118
PQPubID 85464
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIE_2019_2916396
proquest_journals_2352193118
ieee_primary_8718029
crossref_citationtrail_10_1109_TIE_2019_2916396
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
perk (ref28) 2008
ref21
ref27
ref29
ref8
ref7
kawamoto (ref1) 0
ref9
ref4
ref3
ref6
ref5
theodorou (ref30) 2010; 11
References_xml – ident: ref23
  doi: 10.1109/TRO.2016.2593483
– ident: ref31
  doi: 10.1109/TCST.2008.917870
– ident: ref3
  doi: 10.1007/3-540-45491-8_43
– ident: ref24
  doi: 10.1109/TAC.2009.2024565
– ident: ref12
  doi: 10.1016/j.mechatronics.2017.06.009
– ident: ref34
  doi: 10.1016/j.robot.2008.01.003
– ident: ref11
  doi: 10.1016/j.robot.2016.10.005
– ident: ref4
  doi: 10.1109/TSMC.2015.2497205
– ident: ref8
  doi: 10.1186/1743-0003-4-1
– ident: ref33
  doi: 10.1007/11008941_60
– ident: ref15
  doi: 10.1109/TMECH.2017.2717461
– ident: ref21
  doi: 10.1109/ROBOT.1991.131811
– ident: ref32
  doi: 10.1177/027836498400300106
– ident: ref19
  doi: 10.1007/s11432-018-9717-2
– ident: ref27
  doi: 10.1109/TRO.2012.2210294
– ident: ref10
  doi: 10.1016/j.robot.2015.09.015
– ident: ref25
  doi: 10.1109/TIE.2008.2005150
– ident: ref22
  doi: 10.1109/TSMC.2015.2487240
– ident: ref14
  doi: 10.1109/TRO.2017.2765334
– ident: ref9
  doi: 10.1109/TIE.2009.2026769
– ident: ref13
  doi: 10.1109/TIE.2018.2821649
– volume: 11
  start-page: 3137
  year: 2010
  ident: ref30
  article-title: A generalized path integral control approach to reinforcement learning
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1109/TSMC.2017.2695003
– start-page: 67
  year: 0
  ident: ref1
  article-title: Power assist method for HAL-3 estimating operators intention based on motion information
  publication-title: Proc IEEE Int Workshop Robot Human Interact Commun
– ident: ref17
  doi: 10.1109/JAS.2017.7510604
– ident: ref7
  doi: 10.1299/jsmec.45.703
– year: 2008
  ident: ref28
  article-title: Motion primitives for robotic flight control
  publication-title: arXiv cs/0609140
– ident: ref2
  doi: 10.1109/ROMAN.2004.1374809
– ident: ref29
  doi: 10.1016/S0005-1098(98)00019-3
– ident: ref20
  doi: 10.1109/ACCESS.2017.2690407
– ident: ref18
  doi: 10.1109/TNSRE.2011.2163083
– ident: ref26
  doi: 10.1109/TBME.2005.851530
– ident: ref16
  doi: 10.1109/TSMCA.2012.2207111
– ident: ref6
  doi: 10.1109/TSMC.2016.2571786
SSID ssj0014515
Score 2.533341
Snippet For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3830
SubjectTerms Artificial legs
Dynamic movement primitives (DMP)
exoskeleton robot
Exoskeletons
Hip
Human motion
Joints (anatomy)
Knee
Learning
Legged locomotion
Locomotion
locomotion trajectory
Pendulums
reinforcement learning (RL)
Robot dynamics
Robot sensing systems
Robots
Rolling motion
Trajectories
Trajectory
Uncertainty
Walking
Yaw
Title DMP-Based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8718029
https://www.proquest.com/docview/2352193118
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT3rwVcVqlRy8CG67zWa7m6OPlipUpLTY25LXemjpit2C-OudZLelqIi3sCQQZpKdbx75BuAy1IoZtKxeFNrQDWWpx8NIeiwUQaQ72qcugz946vTH7HESTipwvX4LY4xxxWemaYcul68ztbShshaC-xgXb8EWOm7FW611xoCFRbcCahlj0elbpSR93ho9dG0NF29SxEKBpeffMEGup8qPH7GzLr09GKz2VRSVTJvLXDbV5zfKxv9ufB92S5hJbopzcQAVMz-EnQ3ywRpM7gfP3i0aMU0GrpUPKSio3RChLBHkRcxsJJ10P7LFFO0T4kQyzGSWE1dpQIbG8a4qF2IkJVXr6xGMe93RXd8r-yx4CiWSe5q3DeKeWEeRjmQUCM15KKlqS99IRBxtw0zaMVQzSf1YxEYrYTgTsQoQDLR1cAzVeTY3J0AYU9q6cSJQKeMpjxVLg07EQyZSip_r0FqJPlElCbnthTFLnDPi8wSVlVhlJaWy6nC1XvFWEHD8MbdmZb-eV4q9Do2VdpPyhi4SisgTwSv6V6e_rzqDbWp9a1fc2IBq_r405whAcnnhTt4X1efV8g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CdoAdxvjSOrrNBy6TSJs4dhMfN9aqQFNNVSt6i_wVDqAGQSoh_nqenbRCgKbdrMiWrPfsvN_78O8BnHCjmUXLGiTchW4oKwLBExUwLuPE9ExIfQY_G_eGM3Yx5_MNOF2_hbHW-uIz23FDn8s3pV66UFkXwX2KizfhA9p9HtWvtdY5A8brfgXUccai27dKSoaiOz3vuyou0aGIhmJH0P_CCPmuKm9-xd6-DHYhW-2sLiu56Swr1dFPr0gb_3frn-FTAzTJr_pk7MGGXezDxxf0gwcw_5P9DX6jGTMk8818SE1C7YcIZokkV_LWxdJJ_7F8uEELhUiRTEpVVsTXGpCJ9cyr2gcZSUPWen0Is0F_ejYMmk4LgUaJVIERkUXkk5okMYlKYmmE4IrqSIVWIeaILLNFz1LDFA1TmVqjpRVMpjpGOBCZ-Ai2FuXCfgHCmDbOkZOxLpgoRKpZEfcSwZksKH5uQXcl-lw3NOSuG8Zt7t2RUOSorNwpK2-U1YKf6xV3NQXHP-YeONmv5zVib0F7pd28uaMPOUXsifAVPayv76_6AdvDaTbKR-fjy2PYoc7T9qWObdiq7pf2G8KRSn33p_AZKVnZOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMP-Based+Motion+Generation+for+a+Walking+Exoskeleton+Robot+Using+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Yuan%2C+Yuxia&rft.au=Li%2C+Zhijun&rft.au=Zhao%2C+Ting&rft.au=Gan%2C+Di&rft.date=2020-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=67&rft.issue=5&rft.spage=3830&rft_id=info:doi/10.1109%2FTIE.2019.2916396&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon