DMP-Based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning
For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic movement primitives (DMPs) for a walking exoskeleton robot. The developed exoskeleton robot has eight degrees of freedom (DOFs). The hip and knee...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 67; no. 5; pp. 3830 - 3839 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic movement primitives (DMPs) for a walking exoskeleton robot. The developed exoskeleton robot has eight degrees of freedom (DOFs). The hip and knee of each artificial leg can provide two electric-powered DOFs to flexion or extension, two passive-installed DOFs of the ankle are to achieve the motion of inversion/eversion and plantarflexion/dorsiflexion, and two passive DOFs of the hip are to achieve the motion of roll or yaw. A novel trajectory-learning scheme based on reinforcement learning (RL) combined with DMPs is presented for a lower limb exoskeleton robot, aiming to give assistance to human walking. In the proposed strategy, a two-level planning is designed. In the first level, the inverted pendulum approximation under the consideration of the locomotion parameters is utilized to guarantee the zero-moment point within the ankle joint of the support leg in the phase of single support. In the second level, the joint trajectories are modeled and learned by DMPs. Meanwhile, the RL is adopted to learn the trajectories for eliminating the effects of uncertainties in joint space. The experiment involving four subjects based on a lower limb exoskeleton robot demonstrates that the proposed scheme can effectively suppress the disturbances and uncertainties. |
---|---|
AbstractList | For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic movement primitives (DMPs) for a walking exoskeleton robot. The developed exoskeleton robot has eight degrees of freedom (DOFs). The hip and knee of each artificial leg can provide two electric-powered DOFs to flexion or extension, two passive-installed DOFs of the ankle are to achieve the motion of inversion/eversion and plantarflexion/dorsiflexion, and two passive DOFs of the hip are to achieve the motion of roll or yaw. A novel trajectory-learning scheme based on reinforcement learning (RL) combined with DMPs is presented for a lower limb exoskeleton robot, aiming to give assistance to human walking. In the proposed strategy, a two-level planning is designed. In the first level, the inverted pendulum approximation under the consideration of the locomotion parameters is utilized to guarantee the zero-moment point within the ankle joint of the support leg in the phase of single support. In the second level, the joint trajectories are modeled and learned by DMPs. Meanwhile, the RL is adopted to learn the trajectories for eliminating the effects of uncertainties in joint space. The experiment involving four subjects based on a lower limb exoskeleton robot demonstrates that the proposed scheme can effectively suppress the disturbances and uncertainties. |
Author | Li, Zhijun Zhao, Ting Yuan, Yuxia Gan, Di |
Author_xml | – sequence: 1 givenname: Yuxia orcidid: 0000-0003-2316-7711 surname: Yuan fullname: Yuan, Yuxia email: yuxia.yuan2@outlook.com organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Zhijun orcidid: 0000-0002-3909-488X surname: Li fullname: Li, Zhijun email: zjli@ieee.org organization: Department of Automation, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Ting orcidid: 0000-0002-5193-8088 surname: Zhao fullname: Zhao, Ting email: zt20102011@163.com organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Di surname: Gan fullname: Gan, Di email: linhangd@163.com organization: College of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNp9kM1LAzEQxYNUsK3eBS8Lnrdmsl_JUWuthRaltOhtyW5mZdttUpMt6H9v-oEHD55mmHlv3vDrkY42Ggm5BjoAoOJuMRkNGAUxYALSSKRnpAtJkoVCxLxDupRlPKQ0Ti9Iz7kVpRAnkHTJ--PsNXyQDlUwM21tdDBGjVYe2srYQAZvslnX-iMYfRm3xgZbv5mbwrTB0u3nc6y1V5a4Qd0GU5RW-_ElOa9k4_DqVPtk-TRaDJ_D6ct4MryfhqV_tA2VAEwp5SrLVFZkkVRCJAUroaBYZDEAxlilyFRcMMolR1VKFLHkZZRCBCrqk9vj3a01nzt0bb4yO6t9ZM6ihIGIALhX0aOqtMY5i1W-tfVG2u8caL7nl3t--Z5ffuLnLekfS1m3By6tlXXzn_HmaKwR8TeHZ8ApE9EPFJF_Cg |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102379 crossref_primary_10_1109_TCYB_2022_3158029 crossref_primary_10_1007_s00521_024_10944_2 crossref_primary_10_1017_S0263574721001600 crossref_primary_10_1109_TII_2021_3087337 crossref_primary_10_1007_s42235_022_00168_2 crossref_primary_10_1016_j_apm_2020_09_010 crossref_primary_10_1109_TSMC_2024_3454556 crossref_primary_10_1177_10775463211031701 crossref_primary_10_1016_j_mechatronics_2024_103262 crossref_primary_10_3390_biomimetics8080616 crossref_primary_10_1109_LRA_2021_3061382 crossref_primary_10_1007_s42235_023_00363_9 crossref_primary_10_1017_S0263574723001431 crossref_primary_10_1088_1757_899X_1070_1_012075 crossref_primary_10_1177_02783649231201196 crossref_primary_10_1109_ACCESS_2020_2976098 crossref_primary_10_3389_fnbot_2022_1086578 crossref_primary_10_3390_app14062523 crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_3390_biomimetics8040353 crossref_primary_10_1109_TII_2023_3234619 crossref_primary_10_1109_TMECH_2024_3370954 crossref_primary_10_1109_TMECH_2022_3233434 crossref_primary_10_1016_j_neucom_2022_11_076 crossref_primary_10_1109_TIE_2021_3050363 crossref_primary_10_1016_j_robot_2023_104445 crossref_primary_10_1016_j_seta_2023_103122 crossref_primary_10_1007_s10846_022_01763_5 crossref_primary_10_1016_j_neunet_2025_107197 crossref_primary_10_1109_TMECH_2022_3156168 crossref_primary_10_1177_09544119241291194 crossref_primary_10_1016_j_robot_2023_104406 crossref_primary_10_1177_17298806241279777 crossref_primary_10_1631_FITEE_2200065 crossref_primary_10_3390_bios11100393 crossref_primary_10_3390_sym12040631 crossref_primary_10_1109_TIE_2020_3013778 crossref_primary_10_3390_math11061351 crossref_primary_10_1109_TMRB_2024_3385798 crossref_primary_10_1109_TIE_2022_3144586 crossref_primary_10_1109_TII_2023_3280320 |
Cites_doi | 10.1109/TRO.2016.2593483 10.1109/TCST.2008.917870 10.1007/3-540-45491-8_43 10.1109/TAC.2009.2024565 10.1016/j.mechatronics.2017.06.009 10.1016/j.robot.2008.01.003 10.1016/j.robot.2016.10.005 10.1109/TSMC.2015.2497205 10.1186/1743-0003-4-1 10.1007/11008941_60 10.1109/TMECH.2017.2717461 10.1109/ROBOT.1991.131811 10.1177/027836498400300106 10.1007/s11432-018-9717-2 10.1109/TRO.2012.2210294 10.1016/j.robot.2015.09.015 10.1109/TIE.2008.2005150 10.1109/TSMC.2015.2487240 10.1109/TRO.2017.2765334 10.1109/TIE.2009.2026769 10.1109/TIE.2018.2821649 10.1109/TSMC.2017.2695003 10.1109/JAS.2017.7510604 10.1299/jsmec.45.703 10.1109/ROMAN.2004.1374809 10.1016/S0005-1098(98)00019-3 10.1109/ACCESS.2017.2690407 10.1109/TNSRE.2011.2163083 10.1109/TBME.2005.851530 10.1109/TSMCA.2012.2207111 10.1109/TSMC.2016.2571786 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2019.2916396 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Libary (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 3839 |
ExternalDocumentID | 10_1109_TIE_2019_2916396 8718029 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Science and Technology Research Collaborative Innovation grantid: 2014B090901056; 2015B020214003; 2016A020220003 – fundername: Application Technology Research Foundation grantid: 2015B020233006 – fundername: National Natural Science Foundation of China grantid: 61573147; 61625303; 61751310 funderid: 10.13039/501100001809 – fundername: Anhui Science and Technology Major Program grantid: 17030901029 – fundername: National Key Research and Development Program of China Stem Cell and Translational Research grantid: 2017YFB-1302302 funderid: 10.13039/501100013290 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-d91e6008d77d7b73ad995b2c1b0eb7411e4ef6e2d4b208a8edcae94a8c36131d3 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:08:49 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 00:16:31 EDT 2025 Wed Aug 27 06:28:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-d91e6008d77d7b73ad995b2c1b0eb7411e4ef6e2d4b208a8edcae94a8c36131d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5193-8088 0000-0003-2316-7711 0000-0002-3909-488X |
PQID | 2352193118 |
PQPubID | 85464 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TIE_2019_2916396 proquest_journals_2352193118 ieee_primary_8718029 crossref_citationtrail_10_1109_TIE_2019_2916396 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref33 ref11 ref32 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 perk (ref28) 2008 ref21 ref27 ref29 ref8 ref7 kawamoto (ref1) 0 ref9 ref4 ref3 ref6 ref5 theodorou (ref30) 2010; 11 |
References_xml | – ident: ref23 doi: 10.1109/TRO.2016.2593483 – ident: ref31 doi: 10.1109/TCST.2008.917870 – ident: ref3 doi: 10.1007/3-540-45491-8_43 – ident: ref24 doi: 10.1109/TAC.2009.2024565 – ident: ref12 doi: 10.1016/j.mechatronics.2017.06.009 – ident: ref34 doi: 10.1016/j.robot.2008.01.003 – ident: ref11 doi: 10.1016/j.robot.2016.10.005 – ident: ref4 doi: 10.1109/TSMC.2015.2497205 – ident: ref8 doi: 10.1186/1743-0003-4-1 – ident: ref33 doi: 10.1007/11008941_60 – ident: ref15 doi: 10.1109/TMECH.2017.2717461 – ident: ref21 doi: 10.1109/ROBOT.1991.131811 – ident: ref32 doi: 10.1177/027836498400300106 – ident: ref19 doi: 10.1007/s11432-018-9717-2 – ident: ref27 doi: 10.1109/TRO.2012.2210294 – ident: ref10 doi: 10.1016/j.robot.2015.09.015 – ident: ref25 doi: 10.1109/TIE.2008.2005150 – ident: ref22 doi: 10.1109/TSMC.2015.2487240 – ident: ref14 doi: 10.1109/TRO.2017.2765334 – ident: ref9 doi: 10.1109/TIE.2009.2026769 – ident: ref13 doi: 10.1109/TIE.2018.2821649 – volume: 11 start-page: 3137 year: 2010 ident: ref30 article-title: A generalized path integral control approach to reinforcement learning publication-title: J Mach Learn Res – ident: ref5 doi: 10.1109/TSMC.2017.2695003 – start-page: 67 year: 0 ident: ref1 article-title: Power assist method for HAL-3 estimating operators intention based on motion information publication-title: Proc IEEE Int Workshop Robot Human Interact Commun – ident: ref17 doi: 10.1109/JAS.2017.7510604 – ident: ref7 doi: 10.1299/jsmec.45.703 – year: 2008 ident: ref28 article-title: Motion primitives for robotic flight control publication-title: arXiv cs/0609140 – ident: ref2 doi: 10.1109/ROMAN.2004.1374809 – ident: ref29 doi: 10.1016/S0005-1098(98)00019-3 – ident: ref20 doi: 10.1109/ACCESS.2017.2690407 – ident: ref18 doi: 10.1109/TNSRE.2011.2163083 – ident: ref26 doi: 10.1109/TBME.2005.851530 – ident: ref16 doi: 10.1109/TSMCA.2012.2207111 – ident: ref6 doi: 10.1109/TSMC.2016.2571786 |
SSID | ssj0014515 |
Score | 2.533341 |
Snippet | For the purpose of the assistance for human walking, this paper describes a novel coupled movement sequences planning and motion adaption based on dynamic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3830 |
SubjectTerms | Artificial legs Dynamic movement primitives (DMP) exoskeleton robot Exoskeletons Hip Human motion Joints (anatomy) Knee Learning Legged locomotion Locomotion locomotion trajectory Pendulums reinforcement learning (RL) Robot dynamics Robot sensing systems Robots Rolling motion Trajectories Trajectory Uncertainty Walking Yaw |
Title | DMP-Based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/8718029 https://www.proquest.com/docview/2352193118 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qT3rwVcVqlRy8CG67zWa7m6OPlipUpLTY25LXemjpit2C-OudZLelqIi3sCQQZpKdbx75BuAy1IoZtKxeFNrQDWWpx8NIeiwUQaQ72qcugz946vTH7HESTipwvX4LY4xxxWemaYcul68ztbShshaC-xgXb8EWOm7FW611xoCFRbcCahlj0elbpSR93ho9dG0NF29SxEKBpeffMEGup8qPH7GzLr09GKz2VRSVTJvLXDbV5zfKxv9ufB92S5hJbopzcQAVMz-EnQ3ywRpM7gfP3i0aMU0GrpUPKSio3RChLBHkRcxsJJ10P7LFFO0T4kQyzGSWE1dpQIbG8a4qF2IkJVXr6xGMe93RXd8r-yx4CiWSe5q3DeKeWEeRjmQUCM15KKlqS99IRBxtw0zaMVQzSf1YxEYrYTgTsQoQDLR1cAzVeTY3J0AYU9q6cSJQKeMpjxVLg07EQyZSip_r0FqJPlElCbnthTFLnDPi8wSVlVhlJaWy6nC1XvFWEHD8MbdmZb-eV4q9Do2VdpPyhi4SisgTwSv6V6e_rzqDbWp9a1fc2IBq_r405whAcnnhTt4X1efV8g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CdoAdxvjSOrrNBy6TSJs4dhMfN9aqQFNNVSt6i_wVDqAGQSoh_nqenbRCgKbdrMiWrPfsvN_78O8BnHCjmUXLGiTchW4oKwLBExUwLuPE9ExIfQY_G_eGM3Yx5_MNOF2_hbHW-uIz23FDn8s3pV66UFkXwX2KizfhA9p9HtWvtdY5A8brfgXUccai27dKSoaiOz3vuyou0aGIhmJH0P_CCPmuKm9-xd6-DHYhW-2sLiu56Swr1dFPr0gb_3frn-FTAzTJr_pk7MGGXezDxxf0gwcw_5P9DX6jGTMk8818SE1C7YcIZokkV_LWxdJJ_7F8uEELhUiRTEpVVsTXGpCJ9cyr2gcZSUPWen0Is0F_ejYMmk4LgUaJVIERkUXkk5okMYlKYmmE4IrqSIVWIeaILLNFz1LDFA1TmVqjpRVMpjpGOBCZ-Ai2FuXCfgHCmDbOkZOxLpgoRKpZEfcSwZksKH5uQXcl-lw3NOSuG8Zt7t2RUOSorNwpK2-U1YKf6xV3NQXHP-YeONmv5zVib0F7pd28uaMPOUXsifAVPayv76_6AdvDaTbKR-fjy2PYoc7T9qWObdiq7pf2G8KRSn33p_AZKVnZOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DMP-Based+Motion+Generation+for+a+Walking+Exoskeleton+Robot+Using+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Yuan%2C+Yuxia&rft.au=Li%2C+Zhijun&rft.au=Zhao%2C+Ting&rft.au=Gan%2C+Di&rft.date=2020-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=67&rft.issue=5&rft.spage=3830&rft_id=info:doi/10.1109%2FTIE.2019.2916396&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |