A Bayesian Kriging Regression Method to Estimate Air Temperature Using Remote Sensing Data
Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 767 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by integrating ground measurements and satellite data is an active research area. A variety of methods have been proposed and applied in this area. However, the existing studies primarily focused on daily Ta and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach was adopted to compare the predictive performance of the BKR method with the linear regression method over the whole region and the urban areas of the contiguous United States. For the whole region, the results show that the BKR method achieves a competitively better performance with averaged RMSE values 1.23 K for Tmax and 1.20 K for Tmin, which are also lower than previous studies on estimation of monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE values 1.21 K for Tmax and 1.27 K for Tmin. Posterior samples for model parameters and estimated Ta were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR method provides a promising way to estimate Ta with competitively predictive performance and to quantify model uncertainties at the same time. |
---|---|
AbstractList | Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by integrating ground measurements and satellite data is an active research area. A variety of methods have been proposed and applied in this area. However, the existing studies primarily focused on daily Ta and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach was adopted to compare the predictive performance of the BKR method with the linear regression method over the whole region and the urban areas of the contiguous United States. For the whole region, the results show that the BKR method achieves a competitively better performance with averaged RMSE values 1.23 K for Tmax and 1.20 K for Tmin, which are also lower than previous studies on estimation of monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE values 1.21 K for Tmax and 1.27 K for Tmin. Posterior samples for model parameters and estimated Ta were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR method provides a promising way to estimate Ta with competitively predictive performance and to quantify model uncertainties at the same time. Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by integrating ground measurements and satellite data is an active research area. A variety of methods have been proposed and applied in this area. However, the existing studies primarily focused on daily Ta and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach was adopted to compare the predictive performance of the BKR method with the linear regression method over the whole region and the urban areas of the contiguous United States. For the whole region, the results show that the BKR method achieves a competitively better performance with averaged RMSE values1.23K for Tmax and1.20K for Tmin, which are also lower than previous studies on estimation of monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE values1.21K for Tmax and1.27K for Tmin. Posterior samples for model parameters and estimated Ta were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR method provides a promising way to estimate Ta with competitively predictive performance and to quantify model uncertainties at the same time. |
Author | Du, Qingyun Zhang, Zhenwei |
Author_xml | – sequence: 1 givenname: Zhenwei surname: Zhang fullname: Zhang, Zhenwei – sequence: 2 givenname: Qingyun orcidid: 0000-0003-4615-2029 surname: Du fullname: Du, Qingyun |
BookMark | eNptUctOWzEQtSqQCmk2_QJL3VUK-BXf62WAUCKokCDddGNN7Lmpo-Q6tZ1F_r5uggpCnc28zjkzmjknJ33skZDPnF1IadhlypyzhjW6-UDOBGvESAkjTt7EH8kw5xWrJiU3TJ2RnxN6BXvMAXp6n8Iy9Ev6hMuEOYfY0-9YfkVPS6TTXMIGCtJJSHSOmy0mKLuE9Ec-cjaxNp-xP6Q3UOATOe1gnXH44gdkfjudX9-NHh6_za4nDyMnDC8jP_Ya24UULTjGsWXYeA7M8c4YCSi84p33DXDBtZO1pbzRZtx0svNdq-SAzI6yPsLKblPdMu1thGAPhZiWFlIJbo2WC224kW3jcKHAKRi3ptPejcFpoYWsWl-OWtsUf-8wF7uKu9TX7a2QTDEhW6Ur6usR5VLMOWH3bypn9u8n7OsnKpi9A7tQoNTjlgRh_T_KH9ski_0 |
CitedBy_id | crossref_primary_10_1007_s11769_023_1370_0 crossref_primary_10_3390_rs15071753 crossref_primary_10_1029_2021WR029988 crossref_primary_10_3390_land10080867 crossref_primary_10_1371_journal_pgph_0000747 crossref_primary_10_3390_w12123495 crossref_primary_10_1016_j_isprsjprs_2021_10_022 crossref_primary_10_3390_a17020057 crossref_primary_10_1002_joc_7987 crossref_primary_10_1016_j_landurbplan_2020_103907 crossref_primary_10_1007_s44197_022_00054_4 crossref_primary_10_1016_j_ecolind_2021_107826 crossref_primary_10_1038_s41597_024_03980_z crossref_primary_10_3390_data9120143 crossref_primary_10_3390_rs12152434 crossref_primary_10_55761_abclima_v31i18_15893 crossref_primary_10_1051_climat_202017002 crossref_primary_10_3390_agronomy13102527 crossref_primary_10_1016_j_rse_2024_114453 crossref_primary_10_1111_jac_12687 crossref_primary_10_3390_urbansci3040101 crossref_primary_10_1016_j_scitotenv_2021_152538 crossref_primary_10_1007_s10584_024_03850_y crossref_primary_10_1080_10095020_2024_2313327 |
Cites_doi | 10.1016/S0022-1694(98)00210-8 10.1016/j.rse.2016.11.011 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 10.1016/j.jappgeo.2018.11.007 10.3390/rs8090732 10.1016/j.rse.2012.04.024 10.1007/s00704-004-0079-y 10.18637/jss.v063.i13 10.1016/j.cageo.2007.05.001 10.1201/b17115 10.1080/01431160310001624593 10.1175/JTECH-D-11-00103.1 10.1002/2016JD025154 10.1109/JSTARS.2014.2361862 10.3390/rs9121313 10.1080/01431161.2012.716548 10.1002/joc.4127 10.1016/j.rse.2012.10.034 10.1111/1467-9876.00113 10.3390/geosciences8120433 10.1109/JSTARS.2017.2787191 10.1016/j.rse.2007.02.025 10.1002/2014JD022438 10.1016/j.scitotenv.2018.09.161 10.2747/1548-1603.43.1.78 10.1016/j.envres.2017.07.021 10.1080/014311699212885 10.1016/S0034-4257(96)00216-7 10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E 10.1016/j.envres.2017.11.001 10.1002/joc.4705 10.1016/j.scitotenv.2016.11.042 10.1016/j.isprsjprs.2009.02.006 10.1002/joc.4766 10.1080/01431161.2017.1395965 10.3390/rs9121278 10.1093/epirev/mxf007 10.1080/00401706.1993.10485354 10.1002/joc.4251 10.1016/j.rse.2009.10.002 10.1016/j.rse.2018.04.006 10.1016/j.rse.2018.05.034 10.3390/rs8121002 10.3390/rs9090959 10.1002/9781119115151 10.1002/joc.3370150207 10.1016/j.isprsjprs.2018.01.018 10.1002/joc.4113 10.1289/ehp.02110859 10.1109/36.508406 10.1016/j.envres.2017.08.017 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs11070767 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_126919387ceb4ac4a589f6dc5ac62623 10_3390_rs11070767 |
GeographicLocations | New York United States--US China |
GeographicLocations_xml | – name: New York – name: China – name: United States--US |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c291t-d5d6e8b328ac01e80e7d1a0c1f993ae2d41fdd7a1216c3d1a4d96957f3fdf843 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:06:18 EDT 2025 Fri Jul 25 12:01:07 EDT 2025 Tue Jul 01 04:14:43 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-d5d6e8b328ac01e80e7d1a0c1f993ae2d41fdd7a1216c3d1a4d96957f3fdf843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4615-2029 |
OpenAccessLink | https://doaj.org/article/126919387ceb4ac4a589f6dc5ac62623 |
PQID | 2304023846 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_126919387ceb4ac4a589f6dc5ac62623 proquest_journals_2304023846 crossref_primary_10_3390_rs11070767 crossref_citationtrail_10_3390_rs11070767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Basu (ref_2) 2002; 24 Stisen (ref_20) 2007; 110 Yoo (ref_19) 2018; 137 ref_54 Menne (ref_49) 2012; 29 ref_53 Sun (ref_23) 2005; 80 Moser (ref_24) 2015; 8 ref_52 Braga (ref_1) 2002; 110 Kloog (ref_32) 2017; 37 Courault (ref_12) 1999; 19 ref_17 Kitsara (ref_22) 2018; 39 Pelta (ref_33) 2017; 579 ref_25 Vancutsem (ref_6) 2010; 114 Scovronick (ref_3) 2018; 161 ref_28 Zhu (ref_29) 2017; 189 Diggle (ref_41) 2002; 47 Wan (ref_51) 1996; 34 Lin (ref_5) 2019; 651 Handcock (ref_45) 1993; 35 Janatian (ref_31) 2017; 37 Zhu (ref_21) 2013; 130 Benali (ref_10) 2012; 124 Parmentier (ref_39) 2015; 35 Rosenfeld (ref_34) 2017; 159 ref_35 Mostovoy (ref_14) 2006; 43 ref_30 Vogt (ref_7) 1997; 17 Xu (ref_27) 2018; 11 Ragettli (ref_4) 2017; 158 Prihodko (ref_8) 1997; 60 Chen (ref_15) 2015; 35 Lu (ref_40) 2018; 211 Oyler (ref_38) 2015; 35 Cresswell (ref_13) 1999; 20 ref_47 ref_46 ref_44 Prince (ref_9) 1998; 212–213 (ref_18) 2009; 64 Sobrino (ref_50) 2013; 34 Hengl (ref_42) 2007; 33 Florio (ref_37) 2004; 25 Li (ref_36) 2018; 215 Good (ref_16) 2015; 120 (ref_43) 2019; 160 ref_48 Willmott (ref_11) 1995; 15 Zhang (ref_26) 2016; 121 |
References_xml | – volume: 212–213 start-page: 230 year: 1998 ident: ref_9 article-title: Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: Comparison with field observations publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00210-8 – volume: 189 start-page: 152 year: 2017 ident: ref_29 article-title: Retrievals of all-weather daytime air temperature from MODIS products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.11.011 – volume: 17 start-page: 1559 year: 1997 ident: ref_7 article-title: Mapping regional air temperature fields using satellite-derived surface skin temperatures publication-title: Int. J. Climatol. doi: 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 – volume: 160 start-page: 84 year: 2019 ident: ref_43 article-title: Bayesian kriging for reproducing reservoir heterogeneity in a tidal depositional environment of a sandstone formation publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2018.11.007 – ident: ref_25 doi: 10.3390/rs8090732 – volume: 124 start-page: 108 year: 2012 ident: ref_10 article-title: Estimating air surface temperature in Portugal using MODIS LST data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.04.024 – volume: 80 start-page: 37 year: 2005 ident: ref_23 article-title: Air temperature retrieval from remote sensing data based on thermodynamics publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-004-0079-y – ident: ref_54 doi: 10.18637/jss.v063.i13 – volume: 33 start-page: 1301 year: 2007 ident: ref_42 article-title: About regression-kriging: From equations to case studies publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.05.001 – ident: ref_47 doi: 10.1201/b17115 – volume: 25 start-page: 2979 year: 2004 ident: ref_37 article-title: Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: A statistical approach publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001624593 – volume: 29 start-page: 897 year: 2012 ident: ref_49 article-title: An Overview of the Global Historical Climatology Network-Daily Database publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00103.1 – volume: 121 start-page: 11425 year: 2016 ident: ref_26 article-title: Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2016JD025154 – volume: 8 start-page: 332 year: 2015 ident: ref_24 article-title: Estimation of Air Surface Temperature From Remote Sensing Images and Pixelwise Modeling of the Estimation Uncertainty Through Support Vector Machines publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2361862 – ident: ref_28 doi: 10.3390/rs9121313 – volume: 34 start-page: 3177 year: 2013 ident: ref_50 article-title: Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.716548 – ident: ref_52 – volume: 35 start-page: 2258 year: 2015 ident: ref_38 article-title: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature publication-title: Int. J. Climatol. doi: 10.1002/joc.4127 – ident: ref_48 – volume: 130 start-page: 62 year: 2013 ident: ref_21 article-title: Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.034 – volume: 47 start-page: 299 year: 2002 ident: ref_41 article-title: Model-based geostatistics publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. doi: 10.1111/1467-9876.00113 – ident: ref_44 doi: 10.3390/geosciences8120433 – volume: 11 start-page: 345 year: 2018 ident: ref_27 article-title: Mapping Monthly Air Temperature in the Tibetan Plateau From MODIS Data Based on Machine Learning Methods publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2787191 – volume: 110 start-page: 262 year: 2007 ident: ref_20 article-title: Estimation of diurnal air temperature using MSG SEVIRI data in West Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.025 – volume: 120 start-page: 2306 year: 2015 ident: ref_16 article-title: Daily minimum and maximum surface air temperatures from geostationary satellite data: Satellite min and max air temperatures publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2014JD022438 – volume: 651 start-page: 210 year: 2019 ident: ref_5 article-title: Mortality and morbidity associated with ambient temperatures in Taiwan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.161 – volume: 43 start-page: 78 year: 2006 ident: ref_14 article-title: Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi publication-title: GISci. Remote Sens. doi: 10.2747/1548-1603.43.1.78 – volume: 158 start-page: 703 year: 2017 ident: ref_4 article-title: Exploring the association between heat and mortality in Switzerland between 1995 and 2013 publication-title: Environ. Res. doi: 10.1016/j.envres.2017.07.021 – volume: 20 start-page: 1125 year: 1999 ident: ref_13 article-title: Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model publication-title: Int. J. Remote Sens. doi: 10.1080/014311699212885 – volume: 60 start-page: 335 year: 1997 ident: ref_8 article-title: Estimation of air temperature from remotely sensed surface observations publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00216-7 – volume: 19 start-page: 365 year: 1999 ident: ref_12 article-title: Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France publication-title: Int. J. Climatol. doi: 10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E – volume: 161 start-page: 229 year: 2018 ident: ref_3 article-title: The association between ambient temperature and mortality in South Africa: A time-series analysis publication-title: Environ. Res. doi: 10.1016/j.envres.2017.11.001 – volume: 37 start-page: 296 year: 2017 ident: ref_32 article-title: Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data publication-title: Int. J. Climatol. doi: 10.1002/joc.4705 – volume: 579 start-page: 675 year: 2017 ident: ref_33 article-title: Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.042 – volume: 64 start-page: 414 year: 2009 ident: ref_18 article-title: Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.02.006 – volume: 37 start-page: 1181 year: 2017 ident: ref_31 article-title: A statistical framework for estimating air temperature using MODIS land surface temperature data publication-title: Int. J. Climatol. doi: 10.1002/joc.4766 – volume: 39 start-page: 924 year: 2018 ident: ref_22 article-title: Estimation of air temperature and reference evapotranspiration using MODIS land surface temperature over Greece publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1395965 – ident: ref_35 doi: 10.3390/rs9121278 – volume: 24 start-page: 190 year: 2002 ident: ref_2 article-title: Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence publication-title: Epidemiol. Rev. doi: 10.1093/epirev/mxf007 – volume: 35 start-page: 403 year: 1993 ident: ref_45 article-title: A Bayesian Analysis of Kriging publication-title: Technometrics doi: 10.1080/00401706.1993.10485354 – volume: 35 start-page: 3862 year: 2015 ident: ref_39 article-title: Using multi-timescale methods and satellite-derived land surface temperature for the interpolation of daily maximum air temperature in Oregon publication-title: Int. J. Climatol. doi: 10.1002/joc.4251 – volume: 114 start-page: 449 year: 2010 ident: ref_6 article-title: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.10.002 – volume: 211 start-page: 48 year: 2018 ident: ref_40 article-title: Hierarchical Bayesian space-time estimation of monthly maximum and minimum surface air temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.006 – volume: 215 start-page: 74 year: 2018 ident: ref_36 article-title: Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.034 – ident: ref_46 – ident: ref_17 doi: 10.3390/rs8121002 – ident: ref_30 doi: 10.3390/rs9090959 – ident: ref_53 doi: 10.1002/9781119115151 – volume: 15 start-page: 221 year: 1995 ident: ref_11 article-title: Climatologically aided interpolation (CAI) of terrestrial air temperature publication-title: Int. J. Climatol. doi: 10.1002/joc.3370150207 – volume: 137 start-page: 149 year: 2018 ident: ref_19 article-title: Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.018 – volume: 35 start-page: 2131 year: 2015 ident: ref_15 article-title: A statistical method based on remote sensing for the estimation of air temperature in China publication-title: Int. J. Climatol. doi: 10.1002/joc.4113 – volume: 110 start-page: 859 year: 2002 ident: ref_1 article-title: The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities publication-title: Environ. Health Perspect. doi: 10.1289/ehp.02110859 – volume: 34 start-page: 892 year: 1996 ident: ref_51 article-title: A generalized split-window algorithm for retrieving land-surface temperature from space publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.508406 – volume: 159 start-page: 297 year: 2017 ident: ref_34 article-title: Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel publication-title: Environ. Res. doi: 10.1016/j.envres.2017.08.017 |
SSID | ssj0000331904 |
Score | 2.3328154 |
Snippet | Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 767 |
SubjectTerms | Air temperature Algorithms Artificial intelligence Bayesian analysis Bayesian framework Climate conterminous United States Ground stations Heat Kriging interpolation Kriging regression Laboratories Land surface temperature Machine learning Mathematical models Methods Parameter estimation Performance prediction Regression analysis Remote sensing Satellite imagery Satellites Spacetime Spatial data Statistical analysis Statistical inference Statistical methods Statistical models Studies Temperature effects Uncertainty analysis Unevenness Urban areas Weather stations |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4HMql4lV1W4ostRcOEfEjjn2qdukiRAWqYJFQL5FjjxcktLvspgf-fceJdxECcUzsXMbj8XyT8fcR8gMRRcgLsFmZl2UmWVBZLa3IrBZOW8fB63jf-eJSnd3I89viNhXcFqmtchkT20Dtpy7WyI9j8TKeL1L9nD1mUTUq_l1NEhrrZBNDsEbwtTkYXv65WlVZcoEulsuOl1Qgvj-eLyLiQfRevjiJWsL-V_G4PWROt8nHlB3SfrecO2QNJrvkQxIqv3vaI3_7dGCfIN58pL9bTasxvYJx18w6oRetHjRtpnSIWxeTUaD9-zkdASbHHXkybXsE8BtcIqDXsX0dH3_Zxu6T0elwdHKWJXmEzHHDmswXXoGuBUeb5gx0DqVnNncsYM5hgXu0vPelZZwpJ3BIeqNMUQYRfNBSfCIbk-kEPhMaBCDOKoQyppZggy1M4MHUnkVymsB75Ghpqcol6vCoYPFQIYSIVq2erdoj31dzZx1hxpuzBtHgqxmR5Lp9MZ2Pq7RnKsaVwfxSlw7Qf5y0hTZBeVdYhzCMix45WC5XlXbeonr2ky_vD38lW5j8mK4L54BsNPN_8A0TjKY-TF70H-WF0MU priority: 102 providerName: ProQuest |
Title | A Bayesian Kriging Regression Method to Estimate Air Temperature Using Remote Sensing Data |
URI | https://www.proquest.com/docview/2304023846 https://doaj.org/article/126919387ceb4ac4a589f6dc5ac62623 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUoPdBLVQqIbWFlqVw4RMQfcezjbtkFURYhWCTUS-TY4wUJLdWSHvj3HTvhS1TiwilK4nzojR2_F43fELKDiiLkBdiszMsykyyorJZWZFYLp63j4HVc7zw5UYcX8uiyuHxW6ivmhLX2wC1we4wrgyRDlw7wJk7aQpugvCusQy7Ok88nznnPxFT6BgvsWrls_UgF6vq9xV1UOqjayxczUDLqf_UdTpPL-Av53LFCOmjfZpUswfwrWekKlF_dr5HfAzq09xBXPNJfqZbVjJ7BrE1indNJqgNNm1s6wiGLJBTo4HpBp4CkuDVNpik3AK_B0AA9j2nruLtvG7tOpuPR9Odh1pVFyBw3rMl84RXoWnDEMmegcyg9s7ljAbmGBe4Rce9LyzhTTuAp6Y0yRRlE8EFLsUGW57dz2CQ0CEB9VQhlTC3BBluYwIOpPYumNIH3yO4DUpXrLMNj5YqbCqVDRLV6QrVHfjy2_dMaZfy31TAC_tgimlunAxjyqgt59VbIe2TrIVxVN-LuqvhzO_IPqb69xzO-k09IjUybo7NFlpvFX9hG-tHUffJBjw_65ONgf3J8jtvh6OT0rJ_63z9gLNvQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOZQL4ikCBSwBBw6r-rVe-4BQShtS0vQAQaq4WF4_AhJKSrII5UfxHxl7d5MDiFuPu_aurPHnedjj-RB6CRFFJGWwRUWqqhA0yqIWlhdWcaesY8GrdN95eiHHn8WHy_JyD_3u78KktMpeJ2ZF7Zcu7ZEfpc3LZF-EfHv1o0isUel0tafQaGExCZtfELKt35ydwPy-Ymx0Ons3LjpWgcIxTZvCl14GVXMGQyE0KBIqTy1xNIKptoF5GLD3laWMSsehSXgtdVlFHn1UgsNvb6CbgnOdFpQavd9u6RAOeCaiLYIK7eRotU7hFakyi_3O7GV2gL-Uf7ZoozvodueK4mGLnbtoLyzuoYOOFf3r5j76MsTHdhPSNUs8yQRac_wxzNvM2QWeZvJp3CzxKegJ8HwDHn5b4VkAT7yt1IxzQgJ8A3gI-FPKlYfHE9vYB2h2HVJ7iPYXy0V4hHDkAYK6kkutaxFstKWOLOra01QJJ7IBet1LyriuTnmiy_huIF5JUjU7qQ7Qi23fq7Y6xz97HSeBb3ukitr5xXI1N90CNZRJDc6sqlwAsDphS6Wj9K60DmI-xgfosJ8u0y3ztdmB8vH_m5-jg_Fsem7Ozy4mT9At8Lp0m_5ziPab1c_wFDybpn6W8YSRuWb8_gFUowzO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVIJeEE-RtoAl4MBhFa-9a68PCCUkUUtoVJUgVVxWXj9CpSppk0UoP41_x3gfyQHErcdde1er8WfPfN7xfABvkVF4mjodSSpllMReREWieaQzbjJtmLNZOO98NhUn35LPl-nlHvxuz8KEtMp2TawWars0YY-8FzYvg39JRM83aRHnw_HHm9soKEiFP62tnEYNkYnb_EL6tv5wOsSxfsfYeDT7dBI1CgORYSouI5ta4bKCM_wsGruMOmljTU3s0W1rxyx-vLVSxywWhmNTYpVQqfTcW58lHF97D_YlkiLagf3BaHp-sd3goRzRTZO6JCrnivZW60C2qKw07XdOsNIK-MsVVP5t_AgeNoEp6ddIegx7bvEEHjQa6T82T-F7nwz0xoVDl2RSyWnNyYWb13m0C3JWSVGTcklGuGpgHOxI_2pFZg7j8rpuM6nSE_AZRIcjX0PmPF4Odamfwewu7PYcOovlwr0A4rlDipdyoVSROO11qjzzqrBxqIvjWRfet5bKTVO1PIhnXOfIXoJV851Vu_Bm2_emrtXxz16DYPBtj1Bfu7qxXM3zZrrmMRMKQ9tMGofQNYlOM-WFNak2yAAZ78JxO1x5M-nX-Q6ih_9vfg33Ebv5l9Pp5AgOMARTdS7QMXTK1U_3EsOcsnjVAIpAfscQ_gMT6BJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Kriging+Regression+Method+to+Estimate+Air+Temperature+Using+Remote+Sensing+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhenwei+Zhang&rft.au=Qingyun+Du&rft.date=2019-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=7&rft.spage=767&rft_id=info:doi/10.3390%2Frs11070767&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_126919387ceb4ac4a589f6dc5ac62623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |