A Bayesian Kriging Regression Method to Estimate Air Temperature Using Remote Sensing Data

Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 7; p. 767
Main Authors Zhang, Zhenwei, Du, Qingyun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by integrating ground measurements and satellite data is an active research area. A variety of methods have been proposed and applied in this area. However, the existing studies primarily focused on daily Ta and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach was adopted to compare the predictive performance of the BKR method with the linear regression method over the whole region and the urban areas of the contiguous United States. For the whole region, the results show that the BKR method achieves a competitively better performance with averaged RMSE values 1.23 K for Tmax and 1.20 K for Tmin, which are also lower than previous studies on estimation of monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE values 1.21 K for Tmax and 1.27 K for Tmin. Posterior samples for model parameters and estimated Ta were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR method provides a promising way to estimate Ta with competitively predictive performance and to quantify model uncertainties at the same time.
AbstractList Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by integrating ground measurements and satellite data is an active research area. A variety of methods have been proposed and applied in this area. However, the existing studies primarily focused on daily Ta and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach was adopted to compare the predictive performance of the BKR method with the linear regression method over the whole region and the urban areas of the contiguous United States. For the whole region, the results show that the BKR method achieves a competitively better performance with averaged RMSE values 1.23 K for Tmax and 1.20 K for Tmin, which are also lower than previous studies on estimation of monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE values 1.21 K for Tmax and 1.27 K for Tmin. Posterior samples for model parameters and estimated Ta were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR method provides a promising way to estimate Ta with competitively predictive performance and to quantify model uncertainties at the same time.
Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to characterize the complex spatial patterns of Ta field due to low density and unevenness of the networks. Remote sensing can provide satellite imagery with large scale spatial coverage and fine resolution. Estimating spatially continuous Ta by integrating ground measurements and satellite data is an active research area. A variety of methods have been proposed and applied in this area. However, the existing studies primarily focused on daily Ta and failed to quantify uncertainties in model parameter and estimated results. In this paper, a Bayesian Kriging regression (BKR) method is proposed to model and estimate monthly Ta using satellite-derived land surface temperature (LST) as the only input. The BKR is a spatial statistical model with the capacity to quantify uncertainties via Bayesian inference. The BKR method was applied to estimate monthly maximum air temperature (Tmax) and minimum air temperature (Tmin) over the conterminous United States in 2015. An exploratory analysis shows a strong relationship between LST and Ta at the monthly scale, indicating LST has the great potential to estimate monthly Ta. 10-fold cross-validation approach was adopted to compare the predictive performance of the BKR method with the linear regression method over the whole region and the urban areas of the contiguous United States. For the whole region, the results show that the BKR method achieves a competitively better performance with averaged RMSE values1.23K for Tmax and1.20K for Tmin, which are also lower than previous studies on estimation of monthly Ta. In the urban areas, the cross-validation demonstrates similar results with averaged RMSE values1.21K for Tmax and1.27K for Tmin. Posterior samples for model parameters and estimated Ta were obtained and used to analyze uncertainties in the model parameters and estimated Ta. The BKR method provides a promising way to estimate Ta with competitively predictive performance and to quantify model uncertainties at the same time.
Author Du, Qingyun
Zhang, Zhenwei
Author_xml – sequence: 1
  givenname: Zhenwei
  surname: Zhang
  fullname: Zhang, Zhenwei
– sequence: 2
  givenname: Qingyun
  orcidid: 0000-0003-4615-2029
  surname: Du
  fullname: Du, Qingyun
BookMark eNptUctOWzEQtSqQCmk2_QJL3VUK-BXf62WAUCKokCDddGNN7Lmpo-Q6tZ1F_r5uggpCnc28zjkzmjknJ33skZDPnF1IadhlypyzhjW6-UDOBGvESAkjTt7EH8kw5xWrJiU3TJ2RnxN6BXvMAXp6n8Iy9Ev6hMuEOYfY0-9YfkVPS6TTXMIGCtJJSHSOmy0mKLuE9Ec-cjaxNp-xP6Q3UOATOe1gnXH44gdkfjudX9-NHh6_za4nDyMnDC8jP_Ya24UULTjGsWXYeA7M8c4YCSi84p33DXDBtZO1pbzRZtx0svNdq-SAzI6yPsLKblPdMu1thGAPhZiWFlIJbo2WC224kW3jcKHAKRi3ptPejcFpoYWsWl-OWtsUf-8wF7uKu9TX7a2QTDEhW6Ur6usR5VLMOWH3bypn9u8n7OsnKpi9A7tQoNTjlgRh_T_KH9ski_0
CitedBy_id crossref_primary_10_1007_s11769_023_1370_0
crossref_primary_10_3390_rs15071753
crossref_primary_10_1029_2021WR029988
crossref_primary_10_3390_land10080867
crossref_primary_10_1371_journal_pgph_0000747
crossref_primary_10_3390_w12123495
crossref_primary_10_1016_j_isprsjprs_2021_10_022
crossref_primary_10_3390_a17020057
crossref_primary_10_1002_joc_7987
crossref_primary_10_1016_j_landurbplan_2020_103907
crossref_primary_10_1007_s44197_022_00054_4
crossref_primary_10_1016_j_ecolind_2021_107826
crossref_primary_10_1038_s41597_024_03980_z
crossref_primary_10_3390_data9120143
crossref_primary_10_3390_rs12152434
crossref_primary_10_55761_abclima_v31i18_15893
crossref_primary_10_1051_climat_202017002
crossref_primary_10_3390_agronomy13102527
crossref_primary_10_1016_j_rse_2024_114453
crossref_primary_10_1111_jac_12687
crossref_primary_10_3390_urbansci3040101
crossref_primary_10_1016_j_scitotenv_2021_152538
crossref_primary_10_1007_s10584_024_03850_y
crossref_primary_10_1080_10095020_2024_2313327
Cites_doi 10.1016/S0022-1694(98)00210-8
10.1016/j.rse.2016.11.011
10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
10.1016/j.jappgeo.2018.11.007
10.3390/rs8090732
10.1016/j.rse.2012.04.024
10.1007/s00704-004-0079-y
10.18637/jss.v063.i13
10.1016/j.cageo.2007.05.001
10.1201/b17115
10.1080/01431160310001624593
10.1175/JTECH-D-11-00103.1
10.1002/2016JD025154
10.1109/JSTARS.2014.2361862
10.3390/rs9121313
10.1080/01431161.2012.716548
10.1002/joc.4127
10.1016/j.rse.2012.10.034
10.1111/1467-9876.00113
10.3390/geosciences8120433
10.1109/JSTARS.2017.2787191
10.1016/j.rse.2007.02.025
10.1002/2014JD022438
10.1016/j.scitotenv.2018.09.161
10.2747/1548-1603.43.1.78
10.1016/j.envres.2017.07.021
10.1080/014311699212885
10.1016/S0034-4257(96)00216-7
10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E
10.1016/j.envres.2017.11.001
10.1002/joc.4705
10.1016/j.scitotenv.2016.11.042
10.1016/j.isprsjprs.2009.02.006
10.1002/joc.4766
10.1080/01431161.2017.1395965
10.3390/rs9121278
10.1093/epirev/mxf007
10.1080/00401706.1993.10485354
10.1002/joc.4251
10.1016/j.rse.2009.10.002
10.1016/j.rse.2018.04.006
10.1016/j.rse.2018.05.034
10.3390/rs8121002
10.3390/rs9090959
10.1002/9781119115151
10.1002/joc.3370150207
10.1016/j.isprsjprs.2018.01.018
10.1002/joc.4113
10.1289/ehp.02110859
10.1109/36.508406
10.1016/j.envres.2017.08.017
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs11070767
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_126919387ceb4ac4a589f6dc5ac62623
10_3390_rs11070767
GeographicLocations New York
United States--US
China
GeographicLocations_xml – name: New York
– name: China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c291t-d5d6e8b328ac01e80e7d1a0c1f993ae2d41fdd7a1216c3d1a4d96957f3fdf843
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:06:18 EDT 2025
Fri Jul 25 12:01:07 EDT 2025
Tue Jul 01 04:14:43 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d5d6e8b328ac01e80e7d1a0c1f993ae2d41fdd7a1216c3d1a4d96957f3fdf843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4615-2029
OpenAccessLink https://doaj.org/article/126919387ceb4ac4a589f6dc5ac62623
PQID 2304023846
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_126919387ceb4ac4a589f6dc5ac62623
proquest_journals_2304023846
crossref_primary_10_3390_rs11070767
crossref_citationtrail_10_3390_rs11070767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Basu (ref_2) 2002; 24
Stisen (ref_20) 2007; 110
Yoo (ref_19) 2018; 137
ref_54
Menne (ref_49) 2012; 29
ref_53
Sun (ref_23) 2005; 80
Moser (ref_24) 2015; 8
ref_52
Braga (ref_1) 2002; 110
Kloog (ref_32) 2017; 37
Courault (ref_12) 1999; 19
ref_17
Kitsara (ref_22) 2018; 39
Pelta (ref_33) 2017; 579
ref_25
Vancutsem (ref_6) 2010; 114
Scovronick (ref_3) 2018; 161
ref_28
Zhu (ref_29) 2017; 189
Diggle (ref_41) 2002; 47
Wan (ref_51) 1996; 34
Lin (ref_5) 2019; 651
Handcock (ref_45) 1993; 35
Janatian (ref_31) 2017; 37
Zhu (ref_21) 2013; 130
Benali (ref_10) 2012; 124
Parmentier (ref_39) 2015; 35
Rosenfeld (ref_34) 2017; 159
ref_35
Mostovoy (ref_14) 2006; 43
ref_30
Vogt (ref_7) 1997; 17
Xu (ref_27) 2018; 11
Ragettli (ref_4) 2017; 158
Prihodko (ref_8) 1997; 60
Chen (ref_15) 2015; 35
Lu (ref_40) 2018; 211
Oyler (ref_38) 2015; 35
Cresswell (ref_13) 1999; 20
ref_47
ref_46
ref_44
Prince (ref_9) 1998; 212–213
(ref_18) 2009; 64
Sobrino (ref_50) 2013; 34
Hengl (ref_42) 2007; 33
Florio (ref_37) 2004; 25
Li (ref_36) 2018; 215
Good (ref_16) 2015; 120
(ref_43) 2019; 160
ref_48
Willmott (ref_11) 1995; 15
Zhang (ref_26) 2016; 121
References_xml – volume: 212–213
  start-page: 230
  year: 1998
  ident: ref_9
  article-title: Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations: Comparison with field observations
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00210-8
– volume: 189
  start-page: 152
  year: 2017
  ident: ref_29
  article-title: Retrievals of all-weather daytime air temperature from MODIS products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.11.011
– volume: 17
  start-page: 1559
  year: 1997
  ident: ref_7
  article-title: Mapping regional air temperature fields using satellite-derived surface skin temperatures
  publication-title: Int. J. Climatol.
  doi: 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
– volume: 160
  start-page: 84
  year: 2019
  ident: ref_43
  article-title: Bayesian kriging for reproducing reservoir heterogeneity in a tidal depositional environment of a sandstone formation
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2018.11.007
– ident: ref_25
  doi: 10.3390/rs8090732
– volume: 124
  start-page: 108
  year: 2012
  ident: ref_10
  article-title: Estimating air surface temperature in Portugal using MODIS LST data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.024
– volume: 80
  start-page: 37
  year: 2005
  ident: ref_23
  article-title: Air temperature retrieval from remote sensing data based on thermodynamics
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-004-0079-y
– ident: ref_54
  doi: 10.18637/jss.v063.i13
– volume: 33
  start-page: 1301
  year: 2007
  ident: ref_42
  article-title: About regression-kriging: From equations to case studies
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.05.001
– ident: ref_47
  doi: 10.1201/b17115
– volume: 25
  start-page: 2979
  year: 2004
  ident: ref_37
  article-title: Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: A statistical approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001624593
– volume: 29
  start-page: 897
  year: 2012
  ident: ref_49
  article-title: An Overview of the Global Historical Climatology Network-Daily Database
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00103.1
– volume: 121
  start-page: 11425
  year: 2016
  ident: ref_26
  article-title: Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016JD025154
– volume: 8
  start-page: 332
  year: 2015
  ident: ref_24
  article-title: Estimation of Air Surface Temperature From Remote Sensing Images and Pixelwise Modeling of the Estimation Uncertainty Through Support Vector Machines
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2361862
– ident: ref_28
  doi: 10.3390/rs9121313
– volume: 34
  start-page: 3177
  year: 2013
  ident: ref_50
  article-title: Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.716548
– ident: ref_52
– volume: 35
  start-page: 2258
  year: 2015
  ident: ref_38
  article-title: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4127
– ident: ref_48
– volume: 130
  start-page: 62
  year: 2013
  ident: ref_21
  article-title: Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.034
– volume: 47
  start-page: 299
  year: 2002
  ident: ref_41
  article-title: Model-based geostatistics
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
  doi: 10.1111/1467-9876.00113
– ident: ref_44
  doi: 10.3390/geosciences8120433
– volume: 11
  start-page: 345
  year: 2018
  ident: ref_27
  article-title: Mapping Monthly Air Temperature in the Tibetan Plateau From MODIS Data Based on Machine Learning Methods
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2787191
– volume: 110
  start-page: 262
  year: 2007
  ident: ref_20
  article-title: Estimation of diurnal air temperature using MSG SEVIRI data in West Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.025
– volume: 120
  start-page: 2306
  year: 2015
  ident: ref_16
  article-title: Daily minimum and maximum surface air temperatures from geostationary satellite data: Satellite min and max air temperatures
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2014JD022438
– volume: 651
  start-page: 210
  year: 2019
  ident: ref_5
  article-title: Mortality and morbidity associated with ambient temperatures in Taiwan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.161
– volume: 43
  start-page: 78
  year: 2006
  ident: ref_14
  article-title: Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.43.1.78
– volume: 158
  start-page: 703
  year: 2017
  ident: ref_4
  article-title: Exploring the association between heat and mortality in Switzerland between 1995 and 2013
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.07.021
– volume: 20
  start-page: 1125
  year: 1999
  ident: ref_13
  article-title: Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699212885
– volume: 60
  start-page: 335
  year: 1997
  ident: ref_8
  article-title: Estimation of air temperature from remotely sensed surface observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00216-7
– volume: 19
  start-page: 365
  year: 1999
  ident: ref_12
  article-title: Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France
  publication-title: Int. J. Climatol.
  doi: 10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E
– volume: 161
  start-page: 229
  year: 2018
  ident: ref_3
  article-title: The association between ambient temperature and mortality in South Africa: A time-series analysis
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.11.001
– volume: 37
  start-page: 296
  year: 2017
  ident: ref_32
  article-title: Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4705
– volume: 579
  start-page: 675
  year: 2017
  ident: ref_33
  article-title: Spatiotemporal estimation of air temperature patterns at the street level using high resolution satellite imagery
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.042
– volume: 64
  start-page: 414
  year: 2009
  ident: ref_18
  article-title: Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.02.006
– volume: 37
  start-page: 1181
  year: 2017
  ident: ref_31
  article-title: A statistical framework for estimating air temperature using MODIS land surface temperature data
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4766
– volume: 39
  start-page: 924
  year: 2018
  ident: ref_22
  article-title: Estimation of air temperature and reference evapotranspiration using MODIS land surface temperature over Greece
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1395965
– ident: ref_35
  doi: 10.3390/rs9121278
– volume: 24
  start-page: 190
  year: 2002
  ident: ref_2
  article-title: Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence
  publication-title: Epidemiol. Rev.
  doi: 10.1093/epirev/mxf007
– volume: 35
  start-page: 403
  year: 1993
  ident: ref_45
  article-title: A Bayesian Analysis of Kriging
  publication-title: Technometrics
  doi: 10.1080/00401706.1993.10485354
– volume: 35
  start-page: 3862
  year: 2015
  ident: ref_39
  article-title: Using multi-timescale methods and satellite-derived land surface temperature for the interpolation of daily maximum air temperature in Oregon
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4251
– volume: 114
  start-page: 449
  year: 2010
  ident: ref_6
  article-title: Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.10.002
– volume: 211
  start-page: 48
  year: 2018
  ident: ref_40
  article-title: Hierarchical Bayesian space-time estimation of monthly maximum and minimum surface air temperature
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.006
– volume: 215
  start-page: 74
  year: 2018
  ident: ref_36
  article-title: Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.034
– ident: ref_46
– ident: ref_17
  doi: 10.3390/rs8121002
– ident: ref_30
  doi: 10.3390/rs9090959
– ident: ref_53
  doi: 10.1002/9781119115151
– volume: 15
  start-page: 221
  year: 1995
  ident: ref_11
  article-title: Climatologically aided interpolation (CAI) of terrestrial air temperature
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3370150207
– volume: 137
  start-page: 149
  year: 2018
  ident: ref_19
  article-title: Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.01.018
– volume: 35
  start-page: 2131
  year: 2015
  ident: ref_15
  article-title: A statistical method based on remote sensing for the estimation of air temperature in China
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4113
– volume: 110
  start-page: 859
  year: 2002
  ident: ref_1
  article-title: The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.02110859
– volume: 34
  start-page: 892
  year: 1996
  ident: ref_51
  article-title: A generalized split-window algorithm for retrieving land-surface temperature from space
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.508406
– volume: 159
  start-page: 297
  year: 2017
  ident: ref_34
  article-title: Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.08.017
SSID ssj0000331904
Score 2.3328154
Snippet Surface air temperature (Ta) is an important physical quantity, usually measured at ground weather station networks. Measured Ta data is inadequate to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 767
SubjectTerms Air temperature
Algorithms
Artificial intelligence
Bayesian analysis
Bayesian framework
Climate
conterminous United States
Ground stations
Heat
Kriging interpolation
Kriging regression
Laboratories
Land surface temperature
Machine learning
Mathematical models
Methods
Parameter estimation
Performance prediction
Regression analysis
Remote sensing
Satellite imagery
Satellites
Spacetime
Spatial data
Statistical analysis
Statistical inference
Statistical methods
Statistical models
Studies
Temperature effects
Uncertainty analysis
Unevenness
Urban areas
Weather stations
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4HMql4lV1W4ostRcOEfEjjn2qdukiRAWqYJFQL5FjjxcktLvspgf-fceJdxECcUzsXMbj8XyT8fcR8gMRRcgLsFmZl2UmWVBZLa3IrBZOW8fB63jf-eJSnd3I89viNhXcFqmtchkT20Dtpy7WyI9j8TKeL1L9nD1mUTUq_l1NEhrrZBNDsEbwtTkYXv65WlVZcoEulsuOl1Qgvj-eLyLiQfRevjiJWsL-V_G4PWROt8nHlB3SfrecO2QNJrvkQxIqv3vaI3_7dGCfIN58pL9bTasxvYJx18w6oRetHjRtpnSIWxeTUaD9-zkdASbHHXkybXsE8BtcIqDXsX0dH3_Zxu6T0elwdHKWJXmEzHHDmswXXoGuBUeb5gx0DqVnNncsYM5hgXu0vPelZZwpJ3BIeqNMUQYRfNBSfCIbk-kEPhMaBCDOKoQyppZggy1M4MHUnkVymsB75Ghpqcol6vCoYPFQIYSIVq2erdoj31dzZx1hxpuzBtHgqxmR5Lp9MZ2Pq7RnKsaVwfxSlw7Qf5y0hTZBeVdYhzCMix45WC5XlXbeonr2ky_vD38lW5j8mK4L54BsNPN_8A0TjKY-TF70H-WF0MU
  priority: 102
  providerName: ProQuest
Title A Bayesian Kriging Regression Method to Estimate Air Temperature Using Remote Sensing Data
URI https://www.proquest.com/docview/2304023846
https://doaj.org/article/126919387ceb4ac4a589f6dc5ac62623
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUoPdBLVQqIbWFlqVw4RMQfcezjbtkFURYhWCTUS-TY4wUJLdWSHvj3HTvhS1TiwilK4nzojR2_F43fELKDiiLkBdiszMsykyyorJZWZFYLp63j4HVc7zw5UYcX8uiyuHxW6ivmhLX2wC1we4wrgyRDlw7wJk7aQpugvCusQy7Ok88nznnPxFT6BgvsWrls_UgF6vq9xV1UOqjayxczUDLqf_UdTpPL-Av53LFCOmjfZpUswfwrWekKlF_dr5HfAzq09xBXPNJfqZbVjJ7BrE1indNJqgNNm1s6wiGLJBTo4HpBp4CkuDVNpik3AK_B0AA9j2nruLtvG7tOpuPR9Odh1pVFyBw3rMl84RXoWnDEMmegcyg9s7ljAbmGBe4Rce9LyzhTTuAp6Y0yRRlE8EFLsUGW57dz2CQ0CEB9VQhlTC3BBluYwIOpPYumNIH3yO4DUpXrLMNj5YqbCqVDRLV6QrVHfjy2_dMaZfy31TAC_tgimlunAxjyqgt59VbIe2TrIVxVN-LuqvhzO_IPqb69xzO-k09IjUybo7NFlpvFX9hG-tHUffJBjw_65ONgf3J8jtvh6OT0rJ_63z9gLNvQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOZQL4ikCBSwBBw6r-rVe-4BQShtS0vQAQaq4WF4_AhJKSrII5UfxHxl7d5MDiFuPu_aurPHnedjj-RB6CRFFJGWwRUWqqhA0yqIWlhdWcaesY8GrdN95eiHHn8WHy_JyD_3u78KktMpeJ2ZF7Zcu7ZEfpc3LZF-EfHv1o0isUel0tafQaGExCZtfELKt35ydwPy-Ymx0Ons3LjpWgcIxTZvCl14GVXMGQyE0KBIqTy1xNIKptoF5GLD3laWMSsehSXgtdVlFHn1UgsNvb6CbgnOdFpQavd9u6RAOeCaiLYIK7eRotU7hFakyi_3O7GV2gL-Uf7ZoozvodueK4mGLnbtoLyzuoYOOFf3r5j76MsTHdhPSNUs8yQRac_wxzNvM2QWeZvJp3CzxKegJ8HwDHn5b4VkAT7yt1IxzQgJ8A3gI-FPKlYfHE9vYB2h2HVJ7iPYXy0V4hHDkAYK6kkutaxFstKWOLOra01QJJ7IBet1LyriuTnmiy_huIF5JUjU7qQ7Qi23fq7Y6xz97HSeBb3ukitr5xXI1N90CNZRJDc6sqlwAsDphS6Wj9K60DmI-xgfosJ8u0y3ztdmB8vH_m5-jg_Fsem7Ozy4mT9At8Lp0m_5ziPab1c_wFDybpn6W8YSRuWb8_gFUowzO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVIJeEE-RtoAl4MBhFa-9a68PCCUkUUtoVJUgVVxWXj9CpSppk0UoP41_x3gfyQHErcdde1er8WfPfN7xfABvkVF4mjodSSpllMReREWieaQzbjJtmLNZOO98NhUn35LPl-nlHvxuz8KEtMp2TawWars0YY-8FzYvg39JRM83aRHnw_HHm9soKEiFP62tnEYNkYnb_EL6tv5wOsSxfsfYeDT7dBI1CgORYSouI5ta4bKCM_wsGruMOmljTU3s0W1rxyx-vLVSxywWhmNTYpVQqfTcW58lHF97D_YlkiLagf3BaHp-sd3goRzRTZO6JCrnivZW60C2qKw07XdOsNIK-MsVVP5t_AgeNoEp6ddIegx7bvEEHjQa6T82T-F7nwz0xoVDl2RSyWnNyYWb13m0C3JWSVGTcklGuGpgHOxI_2pFZg7j8rpuM6nSE_AZRIcjX0PmPF4Odamfwewu7PYcOovlwr0A4rlDipdyoVSROO11qjzzqrBxqIvjWRfet5bKTVO1PIhnXOfIXoJV851Vu_Bm2_emrtXxz16DYPBtj1Bfu7qxXM3zZrrmMRMKQ9tMGofQNYlOM-WFNak2yAAZ78JxO1x5M-nX-Q6ih_9vfg33Ebv5l9Pp5AgOMARTdS7QMXTK1U_3EsOcsnjVAIpAfscQ_gMT6BJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Kriging+Regression+Method+to+Estimate+Air+Temperature+Using+Remote+Sensing+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhenwei+Zhang&rft.au=Qingyun+Du&rft.date=2019-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=7&rft.spage=767&rft_id=info:doi/10.3390%2Frs11070767&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_126919387ceb4ac4a589f6dc5ac62623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon