Exact Analytical Formula for the Excess Noise Factor for Mixed Carrier Injection Avalanche Photodiodes

The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probab...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 37; no. 13; pp. 3315 - 3323
Main Authors Hossain, Md Mottaleb, David, John P. R., Hayat, Majeed M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k. Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al., IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546-552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ~ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs.
AbstractList The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k. Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al., IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546-552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ~ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs.
The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k . Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al. , IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546–552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ∼ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs.
Author Hayat, Majeed M.
Hossain, Md Mottaleb
David, John P. R.
Author_xml – sequence: 1
  givenname: Md Mottaleb
  surname: Hossain
  fullname: Hossain, Md Mottaleb
  email: mottaleb77@unm.edu
  organization: Center for High Technol. Mater. & the Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM, USA
– sequence: 2
  givenname: John P. R.
  surname: David
  fullname: David, John P. R.
  email: j.p.david@sheffield.ac.uk
  organization: Electron. & Electr. Eng. Dept., Univ. of Sheffield, Sheffield, UK
– sequence: 3
  givenname: Majeed M.
  surname: Hayat
  fullname: Hayat, Majeed M.
  email: majeed.hayat@marquette.edu
  organization: Center for High Technol. Mater. & the Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM, USA
BookMark eNp9kEtPAjEURhuDiYjuTdw0cT3Yx0ynXRICisHHAteT0rkTSoYptsXAv7cE4sKF6eK2t-c0t9816nWuA4TuKBlSStTjy3wxZISqIVM0z3N-gfq0KGTGGOU91Ccl55ksWX6FrkNYE5IgWfZRM9lrE_Go0-0hWqNbPHV-s2s1bpzHcQV4sjcQAn5zNgCeJjj1j3evdg81HmvvLXg869ZgonUdHn3rVncmmR8rF11tXQ3hBl02ug1we64D9DmdLMbP2fz9aTYezTOTxo5ZXQguDHBgUii6bKTKlVTLUnOZm6ZmBEpJal0K1WhBlyTtmeag80KkM-N8gB5O7269-9pBiNXa7Xz6XKgY46UQqhAkUeJEGe9C8NBUxkZ9nD56bduKkuqYaZUyrY6ZVudMk0j-iFtvN9of_lPuT4oFgF9cloTLtH4AIBaDkw
CODEN JLTEDG
CitedBy_id crossref_primary_10_3390_s23125369
crossref_primary_10_1063_5_0165800
crossref_primary_10_1063_5_0258106
crossref_primary_10_1002_aelm_202300037
crossref_primary_10_1364_OL_433654
Cites_doi 10.1063/1.1429771
10.1063/1.1388865
10.1109/IPCon.2013.6656429
10.1109/3.823466
10.1109/16.861578
10.1109/IPCon.2014.6995302
10.1109/16.123476
10.1109/TED.2015.2422789
10.1038/s41598-018-27507-w
10.1109/ICSENS.2014.6985463
10.1109/55.772371
10.1063/1.322778
10.1109/16.974696
10.1109/IPCon.2016.7831181
10.1364/OE.24.021597
10.1063/1.126823
10.1109/T-ED.1966.15651
10.1109/JLT.2017.2687822
10.1109/16.841220
10.1109/16.777150
10.1103/PhysRev.109.1537
10.1016/0038-1101(70)90139-5
10.1109/JQE.1986.1073137
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2019.2914443
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 3323
ExternalDocumentID 10_1109_JLT_2019_2914443
8703838
Genre orig-research
GrantInformation_xml – fundername: Sandia National Laboratories
  funderid: 10.13039/100006234
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
RIG
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c291t-d5636ce3e28691bf894989b7a384cfd20e780da769fa61b00da2a3ea456a61233
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Mon Jun 30 10:18:26 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 01:01:50 EDT 2025
Wed Aug 27 02:54:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d5636ce3e28691bf894989b7a384cfd20e780da769fa61b00da2a3ea456a61233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3465-1971
0000-0003-0919-9039
PQID 2237669560
PQPubID 85485
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_JLT_2019_2914443
ieee_primary_8703838
crossref_primary_10_1109_JLT_2019_2914443
proquest_journals_2237669560
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref17
ref16
ref19
ref18
agrawal (ref1) 2012
hossain (ref25) 2015
ref24
ref23
ref20
ref22
ref21
ref28
ref27
ref8
ref7
hossain (ref26) 2015
ref9
ref4
ref6
ref5
webb (ref3) 1974; 35
bendib (ref13) 2014; i
References_xml – ident: ref6
  doi: 10.1063/1.1429771
– ident: ref5
  doi: 10.1063/1.1388865
– ident: ref22
  doi: 10.1109/IPCon.2013.6656429
– ident: ref16
  doi: 10.1109/3.823466
– ident: ref8
  doi: 10.1109/16.861578
– ident: ref24
  doi: 10.1109/IPCon.2014.6995302
– ident: ref10
  doi: 10.1109/16.123476
– year: 2012
  ident: ref1
  publication-title: Fiber-Optic Communication Systems
– ident: ref18
  doi: 10.1109/TED.2015.2422789
– ident: ref7
  doi: 10.1038/s41598-018-27507-w
– ident: ref23
  doi: 10.1109/ICSENS.2014.6985463
– year: 2015
  ident: ref26
  article-title: Linear mode CMOS compatible p-n junction avalanche photodiode for smart-lighting applications
– ident: ref14
  doi: 10.1109/55.772371
– ident: ref4
  doi: 10.1063/1.322778
– ident: ref17
  doi: 10.1109/16.974696
– volume: i
  start-page: 5
  year: 2014
  ident: ref13
  article-title: Impact of temperature and doping concentration on avalanche photodiode characteristics
  publication-title: Proc World Congr Eng
– start-page: 436
  year: 2015
  ident: ref25
  article-title: Linear mode CMOS compatible p-n junction avalanche photodiode with operating voltage below 9 V
  publication-title: Proc IEEE 28th Photonics Conf
– ident: ref27
  doi: 10.1109/IPCon.2016.7831181
– ident: ref28
  doi: 10.1364/OE.24.021597
– ident: ref12
  doi: 10.1063/1.126823
– ident: ref2
  doi: 10.1109/T-ED.1966.15651
– ident: ref9
  doi: 10.1109/JLT.2017.2687822
– ident: ref11
  doi: 10.1109/16.841220
– ident: ref15
  doi: 10.1109/16.777150
– ident: ref19
  doi: 10.1103/PhysRev.109.1537
– ident: ref21
  doi: 10.1016/0038-1101(70)90139-5
– volume: 35
  start-page: 234
  year: 1974
  ident: ref3
  article-title: Properties of avalanche photodiodes
  publication-title: RCA Rev
– ident: ref20
  doi: 10.1109/JQE.1986.1073137
SSID ssj0014487
Score 2.3190982
Snippet The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3315
SubjectTerms Absorption
Avalanche diodes
Avalanche photodiode
Avalanche photodiodes
Carrier injection
Charge carrier processes
Electric fields
Electron avalanche
Electrons
excess-noise factor
Holes (electron deficiencies)
impact ionization
Integral equations
Ionization
Ionization coefficients
Mathematical analysis
Mathematical model
mean-gain
mixed carrier injection
Multiplication
Noise
Noise factor
Photodiodes
Photon avalanches
Photonics
Photons
Probability distribution functions
Title Exact Analytical Formula for the Excess Noise Factor for Mixed Carrier Injection Avalanche Photodiodes
URI https://ieeexplore.ieee.org/document/8703838
https://www.proquest.com/docview/2237669560
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SQKGXpklaum0adMilUO96LVmyjiHskoZs6CGB3MxYH3TbYIfYW5b8-oxk70I_KL0ZWxLGb2S9kd7MAJwKYaT1FSZodZ4IzIoE_VQmqkCuUHFUMZH24lpe3IrLu_xuBz5vY2Gcc1F85sbhMp7l28aswlbZhGyLHKpiF3bJcetjtbYnBuRmxNBoxTnN8ExsjiRTPbm8ugkaLj3ONDUT_JclKNZU-eNHHFeX-T4sNu_Vi0p-jFddNTZPv6Vs_N8Xfw2vBprJznq7OIAdVx_C_kA52TCh20N4ERWgpj0CP1uj6VhMUhL3t9mc6OzqHhnRWkY0kc3WIaSAXTfL1rF5rNMTny2WaxrzHB9D8Tv2pf4e1V01O_sZZJNkFOzrt6Zr7LKxrn0Dt_PZzflFMhRhSAx9ri6xueTSOO6yQupp5QstdKErhbwQxtssdapILSqpPcopTWKLGXKHRMwwpHbhb2Gvbmr3DhixK0xNKryaVoJ4CJlC7j0BJzXdz9UIJhtcSjNkKA-FMu7L6KmkuiQky4BkOSA5gk_bHg99do5_tD0KwGzbDZiM4HgDfTlM37bMglZIBtfx_d97fYCXYexet3sMe93jyn0kdtJVJ9EsnwF6DN_C
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4aQ4hdNthAdGzgAxck0iaxY8fHaWrVjbbi0Em7RY5_iMKUoCWdKv56np20Ej-EdosSJ7HyPcffs7_3HsAHxjQ3rlSRMjKLmErzSLmERyJXVChBlQiJtOcLPr1h17fZ7R582sXCWGuD-MwO_WHYyze1XvulshHaFjpU-RN4ivN-lnTRWrs9A3Q0QnC0oBTHeMq2m5KxHF3Pll7FJYepxGaM_jYJhaoqf_2Kw_wyOYL5tmedrOT7cN2WQ_3zj6SNj-36CzjsiSa56CzjJezZ6hiOetJJ-iHdHMOzoAHVzQm48UbploQ0JWGFm0yQ0K7vFEFiS5AokvHGBxWQRb1qLJmESj3h2ny1wWdeqntf_o5cVd-CvqsiFw9eOIlmQb58rdvarGpjm1dwMxkvL6dRX4Yh0vi52shknHJtqU1zLpPS5ZLJXJZC0ZxpZ9LYijw2SnDpFE9wGBuVKmoVUjPlk7vQ17Bf1ZV9AwT5lYp1zJxISoZMBI0hcw6B4xLPZ2IAoy0uhe5zlPtSGXdF8FViWSCShUey6JEcwMfdHT-6_Bz_aXvigdm16zEZwNkW-qIfwE2RerUQ987j6b_veg_Pp8v5rJhdLT6_hQP_nk7Fewb77f3aniNXact3wUR_AU9p4ws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Analytical+Formula+for+the+Excess+Noise+Factor+for+Mixed+Carrier+Injection+Avalanche+Photodiodes&rft.jtitle=Journal+of+lightwave+technology&rft.au=Hossain%2C+Md.+Mottaleb&rft.au=David%2C+John+P.+R.&rft.au=Hayat%2C+Majeed+M.&rft.date=2019-07-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=37&rft.issue=13&rft.spage=3315&rft.epage=3323&rft_id=info:doi/10.1109%2FJLT.2019.2914443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2019_2914443
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon