Exact Analytical Formula for the Excess Noise Factor for Mixed Carrier Injection Avalanche Photodiodes
The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probab...
Saved in:
Published in | Journal of lightwave technology Vol. 37; no. 13; pp. 3315 - 3323 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k. Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al., IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546-552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ~ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs. |
---|---|
AbstractList | The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k. Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al., IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546-552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ~ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs. The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k . Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al. , IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546–552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ∼ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs. |
Author | Hayat, Majeed M. Hossain, Md Mottaleb David, John P. R. |
Author_xml | – sequence: 1 givenname: Md Mottaleb surname: Hossain fullname: Hossain, Md Mottaleb email: mottaleb77@unm.edu organization: Center for High Technol. Mater. & the Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM, USA – sequence: 2 givenname: John P. R. surname: David fullname: David, John P. R. email: j.p.david@sheffield.ac.uk organization: Electron. & Electr. Eng. Dept., Univ. of Sheffield, Sheffield, UK – sequence: 3 givenname: Majeed M. surname: Hayat fullname: Hayat, Majeed M. email: majeed.hayat@marquette.edu organization: Center for High Technol. Mater. & the Dept. of Electr. & Comput. Eng., Univ. of New Mexico, Albuquerque, NM, USA |
BookMark | eNp9kEtPAjEURhuDiYjuTdw0cT3Yx0ynXRICisHHAteT0rkTSoYptsXAv7cE4sKF6eK2t-c0t9816nWuA4TuKBlSStTjy3wxZISqIVM0z3N-gfq0KGTGGOU91Ccl55ksWX6FrkNYE5IgWfZRM9lrE_Go0-0hWqNbPHV-s2s1bpzHcQV4sjcQAn5zNgCeJjj1j3evdg81HmvvLXg869ZgonUdHn3rVncmmR8rF11tXQ3hBl02ug1we64D9DmdLMbP2fz9aTYezTOTxo5ZXQguDHBgUii6bKTKlVTLUnOZm6ZmBEpJal0K1WhBlyTtmeag80KkM-N8gB5O7269-9pBiNXa7Xz6XKgY46UQqhAkUeJEGe9C8NBUxkZ9nD56bduKkuqYaZUyrY6ZVudMk0j-iFtvN9of_lPuT4oFgF9cloTLtH4AIBaDkw |
CODEN | JLTEDG |
CitedBy_id | crossref_primary_10_3390_s23125369 crossref_primary_10_1063_5_0165800 crossref_primary_10_1063_5_0258106 crossref_primary_10_1002_aelm_202300037 crossref_primary_10_1364_OL_433654 |
Cites_doi | 10.1063/1.1429771 10.1063/1.1388865 10.1109/IPCon.2013.6656429 10.1109/3.823466 10.1109/16.861578 10.1109/IPCon.2014.6995302 10.1109/16.123476 10.1109/TED.2015.2422789 10.1038/s41598-018-27507-w 10.1109/ICSENS.2014.6985463 10.1109/55.772371 10.1063/1.322778 10.1109/16.974696 10.1109/IPCon.2016.7831181 10.1364/OE.24.021597 10.1063/1.126823 10.1109/T-ED.1966.15651 10.1109/JLT.2017.2687822 10.1109/16.841220 10.1109/16.777150 10.1103/PhysRev.109.1537 10.1016/0038-1101(70)90139-5 10.1109/JQE.1986.1073137 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1109/JLT.2019.2914443 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1558-2213 |
EndPage | 3323 |
ExternalDocumentID | 10_1109_JLT_2019_2914443 8703838 |
Genre | orig-research |
GrantInformation_xml | – fundername: Sandia National Laboratories funderid: 10.13039/100006234 |
GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION RIG 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c291t-d5636ce3e28691bf894989b7a384cfd20e780da769fa61b00da2a3ea456a61233 |
IEDL.DBID | RIE |
ISSN | 0733-8724 |
IngestDate | Mon Jun 30 10:18:26 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 01:01:50 EDT 2025 Wed Aug 27 02:54:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-d5636ce3e28691bf894989b7a384cfd20e780da769fa61b00da2a3ea456a61233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3465-1971 0000-0003-0919-9039 |
PQID | 2237669560 |
PQPubID | 85485 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_JLT_2019_2914443 ieee_primary_8703838 crossref_primary_10_1109_JLT_2019_2914443 proquest_journals_2237669560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of lightwave technology |
PublicationTitleAbbrev | JLT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref16 ref19 ref18 agrawal (ref1) 2012 hossain (ref25) 2015 ref24 ref23 ref20 ref22 ref21 ref28 ref27 ref8 ref7 hossain (ref26) 2015 ref9 ref4 ref6 ref5 webb (ref3) 1974; 35 bendib (ref13) 2014; i |
References_xml | – ident: ref6 doi: 10.1063/1.1429771 – ident: ref5 doi: 10.1063/1.1388865 – ident: ref22 doi: 10.1109/IPCon.2013.6656429 – ident: ref16 doi: 10.1109/3.823466 – ident: ref8 doi: 10.1109/16.861578 – ident: ref24 doi: 10.1109/IPCon.2014.6995302 – ident: ref10 doi: 10.1109/16.123476 – year: 2012 ident: ref1 publication-title: Fiber-Optic Communication Systems – ident: ref18 doi: 10.1109/TED.2015.2422789 – ident: ref7 doi: 10.1038/s41598-018-27507-w – ident: ref23 doi: 10.1109/ICSENS.2014.6985463 – year: 2015 ident: ref26 article-title: Linear mode CMOS compatible p-n junction avalanche photodiode for smart-lighting applications – ident: ref14 doi: 10.1109/55.772371 – ident: ref4 doi: 10.1063/1.322778 – ident: ref17 doi: 10.1109/16.974696 – volume: i start-page: 5 year: 2014 ident: ref13 article-title: Impact of temperature and doping concentration on avalanche photodiode characteristics publication-title: Proc World Congr Eng – start-page: 436 year: 2015 ident: ref25 article-title: Linear mode CMOS compatible p-n junction avalanche photodiode with operating voltage below 9 V publication-title: Proc IEEE 28th Photonics Conf – ident: ref27 doi: 10.1109/IPCon.2016.7831181 – ident: ref28 doi: 10.1364/OE.24.021597 – ident: ref12 doi: 10.1063/1.126823 – ident: ref2 doi: 10.1109/T-ED.1966.15651 – ident: ref9 doi: 10.1109/JLT.2017.2687822 – ident: ref11 doi: 10.1109/16.841220 – ident: ref15 doi: 10.1109/16.777150 – ident: ref19 doi: 10.1103/PhysRev.109.1537 – ident: ref21 doi: 10.1016/0038-1101(70)90139-5 – volume: 35 start-page: 234 year: 1974 ident: ref3 article-title: Properties of avalanche photodiodes publication-title: RCA Rev – ident: ref20 doi: 10.1109/JQE.1986.1073137 |
SSID | ssj0014487 |
Score | 2.3190982 |
Snippet | The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3315 |
SubjectTerms | Absorption Avalanche diodes Avalanche photodiode Avalanche photodiodes Carrier injection Charge carrier processes Electric fields Electron avalanche Electrons excess-noise factor Holes (electron deficiencies) impact ionization Integral equations Ionization Ionization coefficients Mathematical analysis Mathematical model mean-gain mixed carrier injection Multiplication Noise Noise factor Photodiodes Photon avalanches Photonics Photons Probability distribution functions |
Title | Exact Analytical Formula for the Excess Noise Factor for Mixed Carrier Injection Avalanche Photodiodes |
URI | https://ieeexplore.ieee.org/document/8703838 https://www.proquest.com/docview/2237669560 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB2SQKGXpklaum0adMilUO96LVmyjiHskoZs6CGB3MxYH3TbYIfYW5b8-oxk70I_KL0ZWxLGb2S9kd7MAJwKYaT1FSZodZ4IzIoE_VQmqkCuUHFUMZH24lpe3IrLu_xuBz5vY2Gcc1F85sbhMp7l28aswlbZhGyLHKpiF3bJcetjtbYnBuRmxNBoxTnN8ExsjiRTPbm8ugkaLj3ONDUT_JclKNZU-eNHHFeX-T4sNu_Vi0p-jFddNTZPv6Vs_N8Xfw2vBprJznq7OIAdVx_C_kA52TCh20N4ERWgpj0CP1uj6VhMUhL3t9mc6OzqHhnRWkY0kc3WIaSAXTfL1rF5rNMTny2WaxrzHB9D8Tv2pf4e1V01O_sZZJNkFOzrt6Zr7LKxrn0Dt_PZzflFMhRhSAx9ri6xueTSOO6yQupp5QstdKErhbwQxtssdapILSqpPcopTWKLGXKHRMwwpHbhb2Gvbmr3DhixK0xNKryaVoJ4CJlC7j0BJzXdz9UIJhtcSjNkKA-FMu7L6KmkuiQky4BkOSA5gk_bHg99do5_tD0KwGzbDZiM4HgDfTlM37bMglZIBtfx_d97fYCXYexet3sMe93jyn0kdtJVJ9EsnwF6DN_C |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4aQ4hdNthAdGzgAxck0iaxY8fHaWrVjbbi0Em7RY5_iMKUoCWdKv56np20Ej-EdosSJ7HyPcffs7_3HsAHxjQ3rlSRMjKLmErzSLmERyJXVChBlQiJtOcLPr1h17fZ7R582sXCWGuD-MwO_WHYyze1XvulshHaFjpU-RN4ivN-lnTRWrs9A3Q0QnC0oBTHeMq2m5KxHF3Pll7FJYepxGaM_jYJhaoqf_2Kw_wyOYL5tmedrOT7cN2WQ_3zj6SNj-36CzjsiSa56CzjJezZ6hiOetJJ-iHdHMOzoAHVzQm48UbploQ0JWGFm0yQ0K7vFEFiS5AokvHGBxWQRb1qLJmESj3h2ny1wWdeqntf_o5cVd-CvqsiFw9eOIlmQb58rdvarGpjm1dwMxkvL6dRX4Yh0vi52shknHJtqU1zLpPS5ZLJXJZC0ZxpZ9LYijw2SnDpFE9wGBuVKmoVUjPlk7vQ17Bf1ZV9AwT5lYp1zJxISoZMBI0hcw6B4xLPZ2IAoy0uhe5zlPtSGXdF8FViWSCShUey6JEcwMfdHT-6_Bz_aXvigdm16zEZwNkW-qIfwE2RerUQ987j6b_veg_Pp8v5rJhdLT6_hQP_nk7Fewb77f3aniNXact3wUR_AU9p4ws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+Analytical+Formula+for+the+Excess+Noise+Factor+for+Mixed+Carrier+Injection+Avalanche+Photodiodes&rft.jtitle=Journal+of+lightwave+technology&rft.au=Hossain%2C+Md.+Mottaleb&rft.au=David%2C+John+P.+R.&rft.au=Hayat%2C+Majeed+M.&rft.date=2019-07-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=37&rft.issue=13&rft.spage=3315&rft.epage=3323&rft_id=info:doi/10.1109%2FJLT.2019.2914443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2019_2914443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |