Joint Activity and Channel Estimation for Extra-Large MIMO Systems

Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active duri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 21; no. 9; pp. 7253 - 7270
Main Authors Iimori, Hiroki, Takahashi, Takumi, Ishibashi, Koji, de Abreu, Giuseppe Thadeu Freitas, Gonzalez G., David, Gonsa, Osvaldo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active during a given time slot, it follows that the channel matrix possesses a doubly-sparse and user-specific structure such that the activity of each user and each sub-array can be jointly modeled by a nested Bernoulli-Gaussian distribution. This article considers the joint activity and channel estimation (JACE) problem in XL-MIMO systems subject to this so-defined spatial non-stationarity, tackling this challenging inference problem. Our main contributions are 1) to introduce the novel Bernoulli-Gaussian model to simultaneously capture the aforementioned two distinct structured sparsities, and 2) a new bilinear Bayesian inference algorithm capable of jointly estimating the associated channel coefficients, user activity patterns, sub-array activity patterns (<inline-formula> <tex-math notation="LaTeX">a.k.a </tex-math></inline-formula>. spatial non-stationarity), boosted by expectation maximization (EM)-based auto-parameterization. In addition, to shed light on a realistic modeling of VRs, we also introduce a Matérn-cluster point process (MCPP)-based approach to imitate the clustered activity pattern due to spatial non-stationarity. The efficacy of the proposed bilinear JACE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) but also can reach the performance of a genie-aided scheme over wide signal-to-noise-ratio (SNR) ranges, in both uniformly-random and MCPP-based sub-array activity scenarios.
AbstractList Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active during a given time slot, it follows that the channel matrix possesses a doubly-sparse and user-specific structure such that the activity of each user and each sub-array can be jointly modeled by a nested Bernoulli-Gaussian distribution. This article considers the joint activity and channel estimation (JACE) problem in XL-MIMO systems subject to this so-defined spatial non-stationarity, tackling this challenging inference problem. Our main contributions are 1) to introduce the novel Bernoulli-Gaussian model to simultaneously capture the aforementioned two distinct structured sparsities, and 2) a new bilinear Bayesian inference algorithm capable of jointly estimating the associated channel coefficients, user activity patterns, sub-array activity patterns (<inline-formula> <tex-math notation="LaTeX">a.k.a </tex-math></inline-formula>. spatial non-stationarity), boosted by expectation maximization (EM)-based auto-parameterization. In addition, to shed light on a realistic modeling of VRs, we also introduce a Matérn-cluster point process (MCPP)-based approach to imitate the clustered activity pattern due to spatial non-stationarity. The efficacy of the proposed bilinear JACE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) but also can reach the performance of a genie-aided scheme over wide signal-to-noise-ratio (SNR) ranges, in both uniformly-random and MCPP-based sub-array activity scenarios.
Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active during a given time slot, it follows that the channel matrix possesses a doubly-sparse and user-specific structure such that the activity of each user and each sub-array can be jointly modeled by a nested Bernoulli-Gaussian distribution. This article considers the joint activity and channel estimation (JACE) problem in XL-MIMO systems subject to this so-defined spatial non-stationarity, tackling this challenging inference problem. Our main contributions are 1) to introduce the novel Bernoulli-Gaussian model to simultaneously capture the aforementioned two distinct structured sparsities, and 2) a new bilinear Bayesian inference algorithm capable of jointly estimating the associated channel coefficients, user activity patterns, sub-array activity patterns ([Formula Omitted]. spatial non-stationarity), boosted by expectation maximization (EM)-based auto-parameterization. In addition, to shed light on a realistic modeling of VRs, we also introduce a Matérn-cluster point process (MCPP)-based approach to imitate the clustered activity pattern due to spatial non-stationarity. The efficacy of the proposed bilinear JACE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) but also can reach the performance of a genie-aided scheme over wide signal-to-noise-ratio (SNR) ranges, in both uniformly-random and MCPP-based sub-array activity scenarios.
Author de Abreu, Giuseppe Thadeu Freitas
Gonzalez G., David
Takahashi, Takumi
Iimori, Hiroki
Ishibashi, Koji
Gonsa, Osvaldo
Author_xml – sequence: 1
  givenname: Hiroki
  orcidid: 0000-0003-3417-1513
  surname: Iimori
  fullname: Iimori, Hiroki
  email: h.iimori@ieee.org
  organization: Department of Computer Science and Electrical Engineering, Focus Area Mobility, Jacobs University Bremen, Bremen, Germany
– sequence: 2
  givenname: Takumi
  orcidid: 0000-0002-5141-6247
  surname: Takahashi
  fullname: Takahashi, Takumi
  email: takahashi@comm.eng.osaka-u.ac.jp
  organization: Department of Information and Communications Technology, Osaka University, Suita, Japan
– sequence: 3
  givenname: Koji
  orcidid: 0000-0002-7145-5622
  surname: Ishibashi
  fullname: Ishibashi, Koji
  email: koji@ieee.org
  organization: Advanced Wireless and Communication Research Center (AWCC), The University of Electro-Communications, Chofu-shi, Tokyo, Japan
– sequence: 4
  givenname: Giuseppe Thadeu Freitas
  orcidid: 0000-0002-5018-8174
  surname: de Abreu
  fullname: de Abreu, Giuseppe Thadeu Freitas
  email: g.abreu@jacobs-university.de
  organization: Department of Computer Science and Electrical Engineering, Focus Area Mobility, Jacobs University Bremen, Bremen, Germany
– sequence: 5
  givenname: David
  orcidid: 0000-0003-2090-8481
  surname: Gonzalez G.
  fullname: Gonzalez G., David
  email: david.gonzalez.gonzalez@continental-corporation.com
  organization: Wireless Communications Technologies Group, Continental AG, Frankfurt/Main, Germany
– sequence: 6
  givenname: Osvaldo
  orcidid: 0000-0001-5452-8159
  surname: Gonsa
  fullname: Gonsa, Osvaldo
  email: osvaldo.gonsa@continental-corporation.com
  organization: Wireless Communications Technologies Group, Continental AG, Frankfurt/Main, Germany
BookMark eNp9kEtPAjEURhuDiYDuTdw0cT1jHzN9LHGCioGwEOOyqTMdLYEOtsXIv7cIceHCVe_iO_f2fAPQc50zAFxilGOM5M3ipcoJIiSnuOSE4xPQx2UpMkIK0dvPlGWYcHYGBiEsEcKclWUf3D521kU4qqP9tHEHtWtg9a6dMys4DtGudbSdg23n4fgrep1NtX8zcDaZzeHTLkSzDufgtNWrYC6O7xA8340X1UM2nd9PqtE0q4nEMatbyqQUpDAt17xom7Kg3FDKdcOoJMxoLRgWvKmRILyRtC04auQrEYWkwiA6BNeHvRvffWxNiGrZbb1LJ1XyJaikCLGUYodU7bsQvGlVbeOPRPq9XSmM1L4vlfpS-77Usa8Eoj_gxid9v_sPuTog1hjzG5c8SUlEvwGRWHVp
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TVT_2024_3364510
crossref_primary_10_1109_MWC_007_2300176
crossref_primary_10_1109_TSP_2024_3406348
crossref_primary_10_1109_TSP_2024_3512575
crossref_primary_10_1109_JSAC_2025_3536557
crossref_primary_10_1109_COMST_2024_3387749
crossref_primary_10_1109_TCOMM_2023_3324997
crossref_primary_10_1109_TWC_2024_3514210
crossref_primary_10_1016_j_phycom_2023_102166
crossref_primary_10_1109_LWC_2024_3442769
crossref_primary_10_1109_TWC_2023_3343740
crossref_primary_10_1109_TCOMM_2023_3325479
crossref_primary_10_3390_s23249805
crossref_primary_10_1109_JIOT_2023_3234691
crossref_primary_10_1109_OJCOMS_2024_3486172
crossref_primary_10_1109_TSP_2024_3479319
crossref_primary_10_1109_TWC_2023_3326468
crossref_primary_10_1109_TVT_2023_3293546
crossref_primary_10_1109_TWC_2024_3379122
crossref_primary_10_1109_TCOMM_2024_3394757
crossref_primary_10_1109_TWC_2024_3510935
crossref_primary_10_1109_COMST_2023_3349276
crossref_primary_10_1109_OJCOMS_2024_3463202
crossref_primary_10_3390_electronics13173398
Cites_doi 10.1109/ISIT44484.2020.9174035
10.1109/TSP.2016.2521607
10.1109/JSAC.2020.3018799
10.1109/18.910572
10.1109/JSAC.2021.3078500
10.1109/TSP.2018.2818082
10.1109/GLOCOMW.2015.7414041
10.1109/GLOCOMW.2014.7063445
10.1109/TIT.2020.3012948
10.1109/TWC.2021.3068868
10.1109/IEEECONF44664.2019.9049039
10.1109/JSAC.2020.3018807
10.1109/TWC.2010.092810.091092
10.23919/EUSIPCO54536.2021.9616090
10.1109/LWC.2020.3045159
10.1109/OJCOMS.2021.3057679
10.1109/18.910580
10.1109/TWC.2019.2920823
10.1109/MCOM.2016.7402270
10.1109/GLOBECOM42002.2020.9347952
10.1109/TVT.2020.3022708
10.1109/TIT.2002.1013125
10.1109/LCOMM.2016.2598810
10.1109/LSP.2021.3072278
10.1109/TCOMM.2018.2841366
10.1109/TCOMM.2013.020413.110848
10.1109/TCOMM.2018.2866559
10.1109/VTCFall.2018.8690936
10.1109/MCOM.2014.6736761
10.1109/JSAC.2020.3019724
10.1186/s13638-019-1507-0
10.1109/TWC.2021.3088125
10.1109/TWC.2018.2878571
10.1109/ICC45855.2022.9839167
10.1109/JSAC.2021.3078496
10.1109/TVT.2020.2980905
10.1109/ACCESS.2019.2956817
10.1109/TAP.2016.2593869
10.1109/MSP.2018.2844952
10.1109/TSP.2021.3090679
10.1109/TWC.2021.3114380
10.1162/089976601750541769
10.1017/CBO9781139043816
10.1109/TWC.2018.2878720
10.1109/MWC.001.1900157
10.1109/TWC.2019.2950316
10.1109/TSP.2020.2967175
10.1109/18.910581
10.1109/26.957394
10.1109/TCOMM.2018.2883307
10.1109/LWC.2019.2963877
10.1109/TWC.2019.2961892
10.1109/TSP.2013.2272287
10.1109/TWC.2017.2655515
10.1109/TVT.2020.3037317
10.2307/2984875
10.1109/JIOT.2020.2997336
10.1109/TSP.2014.2357776
10.1109/JSAC.2020.3000836
10.1109/TIT.2021.3081189
10.1109/TIT.2010.2059891
10.1109/MSP.2011.2178495
10.1109/TIT.2021.3065291
10.1145/3501714.3501727
10.1088/0305-4470/36/43/030
10.1109/TWC.2019.2952117
10.1109/LCOMM.2020.3012586
10.1109/ICC.2019.8761672
10.1109/ISIT.2017.8006984
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2022.3157271
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 7270
ExternalDocumentID 10_1109_TWC_2022_3157271
9733790
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-cf3699824ef7a74fd5437e337ad63926eaa86187dc0827d93f470d9b284938e03
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:22:51 EDT 2025
Tue Jul 01 05:19:19 EDT 2025
Thu Apr 24 22:51:28 EDT 2025
Wed Aug 27 01:37:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cf3699824ef7a74fd5437e337ad63926eaa86187dc0827d93f470d9b284938e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3417-1513
0000-0003-2090-8481
0000-0002-5141-6247
0000-0001-5452-8159
0000-0002-7145-5622
0000-0002-5018-8174
PQID 2712053006
PQPubID 105736
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TWC_2022_3157271
proquest_journals_2712053006
ieee_primary_9733790
crossref_primary_10_1109_TWC_2022_3157271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Sept.
2022-9-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Bilmes (ref71) 1998
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Pearl (ref53) 1988
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref70
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Yedidia (ref56)
ref60
ref62
ref61
References_xml – ident: ref37
  doi: 10.1109/ISIT44484.2020.9174035
– ident: ref65
  doi: 10.1109/TSP.2016.2521607
– ident: ref43
  doi: 10.1109/JSAC.2020.3018799
– ident: ref54
  doi: 10.1109/18.910572
– ident: ref47
  doi: 10.1109/JSAC.2021.3078500
– ident: ref41
  doi: 10.1109/TSP.2018.2818082
– ident: ref16
  doi: 10.1109/GLOCOMW.2015.7414041
– ident: ref15
  doi: 10.1109/GLOCOMW.2014.7063445
– ident: ref40
  doi: 10.1109/TIT.2020.3012948
– ident: ref13
  doi: 10.1109/TWC.2021.3068868
– ident: ref33
  doi: 10.1109/IEEECONF44664.2019.9049039
– ident: ref42
  doi: 10.1109/JSAC.2020.3018807
– ident: ref5
  doi: 10.1109/TWC.2010.092810.091092
– ident: ref17
  doi: 10.23919/EUSIPCO54536.2021.9616090
– ident: ref29
  doi: 10.1109/LWC.2020.3045159
– ident: ref4
  doi: 10.1109/OJCOMS.2021.3057679
– ident: ref60
  doi: 10.1109/18.910580
– ident: ref63
  doi: 10.1109/TWC.2019.2920823
– ident: ref7
  doi: 10.1109/MCOM.2016.7402270
– ident: ref48
  doi: 10.1109/GLOBECOM42002.2020.9347952
– ident: ref21
  doi: 10.1109/TVT.2020.3022708
– ident: ref55
  doi: 10.1109/TIT.2002.1013125
– ident: ref72
  doi: 10.1109/LCOMM.2016.2598810
– ident: ref26
  doi: 10.1109/LSP.2021.3072278
– ident: ref69
  doi: 10.1109/TCOMM.2018.2841366
– ident: ref2
  doi: 10.1109/TCOMM.2013.020413.110848
– ident: ref27
  doi: 10.1109/TCOMM.2018.2866559
– ident: ref66
  doi: 10.1109/VTCFall.2018.8690936
– ident: ref3
  doi: 10.1109/MCOM.2014.6736761
– ident: ref25
  doi: 10.1109/JSAC.2020.3019724
– ident: ref9
  doi: 10.1186/s13638-019-1507-0
– ident: ref44
  doi: 10.1109/TWC.2021.3088125
– ident: ref30
  doi: 10.1109/TWC.2018.2878571
– ident: ref1
  doi: 10.1109/ICC45855.2022.9839167
– ident: ref46
  doi: 10.1109/JSAC.2021.3078496
– ident: ref45
  doi: 10.1109/TVT.2020.2980905
– ident: ref28
  doi: 10.1109/ACCESS.2019.2956817
– ident: ref51
  doi: 10.1109/TAP.2016.2593869
– ident: ref24
  doi: 10.1109/MSP.2018.2844952
– ident: ref36
  doi: 10.1109/TSP.2021.3090679
– ident: ref12
  doi: 10.1109/TWC.2021.3114380
– start-page: 239
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref56
  article-title: Understanding belief propagation and its generalizations
– ident: ref58
  doi: 10.1162/089976601750541769
– ident: ref68
  doi: 10.1017/CBO9781139043816
– ident: ref62
  doi: 10.1109/TWC.2018.2878720
– ident: ref11
  doi: 10.1109/MWC.001.1900157
– ident: ref14
  doi: 10.1109/TWC.2019.2950316
– ident: ref31
  doi: 10.1109/TSP.2020.2967175
– volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
  year: 1988
  ident: ref53
– ident: ref59
  doi: 10.1109/18.910581
– ident: ref61
  doi: 10.1109/26.957394
– ident: ref64
  doi: 10.1109/TCOMM.2018.2883307
– ident: ref19
  doi: 10.1109/LWC.2019.2963877
– ident: ref20
  doi: 10.1109/TWC.2019.2961892
– ident: ref50
  doi: 10.1109/TSP.2013.2272287
– ident: ref8
  doi: 10.1109/TWC.2017.2655515
– ident: ref23
  doi: 10.1109/TVT.2020.3037317
– ident: ref70
  doi: 10.2307/2984875
– ident: ref32
  doi: 10.1109/JIOT.2020.2997336
– ident: ref49
  doi: 10.1109/TSP.2014.2357776
– ident: ref18
  doi: 10.1109/JSAC.2020.3000836
– ident: ref38
  doi: 10.1109/TIT.2021.3081189
– ident: ref67
  doi: 10.1109/TIT.2010.2059891
– year: 1998
  ident: ref71
  article-title: A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
– ident: ref6
  doi: 10.1109/MSP.2011.2178495
– ident: ref34
  doi: 10.1109/TIT.2021.3065291
– ident: ref52
  doi: 10.1145/3501714.3501727
– ident: ref57
  doi: 10.1088/0305-4470/36/43/030
– ident: ref10
  doi: 10.1109/TWC.2019.2952117
– ident: ref22
  doi: 10.1109/LCOMM.2020.3012586
– ident: ref35
  doi: 10.1109/ICC.2019.8761672
– ident: ref39
  doi: 10.1109/ISIT.2017.8006984
SSID ssj0017655
Score 2.586126
Snippet Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7253
SubjectTerms Algorithms
Antenna arrays
Approximation algorithms
Arrays
Bayes methods
Bayesian analysis
bayesian inference
Channel estimation
Estimation
extra-large multiple-input multiple-output (XL-MIMO)
Grant-free access
Inference algorithms
Mathematical models
Message passing
MIMO communication
Normal distribution
Parameterization
Signal to noise ratio
spatial non-stationarity
Statistical inference
Visibility
Wireless communication
Title Joint Activity and Channel Estimation for Extra-Large MIMO Systems
URI https://ieeexplore.ieee.org/document/9733790
https://www.proquest.com/docview/2712053006
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NS8MwNMyd9ODXFKdTcvAi2K1t0qY5zrExh9XLhruVJE1BHJ3MDsRf70vaFb8Qbz28lMd7eV95XwhdBjpjnDPhyCiSDpXUc6R9yCchdQUlkbLDdOL7cDyjk3kwb6DruhdGa22Lz3TXfNpcfrpUa_NU1uOMEMYhQN-CwK3s1aozBiy0G05BgM1eGVanJF3emz4OIBD0fYhPAzDX3hcTZHeq_FDE1rqM9lC8wassKnnurgvZVe_fRjb-F_F9tFu5mbhf3osD1ND5Idr5NHywhW4my6e8wH1V7o_AIk-x6TXI9QIPQfDLnkYMTi0evhUr4dyZonEc38YPuJpzfoRmo-F0MHaqjQqO8rlXOCojIcRXPgUOCUazNKCEacBNpOCp-KEWIgq9iKUKPAOWcpJR5qZcgg3jJNIuOUbNfJnrE4RBMTBQpEFI04xqGUkldOBLGWWUg9PE2qi3IXKiqnHjZuvFIrFhh8sTYEti2JJUbGmjq_rESzlq4w_YlqFyDVcRuI06Gz4mlSy-JgDug6oB9XL6-6kztG3-XVaOdVCzWK31Obgahbywd-wDcPrMmA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7R5dByAFpasUBbH9pDD9nN2k4cHzhQumgXdullUbmltuNIFSiL2Kx4_Bb-Cv-NsZON-kDckHrLwXYSz6dvZux5AHyKbC6kFCrQSaIDrnkv0P4gn8U8VJwlxhfTGR_HgxN-eBqdLsFdkwtjrfXBZ7bjHv1dfjY1c3dU1pWCMSHDOoTyyN5coYM22x1-Q2l-pvSgP9kfBHUPgcBQ2SsDk7MYPQrK8ZuU4HkWcSYsLqMy1M00tkolcS8RmUFdKDLJci7CTGpkbckSGzJc9wUso50R0So7rLmjELHvqYqU4TrZiOYSNJTdyY99dD0pRY84QgOh94fS811c_qF-r88O1uB-sRNVGMtZZ17qjrn9q0jk_7pV67BaG9Jkr0L-a1iyxRtY-a284gZ8PZz-KkqyZ6oOGUQVGXHZFIU9J32ktiprk6DZTvrX5aUKRi4snoyH4--kruT-Fk6e5SfeQauYFnYTCFKfQFURxTzLudWJNspGVOsk5xLNQtGG7kKoqakLqru-Huepd6xCmSIMUgeDtIZBG740My6qYiJPjN1wUm3G1QJtw84CN2nNNrMUh1MkUyTQrcdnfYSXg8l4lI6Gx0fb8Mq9p4qT24FWeTm379GwKvUHj28CP58bJQ9y2igZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Activity+and+Channel+Estimation+for+Extra-Large+MIMO+Systems&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Iimori%2C+Hiroki&rft.au=Takahashi%2C+Takumi&rft.au=Ishibashi%2C+Koji&rft.au=de+Abreu%2C+Giuseppe+Thadeu+Freitas&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=21&rft.issue=9&rft.spage=7253&rft.epage=7270&rft_id=info:doi/10.1109%2FTWC.2022.3157271&rft.externalDocID=9733790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon