Joint Activity and Channel Estimation for Extra-Large MIMO Systems
Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active duri...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 21; no. 9; pp. 7253 - 7270 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active during a given time slot, it follows that the channel matrix possesses a doubly-sparse and user-specific structure such that the activity of each user and each sub-array can be jointly modeled by a nested Bernoulli-Gaussian distribution. This article considers the joint activity and channel estimation (JACE) problem in XL-MIMO systems subject to this so-defined spatial non-stationarity, tackling this challenging inference problem. Our main contributions are 1) to introduce the novel Bernoulli-Gaussian model to simultaneously capture the aforementioned two distinct structured sparsities, and 2) a new bilinear Bayesian inference algorithm capable of jointly estimating the associated channel coefficients, user activity patterns, sub-array activity patterns (<inline-formula> <tex-math notation="LaTeX">a.k.a </tex-math></inline-formula>. spatial non-stationarity), boosted by expectation maximization (EM)-based auto-parameterization. In addition, to shed light on a realistic modeling of VRs, we also introduce a Matérn-cluster point process (MCPP)-based approach to imitate the clustered activity pattern due to spatial non-stationarity. The efficacy of the proposed bilinear JACE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) but also can reach the performance of a genie-aided scheme over wide signal-to-noise-ratio (SNR) ranges, in both uniformly-random and MCPP-based sub-array activity scenarios. |
---|---|
AbstractList | Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active during a given time slot, it follows that the channel matrix possesses a doubly-sparse and user-specific structure such that the activity of each user and each sub-array can be jointly modeled by a nested Bernoulli-Gaussian distribution. This article considers the joint activity and channel estimation (JACE) problem in XL-MIMO systems subject to this so-defined spatial non-stationarity, tackling this challenging inference problem. Our main contributions are 1) to introduce the novel Bernoulli-Gaussian model to simultaneously capture the aforementioned two distinct structured sparsities, and 2) a new bilinear Bayesian inference algorithm capable of jointly estimating the associated channel coefficients, user activity patterns, sub-array activity patterns (<inline-formula> <tex-math notation="LaTeX">a.k.a </tex-math></inline-formula>. spatial non-stationarity), boosted by expectation maximization (EM)-based auto-parameterization. In addition, to shed light on a realistic modeling of VRs, we also introduce a Matérn-cluster point process (MCPP)-based approach to imitate the clustered activity pattern due to spatial non-stationarity. The efficacy of the proposed bilinear JACE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) but also can reach the performance of a genie-aided scheme over wide signal-to-noise-ratio (SNR) ranges, in both uniformly-random and MCPP-based sub-array activity scenarios. Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure of the channel matrix. When XL-MIMO systems operate in grant-free access mode, in which only a fraction of the potential users are active during a given time slot, it follows that the channel matrix possesses a doubly-sparse and user-specific structure such that the activity of each user and each sub-array can be jointly modeled by a nested Bernoulli-Gaussian distribution. This article considers the joint activity and channel estimation (JACE) problem in XL-MIMO systems subject to this so-defined spatial non-stationarity, tackling this challenging inference problem. Our main contributions are 1) to introduce the novel Bernoulli-Gaussian model to simultaneously capture the aforementioned two distinct structured sparsities, and 2) a new bilinear Bayesian inference algorithm capable of jointly estimating the associated channel coefficients, user activity patterns, sub-array activity patterns ([Formula Omitted]. spatial non-stationarity), boosted by expectation maximization (EM)-based auto-parameterization. In addition, to shed light on a realistic modeling of VRs, we also introduce a Matérn-cluster point process (MCPP)-based approach to imitate the clustered activity pattern due to spatial non-stationarity. The efficacy of the proposed bilinear JACE algorithm is confirmed by numerical simulations, which show that the proposed method not only significantly outperforms the state-of-the-art (SotA) but also can reach the performance of a genie-aided scheme over wide signal-to-noise-ratio (SNR) ranges, in both uniformly-random and MCPP-based sub-array activity scenarios. |
Author | de Abreu, Giuseppe Thadeu Freitas Gonzalez G., David Takahashi, Takumi Iimori, Hiroki Ishibashi, Koji Gonsa, Osvaldo |
Author_xml | – sequence: 1 givenname: Hiroki orcidid: 0000-0003-3417-1513 surname: Iimori fullname: Iimori, Hiroki email: h.iimori@ieee.org organization: Department of Computer Science and Electrical Engineering, Focus Area Mobility, Jacobs University Bremen, Bremen, Germany – sequence: 2 givenname: Takumi orcidid: 0000-0002-5141-6247 surname: Takahashi fullname: Takahashi, Takumi email: takahashi@comm.eng.osaka-u.ac.jp organization: Department of Information and Communications Technology, Osaka University, Suita, Japan – sequence: 3 givenname: Koji orcidid: 0000-0002-7145-5622 surname: Ishibashi fullname: Ishibashi, Koji email: koji@ieee.org organization: Advanced Wireless and Communication Research Center (AWCC), The University of Electro-Communications, Chofu-shi, Tokyo, Japan – sequence: 4 givenname: Giuseppe Thadeu Freitas orcidid: 0000-0002-5018-8174 surname: de Abreu fullname: de Abreu, Giuseppe Thadeu Freitas email: g.abreu@jacobs-university.de organization: Department of Computer Science and Electrical Engineering, Focus Area Mobility, Jacobs University Bremen, Bremen, Germany – sequence: 5 givenname: David orcidid: 0000-0003-2090-8481 surname: Gonzalez G. fullname: Gonzalez G., David email: david.gonzalez.gonzalez@continental-corporation.com organization: Wireless Communications Technologies Group, Continental AG, Frankfurt/Main, Germany – sequence: 6 givenname: Osvaldo orcidid: 0000-0001-5452-8159 surname: Gonsa fullname: Gonsa, Osvaldo email: osvaldo.gonsa@continental-corporation.com organization: Wireless Communications Technologies Group, Continental AG, Frankfurt/Main, Germany |
BookMark | eNp9kEtPAjEURhuDiYDuTdw0cT1jHzN9LHGCioGwEOOyqTMdLYEOtsXIv7cIceHCVe_iO_f2fAPQc50zAFxilGOM5M3ipcoJIiSnuOSE4xPQx2UpMkIK0dvPlGWYcHYGBiEsEcKclWUf3D521kU4qqP9tHEHtWtg9a6dMys4DtGudbSdg23n4fgrep1NtX8zcDaZzeHTLkSzDufgtNWrYC6O7xA8340X1UM2nd9PqtE0q4nEMatbyqQUpDAt17xom7Kg3FDKdcOoJMxoLRgWvKmRILyRtC04auQrEYWkwiA6BNeHvRvffWxNiGrZbb1LJ1XyJaikCLGUYodU7bsQvGlVbeOPRPq9XSmM1L4vlfpS-77Usa8Eoj_gxid9v_sPuTog1hjzG5c8SUlEvwGRWHVp |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_TVT_2024_3364510 crossref_primary_10_1109_MWC_007_2300176 crossref_primary_10_1109_TSP_2024_3406348 crossref_primary_10_1109_TSP_2024_3512575 crossref_primary_10_1109_JSAC_2025_3536557 crossref_primary_10_1109_COMST_2024_3387749 crossref_primary_10_1109_TCOMM_2023_3324997 crossref_primary_10_1109_TWC_2024_3514210 crossref_primary_10_1016_j_phycom_2023_102166 crossref_primary_10_1109_LWC_2024_3442769 crossref_primary_10_1109_TWC_2023_3343740 crossref_primary_10_1109_TCOMM_2023_3325479 crossref_primary_10_3390_s23249805 crossref_primary_10_1109_JIOT_2023_3234691 crossref_primary_10_1109_OJCOMS_2024_3486172 crossref_primary_10_1109_TSP_2024_3479319 crossref_primary_10_1109_TWC_2023_3326468 crossref_primary_10_1109_TVT_2023_3293546 crossref_primary_10_1109_TWC_2024_3379122 crossref_primary_10_1109_TCOMM_2024_3394757 crossref_primary_10_1109_TWC_2024_3510935 crossref_primary_10_1109_COMST_2023_3349276 crossref_primary_10_1109_OJCOMS_2024_3463202 crossref_primary_10_3390_electronics13173398 |
Cites_doi | 10.1109/ISIT44484.2020.9174035 10.1109/TSP.2016.2521607 10.1109/JSAC.2020.3018799 10.1109/18.910572 10.1109/JSAC.2021.3078500 10.1109/TSP.2018.2818082 10.1109/GLOCOMW.2015.7414041 10.1109/GLOCOMW.2014.7063445 10.1109/TIT.2020.3012948 10.1109/TWC.2021.3068868 10.1109/IEEECONF44664.2019.9049039 10.1109/JSAC.2020.3018807 10.1109/TWC.2010.092810.091092 10.23919/EUSIPCO54536.2021.9616090 10.1109/LWC.2020.3045159 10.1109/OJCOMS.2021.3057679 10.1109/18.910580 10.1109/TWC.2019.2920823 10.1109/MCOM.2016.7402270 10.1109/GLOBECOM42002.2020.9347952 10.1109/TVT.2020.3022708 10.1109/TIT.2002.1013125 10.1109/LCOMM.2016.2598810 10.1109/LSP.2021.3072278 10.1109/TCOMM.2018.2841366 10.1109/TCOMM.2013.020413.110848 10.1109/TCOMM.2018.2866559 10.1109/VTCFall.2018.8690936 10.1109/MCOM.2014.6736761 10.1109/JSAC.2020.3019724 10.1186/s13638-019-1507-0 10.1109/TWC.2021.3088125 10.1109/TWC.2018.2878571 10.1109/ICC45855.2022.9839167 10.1109/JSAC.2021.3078496 10.1109/TVT.2020.2980905 10.1109/ACCESS.2019.2956817 10.1109/TAP.2016.2593869 10.1109/MSP.2018.2844952 10.1109/TSP.2021.3090679 10.1109/TWC.2021.3114380 10.1162/089976601750541769 10.1017/CBO9781139043816 10.1109/TWC.2018.2878720 10.1109/MWC.001.1900157 10.1109/TWC.2019.2950316 10.1109/TSP.2020.2967175 10.1109/18.910581 10.1109/26.957394 10.1109/TCOMM.2018.2883307 10.1109/LWC.2019.2963877 10.1109/TWC.2019.2961892 10.1109/TSP.2013.2272287 10.1109/TWC.2017.2655515 10.1109/TVT.2020.3037317 10.2307/2984875 10.1109/JIOT.2020.2997336 10.1109/TSP.2014.2357776 10.1109/JSAC.2020.3000836 10.1109/TIT.2021.3081189 10.1109/TIT.2010.2059891 10.1109/MSP.2011.2178495 10.1109/TIT.2021.3065291 10.1145/3501714.3501727 10.1088/0305-4470/36/43/030 10.1109/TWC.2019.2952117 10.1109/LCOMM.2020.3012586 10.1109/ICC.2019.8761672 10.1109/ISIT.2017.8006984 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2022.3157271 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 7270 |
ExternalDocumentID | 10_1109_TWC_2022_3157271 9733790 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-cf3699824ef7a74fd5437e337ad63926eaa86187dc0827d93f470d9b284938e03 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:22:51 EDT 2025 Tue Jul 01 05:19:19 EDT 2025 Thu Apr 24 22:51:28 EDT 2025 Wed Aug 27 01:37:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-cf3699824ef7a74fd5437e337ad63926eaa86187dc0827d93f470d9b284938e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3417-1513 0000-0003-2090-8481 0000-0002-5141-6247 0000-0001-5452-8159 0000-0002-7145-5622 0000-0002-5018-8174 |
PQID | 2712053006 |
PQPubID | 105736 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1109_TWC_2022_3157271 proquest_journals_2712053006 ieee_primary_9733790 crossref_primary_10_1109_TWC_2022_3157271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Sept. 2022-9-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref15 ref59 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Bilmes (ref71) 1998 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Pearl (ref53) 1988 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref70 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Yedidia (ref56) ref60 ref62 ref61 |
References_xml | – ident: ref37 doi: 10.1109/ISIT44484.2020.9174035 – ident: ref65 doi: 10.1109/TSP.2016.2521607 – ident: ref43 doi: 10.1109/JSAC.2020.3018799 – ident: ref54 doi: 10.1109/18.910572 – ident: ref47 doi: 10.1109/JSAC.2021.3078500 – ident: ref41 doi: 10.1109/TSP.2018.2818082 – ident: ref16 doi: 10.1109/GLOCOMW.2015.7414041 – ident: ref15 doi: 10.1109/GLOCOMW.2014.7063445 – ident: ref40 doi: 10.1109/TIT.2020.3012948 – ident: ref13 doi: 10.1109/TWC.2021.3068868 – ident: ref33 doi: 10.1109/IEEECONF44664.2019.9049039 – ident: ref42 doi: 10.1109/JSAC.2020.3018807 – ident: ref5 doi: 10.1109/TWC.2010.092810.091092 – ident: ref17 doi: 10.23919/EUSIPCO54536.2021.9616090 – ident: ref29 doi: 10.1109/LWC.2020.3045159 – ident: ref4 doi: 10.1109/OJCOMS.2021.3057679 – ident: ref60 doi: 10.1109/18.910580 – ident: ref63 doi: 10.1109/TWC.2019.2920823 – ident: ref7 doi: 10.1109/MCOM.2016.7402270 – ident: ref48 doi: 10.1109/GLOBECOM42002.2020.9347952 – ident: ref21 doi: 10.1109/TVT.2020.3022708 – ident: ref55 doi: 10.1109/TIT.2002.1013125 – ident: ref72 doi: 10.1109/LCOMM.2016.2598810 – ident: ref26 doi: 10.1109/LSP.2021.3072278 – ident: ref69 doi: 10.1109/TCOMM.2018.2841366 – ident: ref2 doi: 10.1109/TCOMM.2013.020413.110848 – ident: ref27 doi: 10.1109/TCOMM.2018.2866559 – ident: ref66 doi: 10.1109/VTCFall.2018.8690936 – ident: ref3 doi: 10.1109/MCOM.2014.6736761 – ident: ref25 doi: 10.1109/JSAC.2020.3019724 – ident: ref9 doi: 10.1186/s13638-019-1507-0 – ident: ref44 doi: 10.1109/TWC.2021.3088125 – ident: ref30 doi: 10.1109/TWC.2018.2878571 – ident: ref1 doi: 10.1109/ICC45855.2022.9839167 – ident: ref46 doi: 10.1109/JSAC.2021.3078496 – ident: ref45 doi: 10.1109/TVT.2020.2980905 – ident: ref28 doi: 10.1109/ACCESS.2019.2956817 – ident: ref51 doi: 10.1109/TAP.2016.2593869 – ident: ref24 doi: 10.1109/MSP.2018.2844952 – ident: ref36 doi: 10.1109/TSP.2021.3090679 – ident: ref12 doi: 10.1109/TWC.2021.3114380 – start-page: 239 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref56 article-title: Understanding belief propagation and its generalizations – ident: ref58 doi: 10.1162/089976601750541769 – ident: ref68 doi: 10.1017/CBO9781139043816 – ident: ref62 doi: 10.1109/TWC.2018.2878720 – ident: ref11 doi: 10.1109/MWC.001.1900157 – ident: ref14 doi: 10.1109/TWC.2019.2950316 – ident: ref31 doi: 10.1109/TSP.2020.2967175 – volume-title: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference year: 1988 ident: ref53 – ident: ref59 doi: 10.1109/18.910581 – ident: ref61 doi: 10.1109/26.957394 – ident: ref64 doi: 10.1109/TCOMM.2018.2883307 – ident: ref19 doi: 10.1109/LWC.2019.2963877 – ident: ref20 doi: 10.1109/TWC.2019.2961892 – ident: ref50 doi: 10.1109/TSP.2013.2272287 – ident: ref8 doi: 10.1109/TWC.2017.2655515 – ident: ref23 doi: 10.1109/TVT.2020.3037317 – ident: ref70 doi: 10.2307/2984875 – ident: ref32 doi: 10.1109/JIOT.2020.2997336 – ident: ref49 doi: 10.1109/TSP.2014.2357776 – ident: ref18 doi: 10.1109/JSAC.2020.3000836 – ident: ref38 doi: 10.1109/TIT.2021.3081189 – ident: ref67 doi: 10.1109/TIT.2010.2059891 – year: 1998 ident: ref71 article-title: A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models – ident: ref6 doi: 10.1109/MSP.2011.2178495 – ident: ref34 doi: 10.1109/TIT.2021.3065291 – ident: ref52 doi: 10.1145/3501714.3501727 – ident: ref57 doi: 10.1088/0305-4470/36/43/030 – ident: ref10 doi: 10.1109/TWC.2019.2952117 – ident: ref22 doi: 10.1109/LCOMM.2020.3012586 – ident: ref35 doi: 10.1109/ICC.2019.8761672 – ident: ref39 doi: 10.1109/ISIT.2017.8006984 |
SSID | ssj0017655 |
Score | 2.586126 |
Snippet | Extra large MIMO (XL-MIMO) systems are subject to spatial non-stationarity forming visibility regions (VRs), which leads to a sub-array-wise sparse structure... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7253 |
SubjectTerms | Algorithms Antenna arrays Approximation algorithms Arrays Bayes methods Bayesian analysis bayesian inference Channel estimation Estimation extra-large multiple-input multiple-output (XL-MIMO) Grant-free access Inference algorithms Mathematical models Message passing MIMO communication Normal distribution Parameterization Signal to noise ratio spatial non-stationarity Statistical inference Visibility Wireless communication |
Title | Joint Activity and Channel Estimation for Extra-Large MIMO Systems |
URI | https://ieeexplore.ieee.org/document/9733790 https://www.proquest.com/docview/2712053006 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1NS8MwNMyd9ODXFKdTcvAi2K1t0qY5zrExh9XLhruVJE1BHJ3MDsRf70vaFb8Qbz28lMd7eV95XwhdBjpjnDPhyCiSDpXUc6R9yCchdQUlkbLDdOL7cDyjk3kwb6DruhdGa22Lz3TXfNpcfrpUa_NU1uOMEMYhQN-CwK3s1aozBiy0G05BgM1eGVanJF3emz4OIBD0fYhPAzDX3hcTZHeq_FDE1rqM9lC8wassKnnurgvZVe_fRjb-F_F9tFu5mbhf3osD1ND5Idr5NHywhW4my6e8wH1V7o_AIk-x6TXI9QIPQfDLnkYMTi0evhUr4dyZonEc38YPuJpzfoRmo-F0MHaqjQqO8rlXOCojIcRXPgUOCUazNKCEacBNpOCp-KEWIgq9iKUKPAOWcpJR5qZcgg3jJNIuOUbNfJnrE4RBMTBQpEFI04xqGUkldOBLGWWUg9PE2qi3IXKiqnHjZuvFIrFhh8sTYEti2JJUbGmjq_rESzlq4w_YlqFyDVcRuI06Gz4mlSy-JgDug6oB9XL6-6kztG3-XVaOdVCzWK31Obgahbywd-wDcPrMmA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB7R5dByAFpasUBbH9pDD9nN2k4cHzhQumgXdullUbmltuNIFSiL2Kx4_Bb-Cv-NsZON-kDckHrLwXYSz6dvZux5AHyKbC6kFCrQSaIDrnkv0P4gn8U8VJwlxhfTGR_HgxN-eBqdLsFdkwtjrfXBZ7bjHv1dfjY1c3dU1pWCMSHDOoTyyN5coYM22x1-Q2l-pvSgP9kfBHUPgcBQ2SsDk7MYPQrK8ZuU4HkWcSYsLqMy1M00tkolcS8RmUFdKDLJci7CTGpkbckSGzJc9wUso50R0So7rLmjELHvqYqU4TrZiOYSNJTdyY99dD0pRY84QgOh94fS811c_qF-r88O1uB-sRNVGMtZZ17qjrn9q0jk_7pV67BaG9Jkr0L-a1iyxRtY-a284gZ8PZz-KkqyZ6oOGUQVGXHZFIU9J32ktiprk6DZTvrX5aUKRi4snoyH4--kruT-Fk6e5SfeQauYFnYTCFKfQFURxTzLudWJNspGVOsk5xLNQtGG7kKoqakLqru-Huepd6xCmSIMUgeDtIZBG740My6qYiJPjN1wUm3G1QJtw84CN2nNNrMUh1MkUyTQrcdnfYSXg8l4lI6Gx0fb8Mq9p4qT24FWeTm379GwKvUHj28CP58bJQ9y2igZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Activity+and+Channel+Estimation+for+Extra-Large+MIMO+Systems&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Iimori%2C+Hiroki&rft.au=Takahashi%2C+Takumi&rft.au=Ishibashi%2C+Koji&rft.au=de+Abreu%2C+Giuseppe+Thadeu+Freitas&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=21&rft.issue=9&rft.spage=7253&rft.epage=7270&rft_id=info:doi/10.1109%2FTWC.2022.3157271&rft.externalDocID=9733790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |