A Survey on Differential Privacy for Unstructured Data Content
Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive personal information in them, such as human faces, voiceprints, and authorships. Differential privacy is the standard privacy protection technol...
Saved in:
Published in | ACM computing surveys Vol. 54; no. 10s; pp. 1 - 28 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
31.01.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive personal information in them, such as human faces, voiceprints, and authorships. Differential privacy is the standard privacy protection technology that provides rigorous privacy guarantees for various data. This survey summarizes and analyzes differential privacy solutions to protect unstructured data content before it is shared with untrusted parties. These differential privacy methods obfuscate unstructured data after they are represented with vectors and then reconstruct them with obfuscated vectors. We summarize specific privacy models and mechanisms together with possible challenges in them. We also discuss their privacy guarantees against AI attacks and utility losses. Finally, we discuss several possible directions for future research. |
---|---|
AbstractList | Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive personal information in them, such as human faces, voiceprints, and authorships. Differential privacy is the standard privacy protection technology that provides rigorous privacy guarantees for various data. This survey summarizes and analyzes differential privacy solutions to protect unstructured data content before it is shared with untrusted parties. These differential privacy methods obfuscate unstructured data after they are represented with vectors and then reconstruct them with obfuscated vectors. We summarize specific privacy models and mechanisms together with possible challenges in them. We also discuss their privacy guarantees against AI attacks and utility losses. Finally, we discuss several possible directions for future research. |
Author | Chen, Jinjun Zhao, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Zhao fullname: Zhao, Ying organization: Swinburne University of Technology, Melbourne, Australia – sequence: 2 givenname: Jinjun orcidid: 0000-0003-1677-9525 surname: Chen fullname: Chen, Jinjun organization: Swinburne University of Technology, Melbourne, Australia |
BookMark | eNplj01LxDAURYOMYGcU_0J2rqrvNWky3QhDx1FhQEFnXdJ8QKS2kqQD_fdWnJWu7l0cLvcsyaIfekvINcItIi_vGK-gYPKMZFiWMpeM44JkwATkwAAuyDLGDwAoOIqM3G_o2xiOdqJDT7feORtsn7zq6GvwR6Un6oZAD31MYdRpDNbQrUqK1kOfZvCSnDvVRXt1yhU57B7e66d8__L4XG_2uS4qTLm2KAzOXRsoJQolhFSarYXh3LRVidygaeW64oI5LG2hRaV5y10lRWEB2Yrc_O7qMMQYrGu-gv9UYWoQmh_t5qQ9k_kfUvukkp__BuW7f_w3OHNZPQ |
CitedBy_id | crossref_primary_10_1002_cpe_7620 crossref_primary_10_1002_cpe_7983 crossref_primary_10_1002_cpe_7069 crossref_primary_10_1002_cpe_7464 crossref_primary_10_1002_cpe_7067 crossref_primary_10_1002_cpe_7463 crossref_primary_10_1002_cpe_7624 crossref_primary_10_1002_cpe_7863 crossref_primary_10_1002_cpe_7984 crossref_primary_10_1002_cpe_8394 crossref_primary_10_1002_cpe_7060 crossref_primary_10_1002_cpe_8396 crossref_primary_10_1093_comjnl_bxae118 crossref_primary_10_1002_cpe_8391 crossref_primary_10_1109_TIFS_2023_3303718 crossref_primary_10_1109_TNSE_2024_3352734 crossref_primary_10_1016_j_future_2023_03_010 crossref_primary_10_1002_cpe_7869 crossref_primary_10_1002_cpe_8319 crossref_primary_10_1002_cpe_7059 crossref_primary_10_1002_cpe_7851 crossref_primary_10_1007_s11082_023_05691_y crossref_primary_10_1016_j_cose_2023_103297 crossref_primary_10_1002_cpe_7177 crossref_primary_10_1002_cpe_7331 crossref_primary_10_1007_s11831_025_10260_5 crossref_primary_10_1109_TSG_2024_3363049 crossref_primary_10_1002_cpe_7975 crossref_primary_10_1002_cpe_7051 crossref_primary_10_1016_j_cose_2024_104163 crossref_primary_10_1002_cpe_8384 crossref_primary_10_1109_OJCSYS_2024_3455899 crossref_primary_10_1002_cpe_7170 crossref_primary_10_1002_cpe_8022 crossref_primary_10_1002_cpe_8385 crossref_primary_10_1002_cpe_8023 crossref_primary_10_1002_cpe_8386 crossref_primary_10_1002_cpe_7055 crossref_primary_10_1002_cpe_7572 crossref_primary_10_1016_j_dcan_2024_03_009 crossref_primary_10_1016_j_neucom_2024_127986 crossref_primary_10_1007_s11227_024_06845_9 crossref_primary_10_1016_j_eswa_2023_122410 crossref_primary_10_1109_TCNS_2024_3462536 crossref_primary_10_1002_cpe_7739 crossref_primary_10_1002_cpe_7246 crossref_primary_10_1002_cpe_7486 crossref_primary_10_1002_cpe_8339 crossref_primary_10_1002_cpe_7525 crossref_primary_10_1002_cpe_8053 crossref_primary_10_1002_cpe_8293 crossref_primary_10_1016_j_comnet_2025_111198 crossref_primary_10_23939_csn2024_02_072 crossref_primary_10_1002_cpe_7808 crossref_primary_10_1002_cpe_70042 crossref_primary_10_1016_j_future_2023_09_020 crossref_primary_10_1002_cpe_7474 crossref_primary_10_1002_cpe_7238 crossref_primary_10_1002_cpe_7513 crossref_primary_10_1002_cpe_7479 crossref_primary_10_1145_3651153 crossref_primary_10_1002_cpe_8045 crossref_primary_10_1109_TBDATA_2024_3366071 crossref_primary_10_1002_cpe_7919 crossref_primary_10_1109_ACCESS_2024_3469193 crossref_primary_10_1145_3712000 crossref_primary_10_1002_cpe_7636 crossref_primary_10_1016_j_ins_2023_119870 crossref_primary_10_1109_TDSC_2024_3379434 crossref_primary_10_1002_cpe_7301 crossref_primary_10_1109_JIOT_2023_3293755 crossref_primary_10_1145_3638769 crossref_primary_10_1145_3633477 crossref_primary_10_1002_cpe_7947 crossref_primary_10_1002_cpe_7704 crossref_primary_10_1002_cpe_7824 crossref_primary_10_1002_cpe_7709 crossref_primary_10_3390_electronics13101805 crossref_primary_10_1002_cpe_70020 crossref_primary_10_1002_cpe_8348 crossref_primary_10_1002_cpe_7530 crossref_primary_10_1002_cpe_7496 crossref_primary_10_1002_cpe_8108 crossref_primary_10_1002_cpe_7932 crossref_primary_10_1002_cpe_8102 crossref_primary_10_1002_cpe_8103 crossref_primary_10_1002_cpe_8346 crossref_primary_10_1002_cpe_7370 crossref_primary_10_1002_cpe_7491 crossref_primary_10_1002_cpe_7770 crossref_primary_10_1002_cpe_7131 crossref_primary_10_1109_ACCESS_2024_3469537 crossref_primary_10_3390_app13074600 crossref_primary_10_1002_cpe_7539 crossref_primary_10_1109_ACCESS_2025_3541295 crossref_primary_10_3390_math12142150 crossref_primary_10_1016_j_eswa_2023_121760 crossref_primary_10_1109_TICPS_2024_3425794 crossref_primary_10_1002_cpe_7565 crossref_primary_10_1145_3613962 crossref_primary_10_1002_cpe_7322 crossref_primary_10_1002_cpe_7844 crossref_primary_10_1002_cpe_7689 crossref_primary_10_1002_cpe_8015 crossref_primary_10_1002_cpe_6994 crossref_primary_10_1080_00036846_2024_2321835 crossref_primary_10_1002_cpe_7561 crossref_primary_10_1016_j_eswa_2024_124807 crossref_primary_10_1002_cpe_7560 crossref_primary_10_1002_cpe_7163 crossref_primary_10_1002_cpe_7162 crossref_primary_10_2478_amns_2024_3175 crossref_primary_10_1109_TDSC_2024_3376532 crossref_primary_10_1002_cpe_7846 crossref_primary_10_1002_cpe_7845 crossref_primary_10_1002_cpe_7728 crossref_primary_10_1002_cpe_7554 crossref_primary_10_1002_cpe_8006 crossref_primary_10_1002_cpe_8007 crossref_primary_10_1002_cpe_7551 crossref_primary_10_1002_cpe_7315 crossref_primary_10_1016_j_comcom_2024_04_027 crossref_primary_10_1002_cpe_7395 crossref_primary_10_1002_cpe_7670 crossref_primary_10_1016_j_inffus_2024_102380 crossref_primary_10_3390_math11081853 crossref_primary_10_1109_TKDE_2022_3168611 crossref_primary_10_1145_3708501 crossref_primary_10_1145_3708982 crossref_primary_10_14778_3659437_3659444 crossref_primary_10_1109_LSP_2024_3445716 crossref_primary_10_1002_cpe_7958 crossref_primary_10_1002_cpe_7714 crossref_primary_10_1002_cpe_7713 crossref_primary_10_1002_cpe_7718 |
Cites_doi | 10.1109/CDC.2016.7799441 10.1109/TNSE.2020.3001061 10.1109/ICCV.2009.5459413 10.2478/popets-2020-0028 10.1145/1143844.1143891 10.21437/Interspeech.2019-2647 10.1145/3168389 10.1145/1807167.1807247 10.1016/j.future.2018.02.050 10.1145/3452021.3458328 10.1145/1559845.1559850 10.5555/2612156.2612159 10.1109/FOCS.2007.66 10.1109/FOCS.2013.53 10.1109/ICASSP.2018.8461375 10.1515/popets-2015-0023 10.1109/CVPR.2019.00220 10.1145/2810103.2813687 10.14778/1453856.1453874 10.1145/3418290 10.1109/TIFS.2020.2980835 10.1109/TDSC.2019.2949041 10.1145/2983323.2983841 10.1007/978-3-642-39077-7_5 10.1145/3209978.3210008 10.1007/s10579-009-9111-2 10.1257/pandp.20191109 10.1007/978-3-030-17138-4_6 10.1109/FG.2015.7285021 10.1109/TDSC.2019.2960239 10.1145/2660267.2660348 10.1080/01621459.1965.10480775 10.1109/ICME.2019.00140 10.18653/v1/2021.trustnlp-1.3 10.1145/3292500.3330885 10.1515/popets-2016-0047 10.29012/jpc.v5i1.625 10.1109/CDC.2016.7798524 10.1145/2508859.2516735 10.32473/flairs.v34i1.128463 10.1109/ICME46284.2020.9102875 10.1145/3274783.3274855 10.29012/jpc.715 10.1137/090756090 10.1109/CVPR.2018.00530 10.1109/TNSE.2020.3036855 10.1109/CVPR.2016.28 10.5555/3122009.3208010 10.1145/3372297.3417242 10.1109/tip.2003.819861 10.1109/LWC.2020.2999524 10.1109/TKDE.2019.2952351 10.1109/comst.2019.2944748 10.1146/annurev-statistics-060116-054123 10.1145/3336191.3371856 10.1109/TKDE.2021.3073062 10.1007/11681878_14 10.18653/v1/2021.findings-acl.337 10.3115/v1/D14-1162 10.1162/tacl_a_00051 10.1111/j.2517-6161.1994.tb01962.x 10.1109/ICTAI.2015.157 10.2478/popets-2020-0032 10.1007/978-3-030-22479-0_8 10.1109/FOCS.2012.67 10.5555/3524938.3524944 10.1111/j.1540-6261.1961.tb02789.x 10.1145/3387130 10.5555/2423656.2423657 10.1109/MSP.2005.65 10.1109/ICASSP40776.2020.9053868 10.1007/978-3-030-01270-0_37 10.1016/j.csl.2019.101026 10.1007/978-3-540-79228-4_1 10.1109/ICME46284.2020.9102767 10.1109/TKDE.2017.2697856 10.1109/ICDE48307.2020.00050 10.1145/2810103.2813610 10.18653/v1/2020.privatenlp-1.2 10.1007/978-3-642-00457-5_29 10.1109/ICDM.2019.00031 10.2478/popets-2020-0073 10.1109/JIOT.2020.3040019 10.1007/s11042-012-1207-9 10.2478/popets-2020-0007 10.1109/CVPR46437.2021.00641 10.1109/TKDE.2018.2845388 10.1145/3183713.3197390 10.1007/978-3-319-95729-6_10 10.1145/3337064 10.1002/asi.23363 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1145/3490237 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-7341 |
EndPage | 28 |
ExternalDocumentID | 10_1145_3490237 |
GroupedDBID | --Z -DZ -~X .DC 23M 4.4 5GY 5VS 6J9 85S 8US 8VB AAIKC AAKMM AALFJ AAMNW AAYFX AAYXX ABPPZ ACGFO ACGOD ACM ACNCT ADBCU ADL ADMLS AEBYY AEFXT AEGXH AEJOY AEMOZ AENEX AENSD AETEA AFWIH AFWXC AGHSJ AHQJS AIAGR AIKLT AKRVB AKVCP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CITATION CS3 FEDTE GUFHI HGAVV H~9 IAO ICD IEA IGS IOF K1G LHSKQ N95 P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT WH7 X6Y XH6 XSW XZL YXB ZCA ZL0 |
ID | FETCH-LOGICAL-c291t-ce16d1c29cd05716a667ac386d44db9514d1db789463f15e2c69c4b4f9762e013 |
ISSN | 0360-0300 |
IngestDate | Thu Jul 03 08:32:49 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10s |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-ce16d1c29cd05716a667ac386d44db9514d1db789463f15e2c69c4b4f9762e013 |
ORCID | 0000-0003-1677-9525 |
PageCount | 28 |
ParticipantIDs | crossref_primary_10_1145_3490237 crossref_citationtrail_10_1145_3490237 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-31 |
PublicationDateYYYYMMDD | 2022-01-31 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | ACM computing surveys |
PublicationYear | 2022 |
References | Murakami Takao (e_1_3_1_70_2) 2019 Fan Liyue (e_1_3_1_30_2) 2018 Avent Brendan (e_1_3_1_5_2) 2017 e_1_3_1_118_2 e_1_3_1_81_2 Shokri Reza (e_1_3_1_88_2) 2017 e_1_3_1_114_2 e_1_3_1_110_2 e_1_3_1_43_2 e_1_3_1_66_2 e_1_3_1_89_2 e_1_3_1_24_2 e_1_3_1_62_2 e_1_3_1_20_2 Fang Fuming (e_1_3_1_31_2) 2019 e_1_3_1_6_2 e_1_3_1_47_2 e_1_3_1_2_2 e_1_3_1_28_2 Feyisetan Oluwaseyi (e_1_3_1_37_2) 2021 e_1_3_1_106_2 Steil Julian (e_1_3_1_93_2) 2019 e_1_3_1_102_2 Wang Zhibo (e_1_3_1_108_2) 2020 e_1_3_1_121_2 e_1_3_1_32_2 Fernandes Natasha (e_1_3_1_33_2) 2020 e_1_3_1_55_2 e_1_3_1_78_2 e_1_3_1_13_2 e_1_3_1_51_2 e_1_3_1_74_2 e_1_3_1_97_2 Nickel Maximillian (e_1_3_1_73_2) 2017 e_1_3_1_17_2 Li Jingjie (e_1_3_1_59_2) 2021 e_1_3_1_36_2 Bozkir Efe (e_1_3_1_9_2) 2020 e_1_3_1_119_2 Xiang Zhuolun (e_1_3_1_113_2) 2020 e_1_3_1_115_2 e_1_3_1_80_2 e_1_3_1_111_2 e_1_3_1_23_2 Xu Zekun (e_1_3_1_117_2) 2021 Duchi John C. (e_1_3_1_21_2) 2013 e_1_3_1_42_2 e_1_3_1_84_2 e_1_3_1_3_2 e_1_3_1_27_2 Ruegg Marcus Cuda Christoph (e_1_3_1_16_2) 2009 e_1_3_1_107_2 Fan Liyue (e_1_3_1_29_2) 2020 Li Tao (e_1_3_1_60_2) 2021 Hassan Muneeb Ul (e_1_3_1_46_2) 2020; 13 e_1_3_1_103_2 e_1_3_1_122_2 e_1_3_1_54_2 e_1_3_1_35_2 Nelson Boel (e_1_3_1_72_2) 2019 e_1_3_1_77_2 e_1_3_1_50_2 e_1_3_1_96_2 Feyisetan Oluwaseyi (e_1_3_1_34_2) 2020 e_1_3_1_58_2 e_1_3_1_39_2 Liu Ao (e_1_3_1_61_2) 2019 e_1_3_1_116_2 e_1_3_1_112_2 e_1_3_1_22_2 e_1_3_1_45_2 e_1_3_1_87_2 e_1_3_1_8_2 e_1_3_1_41_2 e_1_3_1_83_2 e_1_3_1_4_2 Cui Zhihua (e_1_3_1_18_2) 2020; 13 e_1_3_1_26_2 e_1_3_1_49_2 McPherson Richard (e_1_3_1_64_2) 2016 Ganea Octavian (e_1_3_1_40_2) 2018 e_1_3_1_91_2 e_1_3_1_123_2 Mikolov Tomas (e_1_3_1_68_2) 2013 e_1_3_1_100_2 Blocki Jeremiah (e_1_3_1_7_2) 2012 e_1_3_1_57_2 e_1_3_1_76_2 e_1_3_1_11_2 e_1_3_1_53_2 e_1_3_1_95_2 Schein Aaron (e_1_3_1_85_2) 2019 Tschantz Michael Carl (e_1_3_1_99_2) 2020 e_1_3_1_15_2 e_1_3_1_19_2 e_1_3_1_38_2 e_1_3_1_82_2 McSherry Frank (e_1_3_1_65_2) 2007 Chatzikokolakis Konstantinos (e_1_3_1_12_2) 2013 e_1_3_1_44_2 e_1_3_1_67_2 e_1_3_1_86_2 Stausholm Nina Mesing (e_1_3_1_92_2) 2021 e_1_3_1_63_2 Ye Qingqing (e_1_3_1_120_2) 2019 e_1_3_1_25_2 e_1_3_1_48_2 e_1_3_1_109_2 Poddar Rishabh (e_1_3_1_75_2) 2020 Mikolov Tomas (e_1_3_1_69_2) 2013 e_1_3_1_71_2 e_1_3_1_105_2 e_1_3_1_90_2 Wang Han (e_1_3_1_104_2) 2020 e_1_3_1_101_2 e_1_3_1_79_2 e_1_3_1_56_2 e_1_3_1_98_2 e_1_3_1_10_2 e_1_3_1_52_2 e_1_3_1_94_2 e_1_3_1_14_2 |
References_xml | – ident: e_1_3_1_57_2 doi: 10.1109/CDC.2016.7799441 – ident: e_1_3_1_80_2 doi: 10.1109/TNSE.2020.3001061 – ident: e_1_3_1_39_2 doi: 10.1109/ICCV.2009.5459413 – ident: e_1_3_1_20_2 doi: 10.2478/popets-2020-0028 – ident: e_1_3_1_41_2 doi: 10.1145/1143844.1143891 – ident: e_1_3_1_71_2 doi: 10.21437/Interspeech.2019-2647 – ident: e_1_3_1_103_2 doi: 10.1145/3168389 – ident: e_1_3_1_81_2 doi: 10.1145/1807167.1807247 – ident: e_1_3_1_76_2 doi: 10.1016/j.future.2018.02.050 – start-page: 42 volume-title: Proc. of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’21) year: 2021 ident: e_1_3_1_92_2 doi: 10.1145/3452021.3458328 – ident: e_1_3_1_66_2 doi: 10.1145/1559845.1559850 – ident: e_1_3_1_19_2 doi: 10.5555/2612156.2612159 – year: 2019 ident: e_1_3_1_72_2 article-title: Chasing accuracy and privacy, and catching both: A literature survey on differentially private histogram publication publication-title: arXiv preprint, arXiv:1910.14028 – start-page: 94 volume-title: The 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07) year: 2007 ident: e_1_3_1_65_2 doi: 10.1109/FOCS.2007.66 – start-page: 429 volume-title: 54th IEEE Annual Symposium on Foundations of Computer Science (FOCS’13) year: 2013 ident: e_1_3_1_21_2 doi: 10.1109/FOCS.2013.53 – ident: e_1_3_1_89_2 doi: 10.1109/ICASSP.2018.8461375 – ident: e_1_3_1_13_2 doi: 10.1515/popets-2015-0023 – ident: e_1_3_1_111_2 doi: 10.1109/CVPR.2019.00220 – ident: e_1_3_1_87_2 doi: 10.1145/2810103.2813687 – ident: e_1_3_1_97_2 doi: 10.14778/1453856.1453874 – ident: e_1_3_1_102_2 doi: 10.1145/3418290 – ident: e_1_3_1_118_2 doi: 10.1109/TIFS.2020.2980835 – year: 2020 ident: e_1_3_1_33_2 article-title: Locality sensitive hashing with extended differential privacy publication-title: arXiv preprint, arXiv:2010.09393 – ident: e_1_3_1_43_2 doi: 10.1109/TDSC.2019.2949041 – ident: e_1_3_1_122_2 doi: 10.1145/2983323.2983841 – year: 2020 ident: e_1_3_1_9_2 article-title: Differential Privacy for eye tracking with temporal correlations publication-title: Cryptology ePrint Archive, Report 2020/340 – start-page: 82 volume-title: The 13th Privacy Enhancing Technologies Symposium (PETS’13) year: 2013 ident: e_1_3_1_12_2 doi: 10.1007/978-3-642-39077-7_5 – volume: 13 start-page: 241 issue: 2 year: 2020 ident: e_1_3_1_18_2 article-title: A hybrid blockchain-based identity authentication scheme for multi-WSN publication-title: IEEE Transactions on Services Computing – ident: e_1_3_1_110_2 doi: 10.1145/3209978.3210008 – year: 2021 ident: e_1_3_1_60_2 article-title: Differentially private imaging via latent space manipulation publication-title: arXiv preprint arXiv: 2103.05472 – ident: e_1_3_1_56_2 doi: 10.1007/s10579-009-9111-2 – start-page: 5638 volume-title: The 36th International Conference on Machine Learning year: 2019 ident: e_1_3_1_85_2 – ident: e_1_3_1_15_2 doi: 10.1257/pandp.20191109 – start-page: 3 volume-title: 38th IEEE Symposium on Security and Privacy (S&P’17) year: 2017 ident: e_1_3_1_88_2 – ident: e_1_3_1_32_2 doi: 10.1007/978-3-030-17138-4_6 – year: 2009 ident: e_1_3_1_16_2 article-title: Distance metrics publication-title: [EB/OL] – start-page: 81 volume-title: The 21st International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (Mobihoc’20) year: 2020 ident: e_1_3_1_108_2 – ident: e_1_3_1_52_2 doi: 10.1109/FG.2015.7285021 – ident: e_1_3_1_77_2 doi: 10.1109/TDSC.2019.2960239 – ident: e_1_3_1_26_2 doi: 10.1145/2660267.2660348 – ident: e_1_3_1_109_2 doi: 10.1080/01621459.1965.10480775 – volume-title: The AAAI Workshop on Privacy-Preserving Artificial Intelligence year: 2020 ident: e_1_3_1_29_2 – ident: e_1_3_1_28_2 doi: 10.1109/ICME.2019.00140 – start-page: 1877 volume-title: The 28th USENIX Security Symposium year: 2019 ident: e_1_3_1_70_2 – start-page: 15 volume-title: Proc. of the 1st Workshop on Trustworthy Natural Language Processing year: 2021 ident: e_1_3_1_37_2 doi: 10.18653/v1/2021.trustnlp-1.3 – start-page: 1646 volume-title: The 35th International Conference on Machine Learning (ICML’18) year: 2018 ident: e_1_3_1_40_2 – volume: 13 start-page: 263 issue: 2 year: 2020 ident: e_1_3_1_46_2 article-title: DEAL: Differentially private auction for blockchain-based microgrids energy trading publication-title: IEEE Transactions on Services Computing – ident: e_1_3_1_90_2 doi: 10.1145/3292500.3330885 – ident: e_1_3_1_48_2 doi: 10.1515/popets-2016-0047 – ident: e_1_3_1_55_2 doi: 10.29012/jpc.v5i1.625 – ident: e_1_3_1_58_2 doi: 10.1109/CDC.2016.7798524 – ident: e_1_3_1_4_2 doi: 10.1145/2508859.2516735 – start-page: 354 volume-title: 41st IEEE Symposium on Security and Privacy (S&P’20) year: 2020 ident: e_1_3_1_99_2 – ident: e_1_3_1_115_2 doi: 10.32473/flairs.v34i1.128463 – ident: e_1_3_1_45_2 doi: 10.1109/ICME46284.2020.9102875 – ident: e_1_3_1_78_2 doi: 10.1145/3274783.3274855 – ident: e_1_3_1_49_2 doi: 10.29012/jpc.715 – year: 2020 ident: e_1_3_1_34_2 article-title: Research challenges in designing differentially private text generation mechanisms publication-title: arXiv preprint, arXiv:2012.05403 – ident: e_1_3_1_54_2 doi: 10.1137/090756090 – ident: e_1_3_1_95_2 doi: 10.1109/CVPR.2018.00530 – ident: e_1_3_1_79_2 doi: 10.1109/TNSE.2020.3036855 – start-page: 27:1–27:9 volume-title: The 11th ACM Symposium on Eye Tracking Research & Applications (ETRA’19) year: 2019 ident: e_1_3_1_93_2 – start-page: 908 volume-title: 17th IEEE International Symposium on Information Theory (ISIT’20) year: 2020 ident: e_1_3_1_113_2 – ident: e_1_3_1_119_2 doi: 10.1109/CVPR.2016.28 – ident: e_1_3_1_44_2 doi: 10.5555/3122009.3208010 – ident: e_1_3_1_6_2 doi: 10.1145/3372297.3417242 – ident: e_1_3_1_107_2 doi: 10.1109/tip.2003.819861 – ident: e_1_3_1_114_2 doi: 10.1109/LWC.2020.2999524 – ident: e_1_3_1_51_2 doi: 10.1109/TKDE.2019.2952351 – ident: e_1_3_1_47_2 doi: 10.1109/comst.2019.2944748 – start-page: 323 volume-title: Proc. of the 23rd International Conference on Extending Database Technology (EDBT’20) year: 2020 ident: e_1_3_1_104_2 – ident: e_1_3_1_25_2 doi: 10.1146/annurev-statistics-060116-054123 – start-page: 6338 volume-title: The 31st Annual Conference on Neural Information Processing Systems (NeurIPS’17) year: 2017 ident: e_1_3_1_73_2 – ident: e_1_3_1_35_2 doi: 10.1145/3336191.3371856 – ident: e_1_3_1_50_2 doi: 10.1109/TKDE.2021.3073062 – ident: e_1_3_1_24_2 doi: 10.1007/11681878_14 – start-page: 11 volume-title: Proc. of the 3rd Workshop on Privacy in Natural Language Processing year: 2021 ident: e_1_3_1_117_2 – ident: e_1_3_1_121_2 doi: 10.18653/v1/2021.findings-acl.337 – ident: e_1_3_1_74_2 doi: 10.3115/v1/D14-1162 – ident: e_1_3_1_8_2 doi: 10.1162/tacl_a_00051 – ident: e_1_3_1_63_2 doi: 10.1111/j.2517-6161.1994.tb01962.x – ident: e_1_3_1_82_2 doi: 10.1109/ICTAI.2015.157 – ident: e_1_3_1_67_2 doi: 10.2478/popets-2020-0032 – ident: e_1_3_1_96_2 doi: 10.1007/978-3-030-22479-0_8 – start-page: 410 volume-title: 53rd IEEE Annual Symposium on Foundations of Computer Science (FOCS’12) year: 2012 ident: e_1_3_1_7_2 doi: 10.1109/FOCS.2012.67 – ident: e_1_3_1_2_2 doi: 10.5555/3524938.3524944 – ident: e_1_3_1_100_2 doi: 10.1111/j.1540-6261.1961.tb02789.x – ident: e_1_3_1_106_2 doi: 10.1145/3387130 – ident: e_1_3_1_3_2 doi: 10.5555/2423656.2423657 – ident: e_1_3_1_86_2 doi: 10.1109/MSP.2005.65 – ident: e_1_3_1_91_2 doi: 10.1109/ICASSP40776.2020.9053868 – ident: e_1_3_1_112_2 doi: 10.1007/978-3-030-01270-0_37 – ident: e_1_3_1_101_2 doi: 10.1016/j.csl.2019.101026 – year: 2016 ident: e_1_3_1_64_2 article-title: Defeating image obfuscation with deep learning publication-title: arXiv preprint, arXiv:1609.00408 – start-page: 317 volume-title: 40th IEEE Symposium on Security and Privacy (S&P’19) year: 2019 ident: e_1_3_1_120_2 – ident: e_1_3_1_22_2 doi: 10.1007/978-3-540-79228-4_1 – start-page: 3111 volume-title: Proc. of the 27th Annual Conference on Neural Information Processing Systems (NeurIPS’13) year: 2013 ident: e_1_3_1_69_2 – start-page: 747 volume-title: 26th USENIX Security Symposium year: 2017 ident: e_1_3_1_5_2 – year: 2013 ident: e_1_3_1_68_2 article-title: Efficient estimation of word representations in vector space publication-title: arXiv preprint, arXiv:1301.3781 – start-page: 155 volume-title: The 10th ISCA Speech Synthesis Workshop year: 2019 ident: e_1_3_1_31_2 – ident: e_1_3_1_94_2 doi: 10.1109/ICME46284.2020.9102767 – ident: e_1_3_1_123_2 doi: 10.1109/TKDE.2017.2697856 – ident: e_1_3_1_42_2 doi: 10.1109/ICDE48307.2020.00050 – ident: e_1_3_1_98_2 doi: 10.1145/2810103.2813610 – ident: e_1_3_1_116_2 doi: 10.18653/v1/2020.privatenlp-1.2 – start-page: 1039 volume-title: The 29th USENIX Security Symposium year: 2020 ident: e_1_3_1_75_2 – ident: e_1_3_1_23_2 doi: 10.1007/978-3-642-00457-5_29 – ident: e_1_3_1_11_2 – ident: e_1_3_1_36_2 doi: 10.1109/ICDM.2019.00031 – ident: e_1_3_1_105_2 doi: 10.2478/popets-2020-0073 – ident: e_1_3_1_10_2 doi: 10.1109/JIOT.2020.3040019 – ident: e_1_3_1_83_2 doi: 10.1007/s11042-012-1207-9 – ident: e_1_3_1_53_2 doi: 10.2478/popets-2020-0007 – ident: e_1_3_1_14_2 doi: 10.1109/CVPR46437.2021.00641 – start-page: 28:1–28:10 volume-title: The 11th ACM Symposium on Eye Tracking Research & Applications (ETRA’19) year: 2019 ident: e_1_3_1_61_2 – ident: e_1_3_1_62_2 doi: 10.1109/TKDE.2018.2845388 – volume-title: The 30th USENIX Security Symposium year: 2021 ident: e_1_3_1_59_2 – ident: e_1_3_1_17_2 doi: 10.1145/3183713.3197390 – ident: e_1_3_1_27_2 doi: 10.1007/978-3-319-95729-6_10 – ident: e_1_3_1_38_2 doi: 10.1145/3337064 – ident: e_1_3_1_84_2 doi: 10.1002/asi.23363 – start-page: 264 volume-title: 6th IEEE International Congress on Big Data year: 2018 ident: e_1_3_1_30_2 |
SSID | ssj0002416 |
Score | 2.6902802 |
Snippet | Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 1 |
Title | A Survey on Differential Privacy for Unstructured Data Content |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X3zxLs4beRBfJNpLmq4vQnHKECeCDqYvo7kUJ9KJdnvw13vSpF2dgpeXUkISaL7mnC8n54LQAVAMqhyPk4BFKaGMJiRhwiGSSd9RUnBPaTtk95p1evSyH_SnBe-K6JKcH4v3b-NK_oMqtAGuOkr2D8hWk0IDvAO-8ASE4fkrjGPY968T2NUAYdtWOsm1CfzmdTjRddy1D2HP5ogda0_zdpInR0VGquyTUT4-6xbe5ePCC_qtmLVi2w-PSWFQvS_VXOEOYKM6htnTOKvbDjzthFEK3TJmyiGwzc3NiLIiMAhJ6Jt0VKWMNImey3_BeauJPLemO02c91epTHUCC59GQBDCqeIpL9tn9FHlJWhipoOBHTiPFjw4C4AwW4jb3avbSuECCbFX0uZjTGy0Hnpih9ZIR4093K2gJUv7cWwwXEVzKltDy2VJDWwl7Do6jbGBFI8yXIcUW0gxQIrrkGINKbaQbqDexfndWYfYEhdEeJGbE6FcJl14FxKIs8sSxsJE-C0mKZUc2C-VruRhK6LMT91AeYJFgnKaAov0FND3TdTIRpnaQpgrrxWEcNxNqa-rL3MYJ6B_iwpoSqMmOizXYCBs_nddhuR5MLPOTYSrji8m5clsl-2fu-ygxekft4sasCxqD_hbzvctfh-Q_EOp |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Differential+Privacy+for+Unstructured+Data+Content&rft.jtitle=ACM+computing+surveys&rft.au=Zhao%2C+Ying&rft.au=Chen%2C+Jinjun&rft.date=2022-01-31&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=54&rft.issue=10s&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1145%2F3490237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3490237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon |