A Survey on Differential Privacy for Unstructured Data Content

Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive personal information in them, such as human faces, voiceprints, and authorships. Differential privacy is the standard privacy protection technol...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 54; no. 10s; pp. 1 - 28
Main Authors Zhao, Ying, Chen, Jinjun
Format Journal Article
LanguageEnglish
Published 31.01.2022
Online AccessGet full text

Cover

Loading…
Abstract Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive personal information in them, such as human faces, voiceprints, and authorships. Differential privacy is the standard privacy protection technology that provides rigorous privacy guarantees for various data. This survey summarizes and analyzes differential privacy solutions to protect unstructured data content before it is shared with untrusted parties. These differential privacy methods obfuscate unstructured data after they are represented with vectors and then reconstruct them with obfuscated vectors. We summarize specific privacy models and mechanisms together with possible challenges in them. We also discuss their privacy guarantees against AI attacks and utility losses. Finally, we discuss several possible directions for future research.
AbstractList Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive personal information in them, such as human faces, voiceprints, and authorships. Differential privacy is the standard privacy protection technology that provides rigorous privacy guarantees for various data. This survey summarizes and analyzes differential privacy solutions to protect unstructured data content before it is shared with untrusted parties. These differential privacy methods obfuscate unstructured data after they are represented with vectors and then reconstruct them with obfuscated vectors. We summarize specific privacy models and mechanisms together with possible challenges in them. We also discuss their privacy guarantees against AI attacks and utility losses. Finally, we discuss several possible directions for future research.
Author Chen, Jinjun
Zhao, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
  organization: Swinburne University of Technology, Melbourne, Australia
– sequence: 2
  givenname: Jinjun
  orcidid: 0000-0003-1677-9525
  surname: Chen
  fullname: Chen, Jinjun
  organization: Swinburne University of Technology, Melbourne, Australia
BookMark eNplj01LxDAURYOMYGcU_0J2rqrvNWky3QhDx1FhQEFnXdJ8QKS2kqQD_fdWnJWu7l0cLvcsyaIfekvINcItIi_vGK-gYPKMZFiWMpeM44JkwATkwAAuyDLGDwAoOIqM3G_o2xiOdqJDT7feORtsn7zq6GvwR6Un6oZAD31MYdRpDNbQrUqK1kOfZvCSnDvVRXt1yhU57B7e66d8__L4XG_2uS4qTLm2KAzOXRsoJQolhFSarYXh3LRVidygaeW64oI5LG2hRaV5y10lRWEB2Yrc_O7qMMQYrGu-gv9UYWoQmh_t5qQ9k_kfUvukkp__BuW7f_w3OHNZPQ
CitedBy_id crossref_primary_10_1002_cpe_7620
crossref_primary_10_1002_cpe_7983
crossref_primary_10_1002_cpe_7069
crossref_primary_10_1002_cpe_7464
crossref_primary_10_1002_cpe_7067
crossref_primary_10_1002_cpe_7463
crossref_primary_10_1002_cpe_7624
crossref_primary_10_1002_cpe_7863
crossref_primary_10_1002_cpe_7984
crossref_primary_10_1002_cpe_8394
crossref_primary_10_1002_cpe_7060
crossref_primary_10_1002_cpe_8396
crossref_primary_10_1093_comjnl_bxae118
crossref_primary_10_1002_cpe_8391
crossref_primary_10_1109_TIFS_2023_3303718
crossref_primary_10_1109_TNSE_2024_3352734
crossref_primary_10_1016_j_future_2023_03_010
crossref_primary_10_1002_cpe_7869
crossref_primary_10_1002_cpe_8319
crossref_primary_10_1002_cpe_7059
crossref_primary_10_1002_cpe_7851
crossref_primary_10_1007_s11082_023_05691_y
crossref_primary_10_1016_j_cose_2023_103297
crossref_primary_10_1002_cpe_7177
crossref_primary_10_1002_cpe_7331
crossref_primary_10_1007_s11831_025_10260_5
crossref_primary_10_1109_TSG_2024_3363049
crossref_primary_10_1002_cpe_7975
crossref_primary_10_1002_cpe_7051
crossref_primary_10_1016_j_cose_2024_104163
crossref_primary_10_1002_cpe_8384
crossref_primary_10_1109_OJCSYS_2024_3455899
crossref_primary_10_1002_cpe_7170
crossref_primary_10_1002_cpe_8022
crossref_primary_10_1002_cpe_8385
crossref_primary_10_1002_cpe_8023
crossref_primary_10_1002_cpe_8386
crossref_primary_10_1002_cpe_7055
crossref_primary_10_1002_cpe_7572
crossref_primary_10_1016_j_dcan_2024_03_009
crossref_primary_10_1016_j_neucom_2024_127986
crossref_primary_10_1007_s11227_024_06845_9
crossref_primary_10_1016_j_eswa_2023_122410
crossref_primary_10_1109_TCNS_2024_3462536
crossref_primary_10_1002_cpe_7739
crossref_primary_10_1002_cpe_7246
crossref_primary_10_1002_cpe_7486
crossref_primary_10_1002_cpe_8339
crossref_primary_10_1002_cpe_7525
crossref_primary_10_1002_cpe_8053
crossref_primary_10_1002_cpe_8293
crossref_primary_10_1016_j_comnet_2025_111198
crossref_primary_10_23939_csn2024_02_072
crossref_primary_10_1002_cpe_7808
crossref_primary_10_1002_cpe_70042
crossref_primary_10_1016_j_future_2023_09_020
crossref_primary_10_1002_cpe_7474
crossref_primary_10_1002_cpe_7238
crossref_primary_10_1002_cpe_7513
crossref_primary_10_1002_cpe_7479
crossref_primary_10_1145_3651153
crossref_primary_10_1002_cpe_8045
crossref_primary_10_1109_TBDATA_2024_3366071
crossref_primary_10_1002_cpe_7919
crossref_primary_10_1109_ACCESS_2024_3469193
crossref_primary_10_1145_3712000
crossref_primary_10_1002_cpe_7636
crossref_primary_10_1016_j_ins_2023_119870
crossref_primary_10_1109_TDSC_2024_3379434
crossref_primary_10_1002_cpe_7301
crossref_primary_10_1109_JIOT_2023_3293755
crossref_primary_10_1145_3638769
crossref_primary_10_1145_3633477
crossref_primary_10_1002_cpe_7947
crossref_primary_10_1002_cpe_7704
crossref_primary_10_1002_cpe_7824
crossref_primary_10_1002_cpe_7709
crossref_primary_10_3390_electronics13101805
crossref_primary_10_1002_cpe_70020
crossref_primary_10_1002_cpe_8348
crossref_primary_10_1002_cpe_7530
crossref_primary_10_1002_cpe_7496
crossref_primary_10_1002_cpe_8108
crossref_primary_10_1002_cpe_7932
crossref_primary_10_1002_cpe_8102
crossref_primary_10_1002_cpe_8103
crossref_primary_10_1002_cpe_8346
crossref_primary_10_1002_cpe_7370
crossref_primary_10_1002_cpe_7491
crossref_primary_10_1002_cpe_7770
crossref_primary_10_1002_cpe_7131
crossref_primary_10_1109_ACCESS_2024_3469537
crossref_primary_10_3390_app13074600
crossref_primary_10_1002_cpe_7539
crossref_primary_10_1109_ACCESS_2025_3541295
crossref_primary_10_3390_math12142150
crossref_primary_10_1016_j_eswa_2023_121760
crossref_primary_10_1109_TICPS_2024_3425794
crossref_primary_10_1002_cpe_7565
crossref_primary_10_1145_3613962
crossref_primary_10_1002_cpe_7322
crossref_primary_10_1002_cpe_7844
crossref_primary_10_1002_cpe_7689
crossref_primary_10_1002_cpe_8015
crossref_primary_10_1002_cpe_6994
crossref_primary_10_1080_00036846_2024_2321835
crossref_primary_10_1002_cpe_7561
crossref_primary_10_1016_j_eswa_2024_124807
crossref_primary_10_1002_cpe_7560
crossref_primary_10_1002_cpe_7163
crossref_primary_10_1002_cpe_7162
crossref_primary_10_2478_amns_2024_3175
crossref_primary_10_1109_TDSC_2024_3376532
crossref_primary_10_1002_cpe_7846
crossref_primary_10_1002_cpe_7845
crossref_primary_10_1002_cpe_7728
crossref_primary_10_1002_cpe_7554
crossref_primary_10_1002_cpe_8006
crossref_primary_10_1002_cpe_8007
crossref_primary_10_1002_cpe_7551
crossref_primary_10_1002_cpe_7315
crossref_primary_10_1016_j_comcom_2024_04_027
crossref_primary_10_1002_cpe_7395
crossref_primary_10_1002_cpe_7670
crossref_primary_10_1016_j_inffus_2024_102380
crossref_primary_10_3390_math11081853
crossref_primary_10_1109_TKDE_2022_3168611
crossref_primary_10_1145_3708501
crossref_primary_10_1145_3708982
crossref_primary_10_14778_3659437_3659444
crossref_primary_10_1109_LSP_2024_3445716
crossref_primary_10_1002_cpe_7958
crossref_primary_10_1002_cpe_7714
crossref_primary_10_1002_cpe_7713
crossref_primary_10_1002_cpe_7718
Cites_doi 10.1109/CDC.2016.7799441
10.1109/TNSE.2020.3001061
10.1109/ICCV.2009.5459413
10.2478/popets-2020-0028
10.1145/1143844.1143891
10.21437/Interspeech.2019-2647
10.1145/3168389
10.1145/1807167.1807247
10.1016/j.future.2018.02.050
10.1145/3452021.3458328
10.1145/1559845.1559850
10.5555/2612156.2612159
10.1109/FOCS.2007.66
10.1109/FOCS.2013.53
10.1109/ICASSP.2018.8461375
10.1515/popets-2015-0023
10.1109/CVPR.2019.00220
10.1145/2810103.2813687
10.14778/1453856.1453874
10.1145/3418290
10.1109/TIFS.2020.2980835
10.1109/TDSC.2019.2949041
10.1145/2983323.2983841
10.1007/978-3-642-39077-7_5
10.1145/3209978.3210008
10.1007/s10579-009-9111-2
10.1257/pandp.20191109
10.1007/978-3-030-17138-4_6
10.1109/FG.2015.7285021
10.1109/TDSC.2019.2960239
10.1145/2660267.2660348
10.1080/01621459.1965.10480775
10.1109/ICME.2019.00140
10.18653/v1/2021.trustnlp-1.3
10.1145/3292500.3330885
10.1515/popets-2016-0047
10.29012/jpc.v5i1.625
10.1109/CDC.2016.7798524
10.1145/2508859.2516735
10.32473/flairs.v34i1.128463
10.1109/ICME46284.2020.9102875
10.1145/3274783.3274855
10.29012/jpc.715
10.1137/090756090
10.1109/CVPR.2018.00530
10.1109/TNSE.2020.3036855
10.1109/CVPR.2016.28
10.5555/3122009.3208010
10.1145/3372297.3417242
10.1109/tip.2003.819861
10.1109/LWC.2020.2999524
10.1109/TKDE.2019.2952351
10.1109/comst.2019.2944748
10.1146/annurev-statistics-060116-054123
10.1145/3336191.3371856
10.1109/TKDE.2021.3073062
10.1007/11681878_14
10.18653/v1/2021.findings-acl.337
10.3115/v1/D14-1162
10.1162/tacl_a_00051
10.1111/j.2517-6161.1994.tb01962.x
10.1109/ICTAI.2015.157
10.2478/popets-2020-0032
10.1007/978-3-030-22479-0_8
10.1109/FOCS.2012.67
10.5555/3524938.3524944
10.1111/j.1540-6261.1961.tb02789.x
10.1145/3387130
10.5555/2423656.2423657
10.1109/MSP.2005.65
10.1109/ICASSP40776.2020.9053868
10.1007/978-3-030-01270-0_37
10.1016/j.csl.2019.101026
10.1007/978-3-540-79228-4_1
10.1109/ICME46284.2020.9102767
10.1109/TKDE.2017.2697856
10.1109/ICDE48307.2020.00050
10.1145/2810103.2813610
10.18653/v1/2020.privatenlp-1.2
10.1007/978-3-642-00457-5_29
10.1109/ICDM.2019.00031
10.2478/popets-2020-0073
10.1109/JIOT.2020.3040019
10.1007/s11042-012-1207-9
10.2478/popets-2020-0007
10.1109/CVPR46437.2021.00641
10.1109/TKDE.2018.2845388
10.1145/3183713.3197390
10.1007/978-3-319-95729-6_10
10.1145/3337064
10.1002/asi.23363
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1145/3490237
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-7341
EndPage 28
ExternalDocumentID 10_1145_3490237
GroupedDBID --Z
-DZ
-~X
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AEMOZ
AENEX
AENSD
AETEA
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKRVB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
WH7
X6Y
XH6
XSW
XZL
YXB
ZCA
ZL0
ID FETCH-LOGICAL-c291t-ce16d1c29cd05716a667ac386d44db9514d1db789463f15e2c69c4b4f9762e013
ISSN 0360-0300
IngestDate Thu Jul 03 08:32:49 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10s
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-ce16d1c29cd05716a667ac386d44db9514d1db789463f15e2c69c4b4f9762e013
ORCID 0000-0003-1677-9525
PageCount 28
ParticipantIDs crossref_primary_10_1145_3490237
crossref_citationtrail_10_1145_3490237
PublicationCentury 2000
PublicationDate 2022-01-31
PublicationDateYYYYMMDD 2022-01-31
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-31
  day: 31
PublicationDecade 2020
PublicationTitle ACM computing surveys
PublicationYear 2022
References Murakami Takao (e_1_3_1_70_2) 2019
Fan Liyue (e_1_3_1_30_2) 2018
Avent Brendan (e_1_3_1_5_2) 2017
e_1_3_1_118_2
e_1_3_1_81_2
Shokri Reza (e_1_3_1_88_2) 2017
e_1_3_1_114_2
e_1_3_1_110_2
e_1_3_1_43_2
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_24_2
e_1_3_1_62_2
e_1_3_1_20_2
Fang Fuming (e_1_3_1_31_2) 2019
e_1_3_1_6_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
Feyisetan Oluwaseyi (e_1_3_1_37_2) 2021
e_1_3_1_106_2
Steil Julian (e_1_3_1_93_2) 2019
e_1_3_1_102_2
Wang Zhibo (e_1_3_1_108_2) 2020
e_1_3_1_121_2
e_1_3_1_32_2
Fernandes Natasha (e_1_3_1_33_2) 2020
e_1_3_1_55_2
e_1_3_1_78_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_74_2
e_1_3_1_97_2
Nickel Maximillian (e_1_3_1_73_2) 2017
e_1_3_1_17_2
Li Jingjie (e_1_3_1_59_2) 2021
e_1_3_1_36_2
Bozkir Efe (e_1_3_1_9_2) 2020
e_1_3_1_119_2
Xiang Zhuolun (e_1_3_1_113_2) 2020
e_1_3_1_115_2
e_1_3_1_80_2
e_1_3_1_111_2
e_1_3_1_23_2
Xu Zekun (e_1_3_1_117_2) 2021
Duchi John C. (e_1_3_1_21_2) 2013
e_1_3_1_42_2
e_1_3_1_84_2
e_1_3_1_3_2
e_1_3_1_27_2
Ruegg Marcus Cuda Christoph (e_1_3_1_16_2) 2009
e_1_3_1_107_2
Fan Liyue (e_1_3_1_29_2) 2020
Li Tao (e_1_3_1_60_2) 2021
Hassan Muneeb Ul (e_1_3_1_46_2) 2020; 13
e_1_3_1_103_2
e_1_3_1_122_2
e_1_3_1_54_2
e_1_3_1_35_2
Nelson Boel (e_1_3_1_72_2) 2019
e_1_3_1_77_2
e_1_3_1_50_2
e_1_3_1_96_2
Feyisetan Oluwaseyi (e_1_3_1_34_2) 2020
e_1_3_1_58_2
e_1_3_1_39_2
Liu Ao (e_1_3_1_61_2) 2019
e_1_3_1_116_2
e_1_3_1_112_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_87_2
e_1_3_1_8_2
e_1_3_1_41_2
e_1_3_1_83_2
e_1_3_1_4_2
Cui Zhihua (e_1_3_1_18_2) 2020; 13
e_1_3_1_26_2
e_1_3_1_49_2
McPherson Richard (e_1_3_1_64_2) 2016
Ganea Octavian (e_1_3_1_40_2) 2018
e_1_3_1_91_2
e_1_3_1_123_2
Mikolov Tomas (e_1_3_1_68_2) 2013
e_1_3_1_100_2
Blocki Jeremiah (e_1_3_1_7_2) 2012
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_11_2
e_1_3_1_53_2
e_1_3_1_95_2
Schein Aaron (e_1_3_1_85_2) 2019
Tschantz Michael Carl (e_1_3_1_99_2) 2020
e_1_3_1_15_2
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_82_2
McSherry Frank (e_1_3_1_65_2) 2007
Chatzikokolakis Konstantinos (e_1_3_1_12_2) 2013
e_1_3_1_44_2
e_1_3_1_67_2
e_1_3_1_86_2
Stausholm Nina Mesing (e_1_3_1_92_2) 2021
e_1_3_1_63_2
Ye Qingqing (e_1_3_1_120_2) 2019
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_109_2
Poddar Rishabh (e_1_3_1_75_2) 2020
Mikolov Tomas (e_1_3_1_69_2) 2013
e_1_3_1_71_2
e_1_3_1_105_2
e_1_3_1_90_2
Wang Han (e_1_3_1_104_2) 2020
e_1_3_1_101_2
e_1_3_1_79_2
e_1_3_1_56_2
e_1_3_1_98_2
e_1_3_1_10_2
e_1_3_1_52_2
e_1_3_1_94_2
e_1_3_1_14_2
References_xml – ident: e_1_3_1_57_2
  doi: 10.1109/CDC.2016.7799441
– ident: e_1_3_1_80_2
  doi: 10.1109/TNSE.2020.3001061
– ident: e_1_3_1_39_2
  doi: 10.1109/ICCV.2009.5459413
– ident: e_1_3_1_20_2
  doi: 10.2478/popets-2020-0028
– ident: e_1_3_1_41_2
  doi: 10.1145/1143844.1143891
– ident: e_1_3_1_71_2
  doi: 10.21437/Interspeech.2019-2647
– ident: e_1_3_1_103_2
  doi: 10.1145/3168389
– ident: e_1_3_1_81_2
  doi: 10.1145/1807167.1807247
– ident: e_1_3_1_76_2
  doi: 10.1016/j.future.2018.02.050
– start-page: 42
  volume-title: Proc. of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS’21)
  year: 2021
  ident: e_1_3_1_92_2
  doi: 10.1145/3452021.3458328
– ident: e_1_3_1_66_2
  doi: 10.1145/1559845.1559850
– ident: e_1_3_1_19_2
  doi: 10.5555/2612156.2612159
– year: 2019
  ident: e_1_3_1_72_2
  article-title: Chasing accuracy and privacy, and catching both: A literature survey on differentially private histogram publication
  publication-title: arXiv preprint, arXiv:1910.14028
– start-page: 94
  volume-title: The 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07)
  year: 2007
  ident: e_1_3_1_65_2
  doi: 10.1109/FOCS.2007.66
– start-page: 429
  volume-title: 54th IEEE Annual Symposium on Foundations of Computer Science (FOCS’13)
  year: 2013
  ident: e_1_3_1_21_2
  doi: 10.1109/FOCS.2013.53
– ident: e_1_3_1_89_2
  doi: 10.1109/ICASSP.2018.8461375
– ident: e_1_3_1_13_2
  doi: 10.1515/popets-2015-0023
– ident: e_1_3_1_111_2
  doi: 10.1109/CVPR.2019.00220
– ident: e_1_3_1_87_2
  doi: 10.1145/2810103.2813687
– ident: e_1_3_1_97_2
  doi: 10.14778/1453856.1453874
– ident: e_1_3_1_102_2
  doi: 10.1145/3418290
– ident: e_1_3_1_118_2
  doi: 10.1109/TIFS.2020.2980835
– year: 2020
  ident: e_1_3_1_33_2
  article-title: Locality sensitive hashing with extended differential privacy
  publication-title: arXiv preprint, arXiv:2010.09393
– ident: e_1_3_1_43_2
  doi: 10.1109/TDSC.2019.2949041
– ident: e_1_3_1_122_2
  doi: 10.1145/2983323.2983841
– year: 2020
  ident: e_1_3_1_9_2
  article-title: Differential Privacy for eye tracking with temporal correlations
  publication-title: Cryptology ePrint Archive, Report 2020/340
– start-page: 82
  volume-title: The 13th Privacy Enhancing Technologies Symposium (PETS’13)
  year: 2013
  ident: e_1_3_1_12_2
  doi: 10.1007/978-3-642-39077-7_5
– volume: 13
  start-page: 241
  issue: 2
  year: 2020
  ident: e_1_3_1_18_2
  article-title: A hybrid blockchain-based identity authentication scheme for multi-WSN
  publication-title: IEEE Transactions on Services Computing
– ident: e_1_3_1_110_2
  doi: 10.1145/3209978.3210008
– year: 2021
  ident: e_1_3_1_60_2
  article-title: Differentially private imaging via latent space manipulation
  publication-title: arXiv preprint arXiv: 2103.05472
– ident: e_1_3_1_56_2
  doi: 10.1007/s10579-009-9111-2
– start-page: 5638
  volume-title: The 36th International Conference on Machine Learning
  year: 2019
  ident: e_1_3_1_85_2
– ident: e_1_3_1_15_2
  doi: 10.1257/pandp.20191109
– start-page: 3
  volume-title: 38th IEEE Symposium on Security and Privacy (S&P’17)
  year: 2017
  ident: e_1_3_1_88_2
– ident: e_1_3_1_32_2
  doi: 10.1007/978-3-030-17138-4_6
– year: 2009
  ident: e_1_3_1_16_2
  article-title: Distance metrics
  publication-title: [EB/OL]
– start-page: 81
  volume-title: The 21st International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (Mobihoc’20)
  year: 2020
  ident: e_1_3_1_108_2
– ident: e_1_3_1_52_2
  doi: 10.1109/FG.2015.7285021
– ident: e_1_3_1_77_2
  doi: 10.1109/TDSC.2019.2960239
– ident: e_1_3_1_26_2
  doi: 10.1145/2660267.2660348
– ident: e_1_3_1_109_2
  doi: 10.1080/01621459.1965.10480775
– volume-title: The AAAI Workshop on Privacy-Preserving Artificial Intelligence
  year: 2020
  ident: e_1_3_1_29_2
– ident: e_1_3_1_28_2
  doi: 10.1109/ICME.2019.00140
– start-page: 1877
  volume-title: The 28th USENIX Security Symposium
  year: 2019
  ident: e_1_3_1_70_2
– start-page: 15
  volume-title: Proc. of the 1st Workshop on Trustworthy Natural Language Processing
  year: 2021
  ident: e_1_3_1_37_2
  doi: 10.18653/v1/2021.trustnlp-1.3
– start-page: 1646
  volume-title: The 35th International Conference on Machine Learning (ICML’18)
  year: 2018
  ident: e_1_3_1_40_2
– volume: 13
  start-page: 263
  issue: 2
  year: 2020
  ident: e_1_3_1_46_2
  article-title: DEAL: Differentially private auction for blockchain-based microgrids energy trading
  publication-title: IEEE Transactions on Services Computing
– ident: e_1_3_1_90_2
  doi: 10.1145/3292500.3330885
– ident: e_1_3_1_48_2
  doi: 10.1515/popets-2016-0047
– ident: e_1_3_1_55_2
  doi: 10.29012/jpc.v5i1.625
– ident: e_1_3_1_58_2
  doi: 10.1109/CDC.2016.7798524
– ident: e_1_3_1_4_2
  doi: 10.1145/2508859.2516735
– start-page: 354
  volume-title: 41st IEEE Symposium on Security and Privacy (S&P’20)
  year: 2020
  ident: e_1_3_1_99_2
– ident: e_1_3_1_115_2
  doi: 10.32473/flairs.v34i1.128463
– ident: e_1_3_1_45_2
  doi: 10.1109/ICME46284.2020.9102875
– ident: e_1_3_1_78_2
  doi: 10.1145/3274783.3274855
– ident: e_1_3_1_49_2
  doi: 10.29012/jpc.715
– year: 2020
  ident: e_1_3_1_34_2
  article-title: Research challenges in designing differentially private text generation mechanisms
  publication-title: arXiv preprint, arXiv:2012.05403
– ident: e_1_3_1_54_2
  doi: 10.1137/090756090
– ident: e_1_3_1_95_2
  doi: 10.1109/CVPR.2018.00530
– ident: e_1_3_1_79_2
  doi: 10.1109/TNSE.2020.3036855
– start-page: 27:1–27:9
  volume-title: The 11th ACM Symposium on Eye Tracking Research & Applications (ETRA’19)
  year: 2019
  ident: e_1_3_1_93_2
– start-page: 908
  volume-title: 17th IEEE International Symposium on Information Theory (ISIT’20)
  year: 2020
  ident: e_1_3_1_113_2
– ident: e_1_3_1_119_2
  doi: 10.1109/CVPR.2016.28
– ident: e_1_3_1_44_2
  doi: 10.5555/3122009.3208010
– ident: e_1_3_1_6_2
  doi: 10.1145/3372297.3417242
– ident: e_1_3_1_107_2
  doi: 10.1109/tip.2003.819861
– ident: e_1_3_1_114_2
  doi: 10.1109/LWC.2020.2999524
– ident: e_1_3_1_51_2
  doi: 10.1109/TKDE.2019.2952351
– ident: e_1_3_1_47_2
  doi: 10.1109/comst.2019.2944748
– start-page: 323
  volume-title: Proc. of the 23rd International Conference on Extending Database Technology (EDBT’20)
  year: 2020
  ident: e_1_3_1_104_2
– ident: e_1_3_1_25_2
  doi: 10.1146/annurev-statistics-060116-054123
– start-page: 6338
  volume-title: The 31st Annual Conference on Neural Information Processing Systems (NeurIPS’17)
  year: 2017
  ident: e_1_3_1_73_2
– ident: e_1_3_1_35_2
  doi: 10.1145/3336191.3371856
– ident: e_1_3_1_50_2
  doi: 10.1109/TKDE.2021.3073062
– ident: e_1_3_1_24_2
  doi: 10.1007/11681878_14
– start-page: 11
  volume-title: Proc. of the 3rd Workshop on Privacy in Natural Language Processing
  year: 2021
  ident: e_1_3_1_117_2
– ident: e_1_3_1_121_2
  doi: 10.18653/v1/2021.findings-acl.337
– ident: e_1_3_1_74_2
  doi: 10.3115/v1/D14-1162
– ident: e_1_3_1_8_2
  doi: 10.1162/tacl_a_00051
– ident: e_1_3_1_63_2
  doi: 10.1111/j.2517-6161.1994.tb01962.x
– ident: e_1_3_1_82_2
  doi: 10.1109/ICTAI.2015.157
– ident: e_1_3_1_67_2
  doi: 10.2478/popets-2020-0032
– ident: e_1_3_1_96_2
  doi: 10.1007/978-3-030-22479-0_8
– start-page: 410
  volume-title: 53rd IEEE Annual Symposium on Foundations of Computer Science (FOCS’12)
  year: 2012
  ident: e_1_3_1_7_2
  doi: 10.1109/FOCS.2012.67
– ident: e_1_3_1_2_2
  doi: 10.5555/3524938.3524944
– ident: e_1_3_1_100_2
  doi: 10.1111/j.1540-6261.1961.tb02789.x
– ident: e_1_3_1_106_2
  doi: 10.1145/3387130
– ident: e_1_3_1_3_2
  doi: 10.5555/2423656.2423657
– ident: e_1_3_1_86_2
  doi: 10.1109/MSP.2005.65
– ident: e_1_3_1_91_2
  doi: 10.1109/ICASSP40776.2020.9053868
– ident: e_1_3_1_112_2
  doi: 10.1007/978-3-030-01270-0_37
– ident: e_1_3_1_101_2
  doi: 10.1016/j.csl.2019.101026
– year: 2016
  ident: e_1_3_1_64_2
  article-title: Defeating image obfuscation with deep learning
  publication-title: arXiv preprint, arXiv:1609.00408
– start-page: 317
  volume-title: 40th IEEE Symposium on Security and Privacy (S&P’19)
  year: 2019
  ident: e_1_3_1_120_2
– ident: e_1_3_1_22_2
  doi: 10.1007/978-3-540-79228-4_1
– start-page: 3111
  volume-title: Proc. of the 27th Annual Conference on Neural Information Processing Systems (NeurIPS’13)
  year: 2013
  ident: e_1_3_1_69_2
– start-page: 747
  volume-title: 26th USENIX Security Symposium
  year: 2017
  ident: e_1_3_1_5_2
– year: 2013
  ident: e_1_3_1_68_2
  article-title: Efficient estimation of word representations in vector space
  publication-title: arXiv preprint, arXiv:1301.3781
– start-page: 155
  volume-title: The 10th ISCA Speech Synthesis Workshop
  year: 2019
  ident: e_1_3_1_31_2
– ident: e_1_3_1_94_2
  doi: 10.1109/ICME46284.2020.9102767
– ident: e_1_3_1_123_2
  doi: 10.1109/TKDE.2017.2697856
– ident: e_1_3_1_42_2
  doi: 10.1109/ICDE48307.2020.00050
– ident: e_1_3_1_98_2
  doi: 10.1145/2810103.2813610
– ident: e_1_3_1_116_2
  doi: 10.18653/v1/2020.privatenlp-1.2
– start-page: 1039
  volume-title: The 29th USENIX Security Symposium
  year: 2020
  ident: e_1_3_1_75_2
– ident: e_1_3_1_23_2
  doi: 10.1007/978-3-642-00457-5_29
– ident: e_1_3_1_11_2
– ident: e_1_3_1_36_2
  doi: 10.1109/ICDM.2019.00031
– ident: e_1_3_1_105_2
  doi: 10.2478/popets-2020-0073
– ident: e_1_3_1_10_2
  doi: 10.1109/JIOT.2020.3040019
– ident: e_1_3_1_83_2
  doi: 10.1007/s11042-012-1207-9
– ident: e_1_3_1_53_2
  doi: 10.2478/popets-2020-0007
– ident: e_1_3_1_14_2
  doi: 10.1109/CVPR46437.2021.00641
– start-page: 28:1–28:10
  volume-title: The 11th ACM Symposium on Eye Tracking Research & Applications (ETRA’19)
  year: 2019
  ident: e_1_3_1_61_2
– ident: e_1_3_1_62_2
  doi: 10.1109/TKDE.2018.2845388
– volume-title: The 30th USENIX Security Symposium
  year: 2021
  ident: e_1_3_1_59_2
– ident: e_1_3_1_17_2
  doi: 10.1145/3183713.3197390
– ident: e_1_3_1_27_2
  doi: 10.1007/978-3-319-95729-6_10
– ident: e_1_3_1_38_2
  doi: 10.1145/3337064
– ident: e_1_3_1_84_2
  doi: 10.1002/asi.23363
– start-page: 264
  volume-title: 6th IEEE International Congress on Big Data
  year: 2018
  ident: e_1_3_1_30_2
SSID ssj0002416
Score 2.6902802
Snippet Huge amounts of unstructured data including image, video, audio, and text are ubiquitously generated and shared, and it is a challenge to protect sensitive...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1
Title A Survey on Differential Privacy for Unstructured Data Content
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X3zxLs4beRBfJNpLmq4vQnHKECeCDqYvo7kUJ9KJdnvw13vSpF2dgpeXUkISaL7mnC8n54LQAVAMqhyPk4BFKaGMJiRhwiGSSd9RUnBPaTtk95p1evSyH_SnBe-K6JKcH4v3b-NK_oMqtAGuOkr2D8hWk0IDvAO-8ASE4fkrjGPY968T2NUAYdtWOsm1CfzmdTjRddy1D2HP5ogda0_zdpInR0VGquyTUT4-6xbe5ePCC_qtmLVi2w-PSWFQvS_VXOEOYKM6htnTOKvbDjzthFEK3TJmyiGwzc3NiLIiMAhJ6Jt0VKWMNImey3_BeauJPLemO02c91epTHUCC59GQBDCqeIpL9tn9FHlJWhipoOBHTiPFjw4C4AwW4jb3avbSuECCbFX0uZjTGy0Hnpih9ZIR4093K2gJUv7cWwwXEVzKltDy2VJDWwl7Do6jbGBFI8yXIcUW0gxQIrrkGINKbaQbqDexfndWYfYEhdEeJGbE6FcJl14FxKIs8sSxsJE-C0mKZUc2C-VruRhK6LMT91AeYJFgnKaAov0FND3TdTIRpnaQpgrrxWEcNxNqa-rL3MYJ6B_iwpoSqMmOizXYCBs_nddhuR5MLPOTYSrji8m5clsl-2fu-ygxekft4sasCxqD_hbzvctfh-Q_EOp
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Differential+Privacy+for+Unstructured+Data+Content&rft.jtitle=ACM+computing+surveys&rft.au=Zhao%2C+Ying&rft.au=Chen%2C+Jinjun&rft.date=2022-01-31&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=54&rft.issue=10s&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1145%2F3490237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3490237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon