A Bidirectional LSTM Prognostics Method Under Multiple Operational Conditions
Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develop...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 66; no. 11; pp. 8792 - 8802 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develops a novel prognostic method based on bidirectional long short-term memory (BLSTM) networks. The method can integrate multiple sensors data with operational conditions data for RUL prediction of engineered systems. The proposed architecture based on BLSTM networks includes three main parts: first, one BLSTM network is used to directly extract features hidden in the multiple raw sensors signals; second, another BLSTM network is employed to learn higher features from operational conditions signals and the learned features from the sensors signals; and, third, fully connected layers and a linear regression layer are stacked to generate the target output of the RUL prediction. Unlike other AI-based prognostic methods, the developed method can simultaneously model both sensors data and operational conditions data in a consolidated framework. The proposed approach is demonstrated through a case study on aircraft turbofan engines, and comparisons with other popular state-of-the-art methods are also presented. |
---|---|
AbstractList | Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develops a novel prognostic method based on bidirectional long short-term memory (BLSTM) networks. The method can integrate multiple sensors data with operational conditions data for RUL prediction of engineered systems. The proposed architecture based on BLSTM networks includes three main parts: first, one BLSTM network is used to directly extract features hidden in the multiple raw sensors signals; second, another BLSTM network is employed to learn higher features from operational conditions signals and the learned features from the sensors signals; and, third, fully connected layers and a linear regression layer are stacked to generate the target output of the RUL prediction. Unlike other AI-based prognostic methods, the developed method can simultaneously model both sensors data and operational conditions data in a consolidated framework. The proposed approach is demonstrated through a case study on aircraft turbofan engines, and comparisons with other popular state-of-the-art methods are also presented. |
Author | Huang, Cheng-Geng Li, Yan-Feng Huang, Hong-Zhong |
Author_xml | – sequence: 1 givenname: Cheng-Geng orcidid: 0000-0001-8538-7248 surname: Huang fullname: Huang, Cheng-Geng email: cheng-geng.huang@hotmail.com organization: Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Hong-Zhong orcidid: 0000-0003-4478-8349 surname: Huang fullname: Huang, Hong-Zhong email: hzhuang@uestc.edu.cn organization: Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Yan-Feng surname: Li fullname: Li, Yan-Feng email: yanfengli@uestc.edu.cn organization: Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China |
BookMark | eNp9kD1PwzAQhi1UJNrCjsQSiTnF58SOPZaKj0qNikQ7R058AVchDnY68O9JacXAwHQn3fucXj0TMmpdi4RcA50BUHW3WT7MGAU1Y1JBKpIzMgbOs1ipVI7ImLJMxpSm4oJMQthRCikHPib5PLq3xnqseuta3USr100evXj31rrQ2ypEOfbvzkTb1qCP8n3T267BaN2h1ydk4VpjD3u4JOe1bgJeneaUbB8fNovneLV-Wi7mq7hiCvq4MrysjaJUpIoB5QnykoE2EgDrhBuBBoVOa8iYKUWi0OiKSpQlZMlwE8mU3B7_dt597jH0xc7t_dAlFIzxJOUyU2xIiWOq8i4Ej3VR2f6ndO-1bQqgxUFdMagrDuqKk7oBpH_AztsP7b_-Q26OiEXE37gUAIyL5BtZRntS |
CODEN | ITIED6 |
CitedBy_id | crossref_primary_10_1177_14759217251317090 crossref_primary_10_1007_s10845_024_02381_8 crossref_primary_10_1016_j_asoc_2022_109604 crossref_primary_10_1016_j_aei_2024_103053 crossref_primary_10_3390_s21030972 crossref_primary_10_1016_j_measurement_2022_111875 crossref_primary_10_1109_ACCESS_2023_3277730 crossref_primary_10_1002_qre_3615 crossref_primary_10_1016_j_dsp_2021_103355 crossref_primary_10_1007_s12206_019_0928_3 crossref_primary_10_1109_TIM_2022_3178994 crossref_primary_10_1016_j_ress_2023_109404 crossref_primary_10_1016_j_conengprac_2024_106080 crossref_primary_10_3390_en14238035 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1109_TIM_2023_3236342 crossref_primary_10_1109_JSEN_2023_3261874 crossref_primary_10_3390_electronics10010039 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_1016_j_measurement_2024_115546 crossref_primary_10_1109_JSEN_2023_3246595 crossref_primary_10_1109_JAS_2022_105746 crossref_primary_10_1002_qre_3740 crossref_primary_10_1016_j_ress_2024_110012 crossref_primary_10_1088_1742_6596_2361_1_012019 crossref_primary_10_1109_TCYB_2021_3124838 crossref_primary_10_1007_s10994_023_06305_0 crossref_primary_10_1016_j_ress_2024_110014 crossref_primary_10_1109_JIOT_2024_3376715 crossref_primary_10_1016_j_conengprac_2023_105840 crossref_primary_10_1109_JSEN_2021_3133622 crossref_primary_10_1016_j_aei_2024_102524 crossref_primary_10_1016_j_asoc_2024_112325 crossref_primary_10_3390_met9090919 crossref_primary_10_1016_j_ress_2023_109776 crossref_primary_10_1177_14727978251314564 crossref_primary_10_1007_s00170_022_09198_w crossref_primary_10_1016_j_engfailanal_2024_108063 crossref_primary_10_1016_j_measurement_2023_114082 crossref_primary_10_1109_ACCESS_2020_2970444 crossref_primary_10_1109_TIE_2020_3003649 crossref_primary_10_1016_j_ress_2023_109096 crossref_primary_10_1080_24725854_2020_1766729 crossref_primary_10_1109_TII_2020_2983760 crossref_primary_10_3390_machines10070552 crossref_primary_10_32604_csse_2021_014100 crossref_primary_10_3390_s24103215 crossref_primary_10_3390_en16093628 crossref_primary_10_1016_j_engappai_2024_109815 crossref_primary_10_1109_JSEN_2021_3119553 crossref_primary_10_1016_j_ress_2021_107927 crossref_primary_10_1016_j_aei_2022_101682 crossref_primary_10_1109_TNSE_2022_3163473 crossref_primary_10_1109_JSEN_2022_3167926 crossref_primary_10_1016_j_cie_2025_110892 crossref_primary_10_1016_j_engappai_2019_103346 crossref_primary_10_1088_1361_6501_ad7eee crossref_primary_10_1016_j_ress_2023_109741 crossref_primary_10_2139_ssrn_4111236 crossref_primary_10_1109_TASE_2023_3267860 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1016_j_knosys_2024_111738 crossref_primary_10_1109_TCSII_2020_3034393 crossref_primary_10_1088_1361_6501_acbed0 crossref_primary_10_1016_j_ress_2024_110596 crossref_primary_10_1016_j_neucom_2021_12_035 crossref_primary_10_1109_TIM_2021_3115207 crossref_primary_10_1109_TIM_2023_3264027 crossref_primary_10_1109_TIP_2022_3147032 crossref_primary_10_1007_s10489_023_04777_0 crossref_primary_10_1016_j_cja_2021_03_031 crossref_primary_10_1016_j_engappai_2024_107868 crossref_primary_10_1016_j_measurement_2020_108205 crossref_primary_10_1016_j_engappai_2024_107872 crossref_primary_10_1109_TIM_2023_3309395 crossref_primary_10_1109_TII_2021_3076803 crossref_primary_10_1016_j_engappai_2024_108160 crossref_primary_10_1088_1361_6501_ad8b62 crossref_primary_10_1016_j_neucom_2021_07_080 crossref_primary_10_1109_TIE_2020_3009604 crossref_primary_10_1109_TIM_2022_3167778 crossref_primary_10_1109_JSEN_2020_3017686 crossref_primary_10_3390_s22207864 crossref_primary_10_1016_j_knosys_2022_109340 crossref_primary_10_1088_1361_6501_ad9bd6 crossref_primary_10_3390_machines12040224 crossref_primary_10_1016_j_isatra_2020_06_023 crossref_primary_10_1109_ACCESS_2020_2998003 crossref_primary_10_1016_j_ress_2022_108758 crossref_primary_10_1109_ACCESS_2021_3052305 crossref_primary_10_17531_ein_2020_1_2 crossref_primary_10_3390_s25020497 crossref_primary_10_1093_jigpal_jzae017 crossref_primary_10_1109_ACCESS_2025_3551772 crossref_primary_10_1016_j_ress_2022_108750 crossref_primary_10_1109_TIE_2021_3057030 crossref_primary_10_3390_app132111893 crossref_primary_10_1016_j_aei_2024_103083 crossref_primary_10_1109_TVT_2023_3342127 crossref_primary_10_1007_s00170_021_07911_9 crossref_primary_10_1080_00224065_2021_1960934 crossref_primary_10_3390_s21248373 crossref_primary_10_1016_j_engappai_2020_103849 crossref_primary_10_1016_j_ifacol_2020_12_2795 crossref_primary_10_1016_j_ress_2023_109456 crossref_primary_10_1109_TII_2020_2999442 crossref_primary_10_1038_s41598_023_40315_1 crossref_primary_10_1109_TR_2023_3349201 crossref_primary_10_1088_1742_6596_2450_1_012006 crossref_primary_10_1016_j_neucom_2020_03_041 crossref_primary_10_1016_j_renene_2021_10_062 crossref_primary_10_7717_peerj_cs_690 crossref_primary_10_3233_JIFS_223461 crossref_primary_10_1016_j_aei_2021_101247 crossref_primary_10_1109_TIM_2024_3398070 crossref_primary_10_52396_JUSTC_2023_0066 crossref_primary_10_1016_j_measurement_2023_112824 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1016_j_suscom_2023_100869 crossref_primary_10_1109_TII_2021_3092361 crossref_primary_10_1109_TMECH_2023_3244282 crossref_primary_10_1016_j_neucom_2021_04_139 crossref_primary_10_1016_j_ress_2023_109662 crossref_primary_10_1142_S0218539324500086 crossref_primary_10_1177_09596518241269642 crossref_primary_10_1109_ACCESS_2021_3059757 crossref_primary_10_1016_j_dsp_2023_104197 crossref_primary_10_1177_1748006X221087503 crossref_primary_10_1016_j_est_2022_104560 crossref_primary_10_1016_j_eswa_2024_124759 crossref_primary_10_1038_s41598_024_52151_y crossref_primary_10_1109_TII_2023_3296896 crossref_primary_10_1016_j_neucom_2021_09_022 crossref_primary_10_1016_j_knosys_2023_110391 crossref_primary_10_1109_TASE_2023_3239004 crossref_primary_10_1002_qre_3494 crossref_primary_10_1016_j_neucom_2022_02_032 crossref_primary_10_1109_ACCESS_2020_3036726 crossref_primary_10_1016_j_measurement_2021_110064 crossref_primary_10_1016_j_knosys_2024_111783 crossref_primary_10_1080_08982112_2020_1754427 crossref_primary_10_3390_s20030920 crossref_primary_10_1088_1361_6501_ac7f7f crossref_primary_10_1109_TVT_2023_3319377 crossref_primary_10_1016_j_eswa_2023_120902 crossref_primary_10_1109_JSEN_2021_3136622 crossref_primary_10_1088_1361_6501_abb551 crossref_primary_10_1007_s10489_022_03670_6 crossref_primary_10_1016_j_ress_2023_109247 crossref_primary_10_1109_TVT_2024_3373632 crossref_primary_10_1109_ACCESS_2021_3052465 crossref_primary_10_1109_TII_2022_3202832 crossref_primary_10_1360_SST_2022_0464 crossref_primary_10_1016_j_ress_2024_110769 crossref_primary_10_3390_s24113551 crossref_primary_10_1109_JSEN_2024_3485750 crossref_primary_10_1109_TIM_2022_3227956 crossref_primary_10_1109_JSEN_2022_3175722 crossref_primary_10_1109_TII_2021_3121326 crossref_primary_10_3390_app12010200 crossref_primary_10_1109_JSEN_2020_3046653 crossref_primary_10_1016_j_jmsy_2023_11_009 crossref_primary_10_1016_j_ress_2024_110651 crossref_primary_10_1080_24725854_2023_2255887 crossref_primary_10_17531_ein_2020_4_5 crossref_primary_10_1016_j_ress_2021_107878 crossref_primary_10_1016_j_aei_2023_101898 crossref_primary_10_1007_s40430_023_04309_4 crossref_primary_10_1109_JSEN_2024_3514168 crossref_primary_10_3233_IDA_227099 crossref_primary_10_1145_3705893 crossref_primary_10_1080_00423114_2022_2158879 crossref_primary_10_1080_24725854_2023_2223245 crossref_primary_10_1088_1361_6501_ac84f6 crossref_primary_10_1088_1361_6501_ac84f8 crossref_primary_10_1109_TAI_2023_3333767 crossref_primary_10_1016_j_jmsy_2021_03_012 crossref_primary_10_1109_TII_2023_3288225 crossref_primary_10_1007_s42835_024_02065_6 crossref_primary_10_1109_JIOT_2024_3459968 crossref_primary_10_1109_TNNLS_2023_3305601 crossref_primary_10_1109_ACCESS_2023_3263196 crossref_primary_10_1109_TMECH_2021_3079729 crossref_primary_10_1109_TNNLS_2023_3330487 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1016_j_measurement_2024_116345 crossref_primary_10_1016_j_engappai_2023_107278 crossref_primary_10_1007_s12206_022_0901_4 crossref_primary_10_1109_TR_2019_2948705 crossref_primary_10_1016_j_cnsns_2025_108634 crossref_primary_10_1016_j_ymssp_2022_109679 crossref_primary_10_1016_j_ress_2022_108531 crossref_primary_10_3390_machines11030341 crossref_primary_10_1109_TII_2022_3182789 crossref_primary_10_1016_j_neucom_2022_04_055 crossref_primary_10_1109_TII_2024_3476522 crossref_primary_10_2514_1_I011223 crossref_primary_10_1016_j_measurement_2023_113163 crossref_primary_10_1016_j_ress_2021_108297 crossref_primary_10_1016_j_knosys_2025_113152 crossref_primary_10_1109_TII_2022_3169465 crossref_primary_10_1109_TAI_2023_3241896 crossref_primary_10_1007_s12206_022_0102_1 crossref_primary_10_1088_1757_899X_1207_1_012016 crossref_primary_10_1088_1361_6501_ad3b2c crossref_primary_10_1016_j_aei_2020_101136 crossref_primary_10_1016_j_measurement_2021_109685 crossref_primary_10_1016_j_ymssp_2019_106602 crossref_primary_10_1109_TASE_2024_3372711 crossref_primary_10_1016_j_ress_2022_108526 crossref_primary_10_1016_j_ress_2022_108886 crossref_primary_10_1109_TIM_2024_3428643 crossref_primary_10_1007_s12206_021_1109_8 crossref_primary_10_1007_s10489_023_05010_8 crossref_primary_10_3390_s23094549 crossref_primary_10_1016_j_measurement_2025_116725 crossref_primary_10_1016_j_neucom_2020_12_028 crossref_primary_10_1016_j_ress_2024_110681 crossref_primary_10_1109_TII_2023_3326503 crossref_primary_10_1016_j_ress_2024_110685 crossref_primary_10_1109_TIM_2021_3126006 crossref_primary_10_1016_j_ress_2021_107946 crossref_primary_10_1109_TII_2022_3210250 crossref_primary_10_1109_TII_2023_3271661 crossref_primary_10_1109_JSEN_2023_3342884 crossref_primary_10_1016_j_heliyon_2024_e25120 crossref_primary_10_3390_math12101569 crossref_primary_10_3390_electronics11213619 crossref_primary_10_1016_j_ress_2022_108599 crossref_primary_10_1088_1361_6501_acda52 crossref_primary_10_1109_JIOT_2024_3363610 crossref_primary_10_1109_TII_2023_3240599 crossref_primary_10_1016_j_ress_2023_109162 crossref_primary_10_3390_su162310400 crossref_primary_10_1016_j_ress_2023_109181 crossref_primary_10_1016_j_engappai_2023_105885 crossref_primary_10_1007_s00170_023_10981_6 crossref_primary_10_1016_j_compind_2020_103295 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1061_JAEEEZ_ASENG_5887 crossref_primary_10_1109_JSEN_2024_3494020 crossref_primary_10_3390_app15020966 crossref_primary_10_1177_09544054241256996 crossref_primary_10_1016_j_isatra_2024_06_015 crossref_primary_10_1088_1361_6501_ad6c73 crossref_primary_10_3390_s20195633 crossref_primary_10_1109_ACCESS_2021_3058387 crossref_primary_10_1016_j_ress_2024_110540 crossref_primary_10_1111_jocn_17612 crossref_primary_10_3390_en14071894 crossref_primary_10_1016_j_energy_2023_127068 crossref_primary_10_1016_j_neucom_2020_06_052 crossref_primary_10_3390_electronics12061351 crossref_primary_10_1002_sys_21651 crossref_primary_10_1016_j_isatra_2023_11_043 crossref_primary_10_1109_TMECH_2020_2995757 crossref_primary_10_1007_s12206_021_1115_x crossref_primary_10_1016_j_measurement_2021_110354 crossref_primary_10_1016_j_ress_2023_109821 crossref_primary_10_1007_s13349_022_00570_8 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ress_2022_108330 crossref_primary_10_1016_j_asoc_2023_110419 crossref_primary_10_1016_j_ress_2021_108012 crossref_primary_10_1109_JIOT_2024_3363837 crossref_primary_10_1007_s00170_022_09452_1 crossref_primary_10_1016_j_ymssp_2023_110187 crossref_primary_10_1002_qre_2556 crossref_primary_10_1016_j_cie_2022_108300 crossref_primary_10_1016_j_microrel_2023_114958 crossref_primary_10_1109_TII_2020_3032690 crossref_primary_10_1016_j_jmsy_2022_05_010 crossref_primary_10_1016_j_est_2022_106583 crossref_primary_10_1109_TIM_2021_3053992 crossref_primary_10_1109_TII_2024_3400299 crossref_primary_10_1109_TIE_2021_3076713 crossref_primary_10_1109_TII_2023_3254656 crossref_primary_10_1016_j_ymssp_2022_109598 crossref_primary_10_1088_1361_6501_ace733 crossref_primary_10_1016_j_ress_2022_108568 crossref_primary_10_1109_JSEN_2020_2979797 crossref_primary_10_3390_app112210592 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1109_TMM_2024_3443627 crossref_primary_10_2139_ssrn_4165241 crossref_primary_10_1016_j_measurement_2024_114242 crossref_primary_10_1007_s40436_022_00427_9 crossref_primary_10_1016_j_ress_2021_108265 crossref_primary_10_1007_s00521_025_10995_z crossref_primary_10_1109_TGCN_2024_3403901 |
Cites_doi | 10.1109/TIE.2017.2733487 10.1016/j.ress.2016.02.003 10.3390/s17020273 10.1109/TR.2016.2575449 10.1007/s12206-014-1222-z 10.1177/1748006X15573046 10.1109/PHM.2008.4711422 10.1016/j.asoc.2018.05.015 10.1016/j.neunet.2005.06.042 10.1109/5.58337 10.1109/TIE.2017.2767551 10.1109/TII.2018.2869429 10.1016/j.ymssp.2008.09.006 10.1109/ICPHM.2017.7998311 10.1109/TNNLS.2016.2582924 10.1016/j.ymssp.2017.11.024 10.1109/TIE.2004.824875 10.1016/j.ymssp.2018.05.050 10.1109/TEC.2005.847955 10.1016/S0888-3270(03)00079-7 10.1016/j.renene.2012.03.003 10.1016/j.rser.2009.06.031 10.1080/00401706.2013.830074 10.1109/TIE.2018.2838078 10.1109/PHM.2008.4711423 10.1109/TIE.2018.2844856 10.1007/s10845-009-0356-9 10.1016/j.procir.2014.02.001 10.1109/TIE.2017.2733438 10.1109/PHM.2008.4711414 10.1109/TNNLS.2015.2504389 10.1016/j.ress.2017.11.021 10.1109/TNNLS.2016.2582798 10.1016/j.ymssp.2017.11.016 10.1109/TSMC.2017.2697842 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIE.2019.2891463 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9948 |
EndPage | 8802 |
ExternalDocumentID | 10_1109_TIE_2019_2891463 8611256 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51405065 funderid: 10.13039/501100001809 – fundername: China Scholarship Council grantid: 201706070061 funderid: 10.13039/501100004543 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-cd5bfd90064921053e5b21ad811ef35d6ede6a4f172db639edac08e8b1736ed63 |
IEDL.DBID | RIE |
ISSN | 0278-0046 |
IngestDate | Mon Jun 30 10:12:48 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Tue Jul 01 00:16:30 EDT 2025 Wed Aug 27 05:52:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-cd5bfd90064921053e5b21ad811ef35d6ede6a4f172db639edac08e8b1736ed63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8538-7248 0000-0003-4478-8349 |
PQID | 2253458792 |
PQPubID | 85464 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TIE_2019_2891463 ieee_primary_8611256 proquest_journals_2253458792 crossref_primary_10_1109_TIE_2019_2891463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industrial electronics (1982) |
PublicationTitleAbbrev | TIE |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 glorot (ref32) 0 ref21 jozefowicz (ref34) 0 ref28 ref27 ref29 ref8 srivastava (ref37) 2014; 15 ref7 ref9 babu (ref40) 0 ref4 ref3 saxe (ref33) 2013 ref6 ref5 kingma (ref36) 2014 |
References_xml | – ident: ref15 doi: 10.1109/TIE.2017.2733487 – ident: ref27 doi: 10.1016/j.ress.2016.02.003 – year: 2014 ident: ref36 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – start-page: 2342 year: 0 ident: ref34 article-title: An empirical exploration of recurrent network architectures publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.3390/s17020273 – ident: ref26 doi: 10.1109/TR.2016.2575449 – ident: ref12 doi: 10.1007/s12206-014-1222-z – ident: ref8 doi: 10.1177/1748006X15573046 – ident: ref38 doi: 10.1109/PHM.2008.4711422 – ident: ref6 doi: 10.1016/j.asoc.2018.05.015 – ident: ref30 doi: 10.1016/j.neunet.2005.06.042 – ident: ref35 doi: 10.1109/5.58337 – ident: ref13 doi: 10.1109/TIE.2017.2767551 – ident: ref10 doi: 10.1109/TII.2018.2869429 – ident: ref5 doi: 10.1016/j.ymssp.2008.09.006 – ident: ref39 doi: 10.1109/ICPHM.2017.7998311 – year: 2013 ident: ref33 article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks publication-title: arXiv 1312 6120 – ident: ref31 doi: 10.1109/TNNLS.2016.2582924 – ident: ref24 doi: 10.1016/j.ymssp.2017.11.024 – ident: ref18 doi: 10.1109/TIE.2004.824875 – ident: ref25 doi: 10.1016/j.ymssp.2018.05.050 – ident: ref1 doi: 10.1109/TEC.2005.847955 – start-page: 214 year: 0 ident: ref40 article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life publication-title: Proc Int Conf Database Syst Adv Appl – ident: ref19 doi: 10.1016/S0888-3270(03)00079-7 – ident: ref2 doi: 10.1016/j.renene.2012.03.003 – volume: 15 start-page: 1929 year: 2014 ident: ref37 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref3 doi: 10.1016/j.rser.2009.06.031 – ident: ref9 doi: 10.1080/00401706.2013.830074 – ident: ref11 doi: 10.1109/TIE.2018.2838078 – ident: ref29 doi: 10.1109/PHM.2008.4711423 – ident: ref21 doi: 10.1109/TIE.2018.2844856 – ident: ref17 doi: 10.1007/s10845-009-0356-9 – ident: ref4 doi: 10.1016/j.procir.2014.02.001 – ident: ref14 doi: 10.1109/TIE.2017.2733438 – ident: ref28 doi: 10.1109/PHM.2008.4711414 – ident: ref41 doi: 10.1109/TNNLS.2015.2504389 – ident: ref16 doi: 10.1016/j.ress.2017.11.021 – ident: ref20 doi: 10.1109/TNNLS.2016.2582798 – start-page: 249 year: 0 ident: ref32 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref7 doi: 10.1016/j.ymssp.2017.11.016 – ident: ref22 doi: 10.1109/TSMC.2017.2697842 |
SSID | ssj0014515 |
Score | 2.6927843 |
Snippet | Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8792 |
SubjectTerms | Aircraft engine Aircraft engines Artificial intelligence Data models data-driven prognostic deep learning (DL) Engines Feature extraction long short-term memory Methods prognostic and health management remaining useful life (RUL) estimation Sensors Testing Training Turbofan engines |
Title | A Bidirectional LSTM Prognostics Method Under Multiple Operational Conditions |
URI | https://ieeexplore.ieee.org/document/8611256 https://www.proquest.com/docview/2253458792 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Jz34qmJ9sQcvgmmbTDbJHqtUVIwKVvAWsrsTEKUptb34693dpMEX4i2Q3bDsTGa-eQMcW1BKfl94Mg7QC3OfPIkUezEGSBhzhcLWDqe30eVjeP3En5bgtKmFISKXfEZd--hi-bpUc-sq6yWRQQc8WoZlY7hVtVpNxCDk1bSCwHaMNUbfIiTZF73R1dDmcImuMS6MYMAvKsjNVPkhiJ12uViHdHGuKqnkpTufya56_9ay8b8H34C1GmayQcUXm7BE4y1Y_dR8sA3pgJ09VxrNuQPZzcMoZffT0qbe2ebNLHXTpZkbjcTSOvOQ3U1oWnsQ2XlpI96Wc7fh8WI4Or_06uEKngqEP_OU5rLQwkISYcw-jsRl4Oc68X0qkOuINEV5WBiAo6WBMaRz1U8okX6M5l2EO9Aal2PaBabQkBQ5oQ5kqBTlGPFYFbksDHghjh3oLe47U3XncTsA4zVzFkhfZIZCmaVQVlOoAyfNjknVdeOPtW174c26-q47cLAgaVb_lm-ZEV4Y8iQWwd7vu_ZhxX67KjY8gNZsOqdDgzpm8six2we_N9L2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58HNSDb7E-9-BFMG2TySbZo0qlaqOCFXoL2d0JiNKW2l789e5u0uIL8RbILll2JjPfvAFOLCglvyk8GQfohblPnkSKvRgDJIy5QmFrh9O7qP0U3vR4bw7OZrUwROSSz6huH10sXw_UxLrKGklk0AGP5mHR6H3ul9Vas5hByMt5BYHtGWvMvmlQsika3euWzeISdWNeGNGAX5SQm6ryQxQ7_XK1Bun0ZGVayUt9MpZ19f6taeN_j74OqxXQZOclZ2zAHPU3YeVT-8EtSM_ZxXOp05xDkHUeuyl7GA1s8p1t38xSN1-aueFILK1yD9n9kEaVD5FdDmzM2_LuNjxdtbqXba8ar-CpQPhjT2kuCy0sKBHG8ONIXAZ-rhPfpwK5jkhTlIeFgThaGiBDOlfNhBLpx2jeRbgDC_1Bn3aBKTRERU6oAxkqRTlGPFZFLgsDX4hjDRrT-85U1XvcjsB4zZwN0hSZoVBmKZRVFKrB6WzHsOy78cfaLXvhs3XVXdfgYErSrPox3zIjvjDkSSyCvd93HcNSu5t2ss713e0-LNvvlKWHB7AwHk3o0GCQsTxyrPcB6qvWPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bidirectional+LSTM+Prognostics+Method+Under+Multiple+Operational+Conditions&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Cheng-Geng%2C+Huang&rft.au=Hong-Zhong%2C+Huang&rft.au=Yan-Feng%2C+Li&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=11&rft.spage=8792&rft_id=info:doi/10.1109%2FTIE.2019.2891463&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |