A Bidirectional LSTM Prognostics Method Under Multiple Operational Conditions

Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develop...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 66; no. 11; pp. 8792 - 8802
Main Authors Huang, Cheng-Geng, Huang, Hong-Zhong, Li, Yan-Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develops a novel prognostic method based on bidirectional long short-term memory (BLSTM) networks. The method can integrate multiple sensors data with operational conditions data for RUL prediction of engineered systems. The proposed architecture based on BLSTM networks includes three main parts: first, one BLSTM network is used to directly extract features hidden in the multiple raw sensors signals; second, another BLSTM network is employed to learn higher features from operational conditions signals and the learned features from the sensors signals; and, third, fully connected layers and a linear regression layer are stacked to generate the target output of the RUL prediction. Unlike other AI-based prognostic methods, the developed method can simultaneously model both sensors data and operational conditions data in a consolidated framework. The proposed approach is demonstrated through a case study on aircraft turbofan engines, and comparisons with other popular state-of-the-art methods are also presented.
AbstractList Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic methods still lack an effective model that can utilize operational conditions data for remaining useful life (RUL) prediction. This paper develops a novel prognostic method based on bidirectional long short-term memory (BLSTM) networks. The method can integrate multiple sensors data with operational conditions data for RUL prediction of engineered systems. The proposed architecture based on BLSTM networks includes three main parts: first, one BLSTM network is used to directly extract features hidden in the multiple raw sensors signals; second, another BLSTM network is employed to learn higher features from operational conditions signals and the learned features from the sensors signals; and, third, fully connected layers and a linear regression layer are stacked to generate the target output of the RUL prediction. Unlike other AI-based prognostic methods, the developed method can simultaneously model both sensors data and operational conditions data in a consolidated framework. The proposed approach is demonstrated through a case study on aircraft turbofan engines, and comparisons with other popular state-of-the-art methods are also presented.
Author Huang, Cheng-Geng
Li, Yan-Feng
Huang, Hong-Zhong
Author_xml – sequence: 1
  givenname: Cheng-Geng
  orcidid: 0000-0001-8538-7248
  surname: Huang
  fullname: Huang, Cheng-Geng
  email: cheng-geng.huang@hotmail.com
  organization: Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Hong-Zhong
  orcidid: 0000-0003-4478-8349
  surname: Huang
  fullname: Huang, Hong-Zhong
  email: hzhuang@uestc.edu.cn
  organization: Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Yan-Feng
  surname: Li
  fullname: Li, Yan-Feng
  email: yanfengli@uestc.edu.cn
  organization: Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9kD1PwzAQhi1UJNrCjsQSiTnF58SOPZaKj0qNikQ7R058AVchDnY68O9JacXAwHQn3fucXj0TMmpdi4RcA50BUHW3WT7MGAU1Y1JBKpIzMgbOs1ipVI7ImLJMxpSm4oJMQthRCikHPib5PLq3xnqseuta3USr100evXj31rrQ2ypEOfbvzkTb1qCP8n3T267BaN2h1ydk4VpjD3u4JOe1bgJeneaUbB8fNovneLV-Wi7mq7hiCvq4MrysjaJUpIoB5QnykoE2EgDrhBuBBoVOa8iYKUWi0OiKSpQlZMlwE8mU3B7_dt597jH0xc7t_dAlFIzxJOUyU2xIiWOq8i4Ej3VR2f6ndO-1bQqgxUFdMagrDuqKk7oBpH_AztsP7b_-Q26OiEXE37gUAIyL5BtZRntS
CODEN ITIED6
CitedBy_id crossref_primary_10_1177_14759217251317090
crossref_primary_10_1007_s10845_024_02381_8
crossref_primary_10_1016_j_asoc_2022_109604
crossref_primary_10_1016_j_aei_2024_103053
crossref_primary_10_3390_s21030972
crossref_primary_10_1016_j_measurement_2022_111875
crossref_primary_10_1109_ACCESS_2023_3277730
crossref_primary_10_1002_qre_3615
crossref_primary_10_1016_j_dsp_2021_103355
crossref_primary_10_1007_s12206_019_0928_3
crossref_primary_10_1109_TIM_2022_3178994
crossref_primary_10_1016_j_ress_2023_109404
crossref_primary_10_1016_j_conengprac_2024_106080
crossref_primary_10_3390_en14238035
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1109_TIM_2023_3236342
crossref_primary_10_1109_JSEN_2023_3261874
crossref_primary_10_3390_electronics10010039
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1016_j_measurement_2024_115546
crossref_primary_10_1109_JSEN_2023_3246595
crossref_primary_10_1109_JAS_2022_105746
crossref_primary_10_1002_qre_3740
crossref_primary_10_1016_j_ress_2024_110012
crossref_primary_10_1088_1742_6596_2361_1_012019
crossref_primary_10_1109_TCYB_2021_3124838
crossref_primary_10_1007_s10994_023_06305_0
crossref_primary_10_1016_j_ress_2024_110014
crossref_primary_10_1109_JIOT_2024_3376715
crossref_primary_10_1016_j_conengprac_2023_105840
crossref_primary_10_1109_JSEN_2021_3133622
crossref_primary_10_1016_j_aei_2024_102524
crossref_primary_10_1016_j_asoc_2024_112325
crossref_primary_10_3390_met9090919
crossref_primary_10_1016_j_ress_2023_109776
crossref_primary_10_1177_14727978251314564
crossref_primary_10_1007_s00170_022_09198_w
crossref_primary_10_1016_j_engfailanal_2024_108063
crossref_primary_10_1016_j_measurement_2023_114082
crossref_primary_10_1109_ACCESS_2020_2970444
crossref_primary_10_1109_TIE_2020_3003649
crossref_primary_10_1016_j_ress_2023_109096
crossref_primary_10_1080_24725854_2020_1766729
crossref_primary_10_1109_TII_2020_2983760
crossref_primary_10_3390_machines10070552
crossref_primary_10_32604_csse_2021_014100
crossref_primary_10_3390_s24103215
crossref_primary_10_3390_en16093628
crossref_primary_10_1016_j_engappai_2024_109815
crossref_primary_10_1109_JSEN_2021_3119553
crossref_primary_10_1016_j_ress_2021_107927
crossref_primary_10_1016_j_aei_2022_101682
crossref_primary_10_1109_TNSE_2022_3163473
crossref_primary_10_1109_JSEN_2022_3167926
crossref_primary_10_1016_j_cie_2025_110892
crossref_primary_10_1016_j_engappai_2019_103346
crossref_primary_10_1088_1361_6501_ad7eee
crossref_primary_10_1016_j_ress_2023_109741
crossref_primary_10_2139_ssrn_4111236
crossref_primary_10_1109_TASE_2023_3267860
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1016_j_knosys_2024_111738
crossref_primary_10_1109_TCSII_2020_3034393
crossref_primary_10_1088_1361_6501_acbed0
crossref_primary_10_1016_j_ress_2024_110596
crossref_primary_10_1016_j_neucom_2021_12_035
crossref_primary_10_1109_TIM_2021_3115207
crossref_primary_10_1109_TIM_2023_3264027
crossref_primary_10_1109_TIP_2022_3147032
crossref_primary_10_1007_s10489_023_04777_0
crossref_primary_10_1016_j_cja_2021_03_031
crossref_primary_10_1016_j_engappai_2024_107868
crossref_primary_10_1016_j_measurement_2020_108205
crossref_primary_10_1016_j_engappai_2024_107872
crossref_primary_10_1109_TIM_2023_3309395
crossref_primary_10_1109_TII_2021_3076803
crossref_primary_10_1016_j_engappai_2024_108160
crossref_primary_10_1088_1361_6501_ad8b62
crossref_primary_10_1016_j_neucom_2021_07_080
crossref_primary_10_1109_TIE_2020_3009604
crossref_primary_10_1109_TIM_2022_3167778
crossref_primary_10_1109_JSEN_2020_3017686
crossref_primary_10_3390_s22207864
crossref_primary_10_1016_j_knosys_2022_109340
crossref_primary_10_1088_1361_6501_ad9bd6
crossref_primary_10_3390_machines12040224
crossref_primary_10_1016_j_isatra_2020_06_023
crossref_primary_10_1109_ACCESS_2020_2998003
crossref_primary_10_1016_j_ress_2022_108758
crossref_primary_10_1109_ACCESS_2021_3052305
crossref_primary_10_17531_ein_2020_1_2
crossref_primary_10_3390_s25020497
crossref_primary_10_1093_jigpal_jzae017
crossref_primary_10_1109_ACCESS_2025_3551772
crossref_primary_10_1016_j_ress_2022_108750
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_3390_app132111893
crossref_primary_10_1016_j_aei_2024_103083
crossref_primary_10_1109_TVT_2023_3342127
crossref_primary_10_1007_s00170_021_07911_9
crossref_primary_10_1080_00224065_2021_1960934
crossref_primary_10_3390_s21248373
crossref_primary_10_1016_j_engappai_2020_103849
crossref_primary_10_1016_j_ifacol_2020_12_2795
crossref_primary_10_1016_j_ress_2023_109456
crossref_primary_10_1109_TII_2020_2999442
crossref_primary_10_1038_s41598_023_40315_1
crossref_primary_10_1109_TR_2023_3349201
crossref_primary_10_1088_1742_6596_2450_1_012006
crossref_primary_10_1016_j_neucom_2020_03_041
crossref_primary_10_1016_j_renene_2021_10_062
crossref_primary_10_7717_peerj_cs_690
crossref_primary_10_3233_JIFS_223461
crossref_primary_10_1016_j_aei_2021_101247
crossref_primary_10_1109_TIM_2024_3398070
crossref_primary_10_52396_JUSTC_2023_0066
crossref_primary_10_1016_j_measurement_2023_112824
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1016_j_suscom_2023_100869
crossref_primary_10_1109_TII_2021_3092361
crossref_primary_10_1109_TMECH_2023_3244282
crossref_primary_10_1016_j_neucom_2021_04_139
crossref_primary_10_1016_j_ress_2023_109662
crossref_primary_10_1142_S0218539324500086
crossref_primary_10_1177_09596518241269642
crossref_primary_10_1109_ACCESS_2021_3059757
crossref_primary_10_1016_j_dsp_2023_104197
crossref_primary_10_1177_1748006X221087503
crossref_primary_10_1016_j_est_2022_104560
crossref_primary_10_1016_j_eswa_2024_124759
crossref_primary_10_1038_s41598_024_52151_y
crossref_primary_10_1109_TII_2023_3296896
crossref_primary_10_1016_j_neucom_2021_09_022
crossref_primary_10_1016_j_knosys_2023_110391
crossref_primary_10_1109_TASE_2023_3239004
crossref_primary_10_1002_qre_3494
crossref_primary_10_1016_j_neucom_2022_02_032
crossref_primary_10_1109_ACCESS_2020_3036726
crossref_primary_10_1016_j_measurement_2021_110064
crossref_primary_10_1016_j_knosys_2024_111783
crossref_primary_10_1080_08982112_2020_1754427
crossref_primary_10_3390_s20030920
crossref_primary_10_1088_1361_6501_ac7f7f
crossref_primary_10_1109_TVT_2023_3319377
crossref_primary_10_1016_j_eswa_2023_120902
crossref_primary_10_1109_JSEN_2021_3136622
crossref_primary_10_1088_1361_6501_abb551
crossref_primary_10_1007_s10489_022_03670_6
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_1109_TVT_2024_3373632
crossref_primary_10_1109_ACCESS_2021_3052465
crossref_primary_10_1109_TII_2022_3202832
crossref_primary_10_1360_SST_2022_0464
crossref_primary_10_1016_j_ress_2024_110769
crossref_primary_10_3390_s24113551
crossref_primary_10_1109_JSEN_2024_3485750
crossref_primary_10_1109_TIM_2022_3227956
crossref_primary_10_1109_JSEN_2022_3175722
crossref_primary_10_1109_TII_2021_3121326
crossref_primary_10_3390_app12010200
crossref_primary_10_1109_JSEN_2020_3046653
crossref_primary_10_1016_j_jmsy_2023_11_009
crossref_primary_10_1016_j_ress_2024_110651
crossref_primary_10_1080_24725854_2023_2255887
crossref_primary_10_17531_ein_2020_4_5
crossref_primary_10_1016_j_ress_2021_107878
crossref_primary_10_1016_j_aei_2023_101898
crossref_primary_10_1007_s40430_023_04309_4
crossref_primary_10_1109_JSEN_2024_3514168
crossref_primary_10_3233_IDA_227099
crossref_primary_10_1145_3705893
crossref_primary_10_1080_00423114_2022_2158879
crossref_primary_10_1080_24725854_2023_2223245
crossref_primary_10_1088_1361_6501_ac84f6
crossref_primary_10_1088_1361_6501_ac84f8
crossref_primary_10_1109_TAI_2023_3333767
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1109_TII_2023_3288225
crossref_primary_10_1007_s42835_024_02065_6
crossref_primary_10_1109_JIOT_2024_3459968
crossref_primary_10_1109_TNNLS_2023_3305601
crossref_primary_10_1109_ACCESS_2023_3263196
crossref_primary_10_1109_TMECH_2021_3079729
crossref_primary_10_1109_TNNLS_2023_3330487
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_measurement_2024_116345
crossref_primary_10_1016_j_engappai_2023_107278
crossref_primary_10_1007_s12206_022_0901_4
crossref_primary_10_1109_TR_2019_2948705
crossref_primary_10_1016_j_cnsns_2025_108634
crossref_primary_10_1016_j_ymssp_2022_109679
crossref_primary_10_1016_j_ress_2022_108531
crossref_primary_10_3390_machines11030341
crossref_primary_10_1109_TII_2022_3182789
crossref_primary_10_1016_j_neucom_2022_04_055
crossref_primary_10_1109_TII_2024_3476522
crossref_primary_10_2514_1_I011223
crossref_primary_10_1016_j_measurement_2023_113163
crossref_primary_10_1016_j_ress_2021_108297
crossref_primary_10_1016_j_knosys_2025_113152
crossref_primary_10_1109_TII_2022_3169465
crossref_primary_10_1109_TAI_2023_3241896
crossref_primary_10_1007_s12206_022_0102_1
crossref_primary_10_1088_1757_899X_1207_1_012016
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1016_j_aei_2020_101136
crossref_primary_10_1016_j_measurement_2021_109685
crossref_primary_10_1016_j_ymssp_2019_106602
crossref_primary_10_1109_TASE_2024_3372711
crossref_primary_10_1016_j_ress_2022_108526
crossref_primary_10_1016_j_ress_2022_108886
crossref_primary_10_1109_TIM_2024_3428643
crossref_primary_10_1007_s12206_021_1109_8
crossref_primary_10_1007_s10489_023_05010_8
crossref_primary_10_3390_s23094549
crossref_primary_10_1016_j_measurement_2025_116725
crossref_primary_10_1016_j_neucom_2020_12_028
crossref_primary_10_1016_j_ress_2024_110681
crossref_primary_10_1109_TII_2023_3326503
crossref_primary_10_1016_j_ress_2024_110685
crossref_primary_10_1109_TIM_2021_3126006
crossref_primary_10_1016_j_ress_2021_107946
crossref_primary_10_1109_TII_2022_3210250
crossref_primary_10_1109_TII_2023_3271661
crossref_primary_10_1109_JSEN_2023_3342884
crossref_primary_10_1016_j_heliyon_2024_e25120
crossref_primary_10_3390_math12101569
crossref_primary_10_3390_electronics11213619
crossref_primary_10_1016_j_ress_2022_108599
crossref_primary_10_1088_1361_6501_acda52
crossref_primary_10_1109_JIOT_2024_3363610
crossref_primary_10_1109_TII_2023_3240599
crossref_primary_10_1016_j_ress_2023_109162
crossref_primary_10_3390_su162310400
crossref_primary_10_1016_j_ress_2023_109181
crossref_primary_10_1016_j_engappai_2023_105885
crossref_primary_10_1007_s00170_023_10981_6
crossref_primary_10_1016_j_compind_2020_103295
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1061_JAEEEZ_ASENG_5887
crossref_primary_10_1109_JSEN_2024_3494020
crossref_primary_10_3390_app15020966
crossref_primary_10_1177_09544054241256996
crossref_primary_10_1016_j_isatra_2024_06_015
crossref_primary_10_1088_1361_6501_ad6c73
crossref_primary_10_3390_s20195633
crossref_primary_10_1109_ACCESS_2021_3058387
crossref_primary_10_1016_j_ress_2024_110540
crossref_primary_10_1111_jocn_17612
crossref_primary_10_3390_en14071894
crossref_primary_10_1016_j_energy_2023_127068
crossref_primary_10_1016_j_neucom_2020_06_052
crossref_primary_10_3390_electronics12061351
crossref_primary_10_1002_sys_21651
crossref_primary_10_1016_j_isatra_2023_11_043
crossref_primary_10_1109_TMECH_2020_2995757
crossref_primary_10_1007_s12206_021_1115_x
crossref_primary_10_1016_j_measurement_2021_110354
crossref_primary_10_1016_j_ress_2023_109821
crossref_primary_10_1007_s13349_022_00570_8
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2022_108330
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1016_j_ress_2021_108012
crossref_primary_10_1109_JIOT_2024_3363837
crossref_primary_10_1007_s00170_022_09452_1
crossref_primary_10_1016_j_ymssp_2023_110187
crossref_primary_10_1002_qre_2556
crossref_primary_10_1016_j_cie_2022_108300
crossref_primary_10_1016_j_microrel_2023_114958
crossref_primary_10_1109_TII_2020_3032690
crossref_primary_10_1016_j_jmsy_2022_05_010
crossref_primary_10_1016_j_est_2022_106583
crossref_primary_10_1109_TIM_2021_3053992
crossref_primary_10_1109_TII_2024_3400299
crossref_primary_10_1109_TIE_2021_3076713
crossref_primary_10_1109_TII_2023_3254656
crossref_primary_10_1016_j_ymssp_2022_109598
crossref_primary_10_1088_1361_6501_ace733
crossref_primary_10_1016_j_ress_2022_108568
crossref_primary_10_1109_JSEN_2020_2979797
crossref_primary_10_3390_app112210592
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1109_TMM_2024_3443627
crossref_primary_10_2139_ssrn_4165241
crossref_primary_10_1016_j_measurement_2024_114242
crossref_primary_10_1007_s40436_022_00427_9
crossref_primary_10_1016_j_ress_2021_108265
crossref_primary_10_1007_s00521_025_10995_z
crossref_primary_10_1109_TGCN_2024_3403901
Cites_doi 10.1109/TIE.2017.2733487
10.1016/j.ress.2016.02.003
10.3390/s17020273
10.1109/TR.2016.2575449
10.1007/s12206-014-1222-z
10.1177/1748006X15573046
10.1109/PHM.2008.4711422
10.1016/j.asoc.2018.05.015
10.1016/j.neunet.2005.06.042
10.1109/5.58337
10.1109/TIE.2017.2767551
10.1109/TII.2018.2869429
10.1016/j.ymssp.2008.09.006
10.1109/ICPHM.2017.7998311
10.1109/TNNLS.2016.2582924
10.1016/j.ymssp.2017.11.024
10.1109/TIE.2004.824875
10.1016/j.ymssp.2018.05.050
10.1109/TEC.2005.847955
10.1016/S0888-3270(03)00079-7
10.1016/j.renene.2012.03.003
10.1016/j.rser.2009.06.031
10.1080/00401706.2013.830074
10.1109/TIE.2018.2838078
10.1109/PHM.2008.4711423
10.1109/TIE.2018.2844856
10.1007/s10845-009-0356-9
10.1016/j.procir.2014.02.001
10.1109/TIE.2017.2733438
10.1109/PHM.2008.4711414
10.1109/TNNLS.2015.2504389
10.1016/j.ress.2017.11.021
10.1109/TNNLS.2016.2582798
10.1016/j.ymssp.2017.11.016
10.1109/TSMC.2017.2697842
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2019.2891463
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 8802
ExternalDocumentID 10_1109_TIE_2019_2891463
8611256
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51405065
  funderid: 10.13039/501100001809
– fundername: China Scholarship Council
  grantid: 201706070061
  funderid: 10.13039/501100004543
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-cd5bfd90064921053e5b21ad811ef35d6ede6a4f172db639edac08e8b1736ed63
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:12:48 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Jul 01 00:16:30 EDT 2025
Wed Aug 27 05:52:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cd5bfd90064921053e5b21ad811ef35d6ede6a4f172db639edac08e8b1736ed63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8538-7248
0000-0003-4478-8349
PQID 2253458792
PQPubID 85464
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIE_2019_2891463
ieee_primary_8611256
proquest_journals_2253458792
crossref_primary_10_1109_TIE_2019_2891463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
glorot (ref32) 0
ref21
jozefowicz (ref34) 0
ref28
ref27
ref29
ref8
srivastava (ref37) 2014; 15
ref7
ref9
babu (ref40) 0
ref4
ref3
saxe (ref33) 2013
ref6
ref5
kingma (ref36) 2014
References_xml – ident: ref15
  doi: 10.1109/TIE.2017.2733487
– ident: ref27
  doi: 10.1016/j.ress.2016.02.003
– year: 2014
  ident: ref36
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– start-page: 2342
  year: 0
  ident: ref34
  article-title: An empirical exploration of recurrent network architectures
  publication-title: Proc Int Conf Mach Learn
– ident: ref23
  doi: 10.3390/s17020273
– ident: ref26
  doi: 10.1109/TR.2016.2575449
– ident: ref12
  doi: 10.1007/s12206-014-1222-z
– ident: ref8
  doi: 10.1177/1748006X15573046
– ident: ref38
  doi: 10.1109/PHM.2008.4711422
– ident: ref6
  doi: 10.1016/j.asoc.2018.05.015
– ident: ref30
  doi: 10.1016/j.neunet.2005.06.042
– ident: ref35
  doi: 10.1109/5.58337
– ident: ref13
  doi: 10.1109/TIE.2017.2767551
– ident: ref10
  doi: 10.1109/TII.2018.2869429
– ident: ref5
  doi: 10.1016/j.ymssp.2008.09.006
– ident: ref39
  doi: 10.1109/ICPHM.2017.7998311
– year: 2013
  ident: ref33
  article-title: Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
  publication-title: arXiv 1312 6120
– ident: ref31
  doi: 10.1109/TNNLS.2016.2582924
– ident: ref24
  doi: 10.1016/j.ymssp.2017.11.024
– ident: ref18
  doi: 10.1109/TIE.2004.824875
– ident: ref25
  doi: 10.1016/j.ymssp.2018.05.050
– ident: ref1
  doi: 10.1109/TEC.2005.847955
– start-page: 214
  year: 0
  ident: ref40
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
  publication-title: Proc Int Conf Database Syst Adv Appl
– ident: ref19
  doi: 10.1016/S0888-3270(03)00079-7
– ident: ref2
  doi: 10.1016/j.renene.2012.03.003
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref37
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1016/j.rser.2009.06.031
– ident: ref9
  doi: 10.1080/00401706.2013.830074
– ident: ref11
  doi: 10.1109/TIE.2018.2838078
– ident: ref29
  doi: 10.1109/PHM.2008.4711423
– ident: ref21
  doi: 10.1109/TIE.2018.2844856
– ident: ref17
  doi: 10.1007/s10845-009-0356-9
– ident: ref4
  doi: 10.1016/j.procir.2014.02.001
– ident: ref14
  doi: 10.1109/TIE.2017.2733438
– ident: ref28
  doi: 10.1109/PHM.2008.4711414
– ident: ref41
  doi: 10.1109/TNNLS.2015.2504389
– ident: ref16
  doi: 10.1016/j.ress.2017.11.021
– ident: ref20
  doi: 10.1109/TNNLS.2016.2582798
– start-page: 249
  year: 0
  ident: ref32
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref7
  doi: 10.1016/j.ymssp.2017.11.016
– ident: ref22
  doi: 10.1109/TSMC.2017.2697842
SSID ssj0014515
Score 2.6927843
Snippet Modern engineered systems generally work under complex operational conditions. However, most of the existing artificial intelligence (AI)-based prognostic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8792
SubjectTerms Aircraft engine
Aircraft engines
Artificial intelligence
Data models
data-driven prognostic
deep learning (DL)
Engines
Feature extraction
long short-term memory
Methods
prognostic and health management
remaining useful life (RUL) estimation
Sensors
Testing
Training
Turbofan engines
Title A Bidirectional LSTM Prognostics Method Under Multiple Operational Conditions
URI https://ieeexplore.ieee.org/document/8611256
https://www.proquest.com/docview/2253458792
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Jz34qmJ9sQcvgmmbTDbJHqtUVIwKVvAWsrsTEKUptb34693dpMEX4i2Q3bDsTGa-eQMcW1BKfl94Mg7QC3OfPIkUezEGSBhzhcLWDqe30eVjeP3En5bgtKmFISKXfEZd--hi-bpUc-sq6yWRQQc8WoZlY7hVtVpNxCDk1bSCwHaMNUbfIiTZF73R1dDmcImuMS6MYMAvKsjNVPkhiJ12uViHdHGuKqnkpTufya56_9ay8b8H34C1GmayQcUXm7BE4y1Y_dR8sA3pgJ09VxrNuQPZzcMoZffT0qbe2ebNLHXTpZkbjcTSOvOQ3U1oWnsQ2XlpI96Wc7fh8WI4Or_06uEKngqEP_OU5rLQwkISYcw-jsRl4Oc68X0qkOuINEV5WBiAo6WBMaRz1U8okX6M5l2EO9Aal2PaBabQkBQ5oQ5kqBTlGPFYFbksDHghjh3oLe47U3XncTsA4zVzFkhfZIZCmaVQVlOoAyfNjknVdeOPtW174c26-q47cLAgaVb_lm-ZEV4Y8iQWwd7vu_ZhxX67KjY8gNZsOqdDgzpm8six2we_N9L2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB58HNSDb7E-9-BFMG2TySbZo0qlaqOCFXoL2d0JiNKW2l789e5u0uIL8RbILll2JjPfvAFOLCglvyk8GQfohblPnkSKvRgDJIy5QmFrh9O7qP0U3vR4bw7OZrUwROSSz6huH10sXw_UxLrKGklk0AGP5mHR6H3ul9Vas5hByMt5BYHtGWvMvmlQsika3euWzeISdWNeGNGAX5SQm6ryQxQ7_XK1Bun0ZGVayUt9MpZ19f6taeN_j74OqxXQZOclZ2zAHPU3YeVT-8EtSM_ZxXOp05xDkHUeuyl7GA1s8p1t38xSN1-aueFILK1yD9n9kEaVD5FdDmzM2_LuNjxdtbqXba8ar-CpQPhjT2kuCy0sKBHG8ONIXAZ-rhPfpwK5jkhTlIeFgThaGiBDOlfNhBLpx2jeRbgDC_1Bn3aBKTRERU6oAxkqRTlGPFZFLgsDX4hjDRrT-85U1XvcjsB4zZwN0hSZoVBmKZRVFKrB6WzHsOy78cfaLXvhs3XVXdfgYErSrPox3zIjvjDkSSyCvd93HcNSu5t2ss713e0-LNvvlKWHB7AwHk3o0GCQsTxyrPcB6qvWPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bidirectional+LSTM+Prognostics+Method+Under+Multiple+Operational+Conditions&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Cheng-Geng%2C+Huang&rft.au=Hong-Zhong%2C+Huang&rft.au=Yan-Feng%2C+Li&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=66&rft.issue=11&rft.spage=8792&rft_id=info:doi/10.1109%2FTIE.2019.2891463&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon