Fully Distributed Sequential Hypothesis Testing: Algorithms and Asymptotic Analyses
This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where ea...
Saved in:
Published in | IEEE transactions on information theory Vol. 64; no. 4; pp. 2742 - 2758 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where each sensor can observe samples over time, access the information from the adjacent sensors, and perform the sequential test based on its own decision statistic. Different from most literature, the sampling process and the information exchange process in our framework take place simultaneously (or, at least in comparable time-scales), thus cannot be decoupled from one another. Our goal is to achieve second-order asymptotically optimal performance at every sensor, i.e., the average detection delay is within a constant gap from the centralized optimal sequential test as the error rates approach zero for the fixed number of sensors. To that end, a type of test procedure that resembles the well-known sequential probability ratio test (SPRT), termed as distributed SPRT (DSPRT) in this paper, is studied based on two message-passing schemes, respectively. The first scheme features the dissemination of the raw samples. In specific, every sample propagates over the network by being relayed from one sensor to another until it reaches all the sensors in the network. Although the sample propagation-based DSPRT is shown to yield the asymptotically optimal performance at each sensor, it incurs excessive inter-sensor communication overhead due to the exchange of raw samples with index information. The second scheme adopts the consensus algorithm, where the local decision statistic is exchanged between sensors instead of the raw samples, thus significantly lowering the communication requirement compared with the first scheme. In particular, the decision statistic for DSPRT at each sensor is updated by the weighted average of the decision statistics in the neighborhood at every message-passing step. We show that, under certain regularity conditions, the consensus algorithm-based DSPRT also yields the second-order asymptotically optimal performance at all sensors given a fixed number of sensors. Our asymptotic analyses of the two message-passing-based DSPRTs are then corroborated by simulations using the Gaussian and Laplacian samples. |
---|---|
AbstractList | This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where each sensor can observe samples over time, access the information from the adjacent sensors, and perform the sequential test based on its own decision statistic. Different from most literature, the sampling process and the information exchange process in our framework take place simultaneously (or, at least in comparable time-scales), thus cannot be decoupled from one another. Our goal is to achieve second-order asymptotically optimal performance at every sensor, i.e., the average detection delay is within a constant gap from the centralized optimal sequential test as the error rates approach zero for the fixed number of sensors. To that end, a type of test procedure that resembles the well-known sequential probability ratio test (SPRT), termed as distributed SPRT (DSPRT) in this paper, is studied based on two message-passing schemes, respectively. The first scheme features the dissemination of the raw samples. In specific, every sample propagates over the network by being relayed from one sensor to another until it reaches all the sensors in the network. Although the sample propagation-based DSPRT is shown to yield the asymptotically optimal performance at each sensor, it incurs excessive intersensor communication overhead due to the exchange of raw samples with index information. The second scheme adopts the consensus algorithm, where the local decision statistic is exchanged between sensors instead of the raw samples, thus significantly lowering the communication requirement compared with the first scheme. In particular, the decision statistic for DSPRT at each sensor is updated by the weighted average of the decision statistics in the neighborhood at every message-passing step. We show that, under certain regularity conditions, the consensus algorithm-based DSPRT also yields the secondorder asymptotically optimal performance at all sensors given a fixed number of sensors. Our asymptotic analyses of the two message-passing-based DSPRTs are then corroborated by simulations using the Gaussian and Laplacian samples. This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where each sensor can observe samples over time, access the information from the adjacent sensors, and perform the sequential test based on its own decision statistic. Different from most literature, the sampling process and the information exchange process in our framework take place simultaneously (or, at least in comparable time-scales), thus cannot be decoupled from one another. Our goal is to achieve second-order asymptotically optimal performance at every sensor, i.e., the average detection delay is within a constant gap from the centralized optimal sequential test as the error rates approach zero for the fixed number of sensors. To that end, a type of test procedure that resembles the well-known sequential probability ratio test (SPRT), termed as distributed SPRT (DSPRT) in this paper, is studied based on two message-passing schemes, respectively. The first scheme features the dissemination of the raw samples. In specific, every sample propagates over the network by being relayed from one sensor to another until it reaches all the sensors in the network. Although the sample propagation-based DSPRT is shown to yield the asymptotically optimal performance at each sensor, it incurs excessive inter-sensor communication overhead due to the exchange of raw samples with index information. The second scheme adopts the consensus algorithm, where the local decision statistic is exchanged between sensors instead of the raw samples, thus significantly lowering the communication requirement compared with the first scheme. In particular, the decision statistic for DSPRT at each sensor is updated by the weighted average of the decision statistics in the neighborhood at every message-passing step. We show that, under certain regularity conditions, the consensus algorithm-based DSPRT also yields the second-order asymptotically optimal performance at all sensors given a fixed number of sensors. Our asymptotic analyses of the two message-passing-based DSPRTs are then corroborated by simulations using the Gaussian and Laplacian samples. |
Author | Wang, Xiaodong Li, Shang |
Author_xml | – sequence: 1 givenname: Shang surname: Li fullname: Li, Shang email: shang@ee.columbia.edu organization: Department of Electrical Engineering, Columbia University, New York, NY, USA – sequence: 2 givenname: Xiaodong orcidid: 0000-0003-3744-2139 surname: Wang fullname: Wang, Xiaodong email: wangx@ee.columbia.edu organization: Department of Electrical Engineering, Columbia University, New York, NY, USA |
BookMark | eNp9kDFPwzAQhS1UJNrCjsQSiTnFTmzHZosKpZUqMTTMkZNcWldpEmxnyL_HVSsGBqbT3b3v9O7N0KTtWkDokeAFIVi-ZJtsEWEiFpHAXHJyg6aEsSSUnNEJmmK_CiWl4g7NrD36ljISTdFuNTTNGLxp64wuBgdVsIPvAVqnVROsx75zB7DaBhlYp9v9a5A2-85odzjZQLVVkNrx1LvO6TJIW9WMFuw9uq1VY-HhWufoa_WeLdfh9vNjs0y3YRlJ4sKyYqKikkoWUyESxgsOfgREsFqVRR1jniSUJ4T6aUEwAJVCSiCqYqX_Mp6j58vd3nTesnX5sRuMN2FznwQjRHAivIpfVKXprDVQ56V2yumudUbpJic4PweY-wDPmMivAXoQ_wF7o0_KjP8hTxdEA8CvXEQyFpTGPzJRfW8 |
CODEN | IETTAW |
CitedBy_id | crossref_primary_10_1016_j_sigpro_2020_107573 crossref_primary_10_1109_TSP_2018_2869128 crossref_primary_10_1109_TIT_2019_2947494 crossref_primary_10_1007_s11227_024_06515_w crossref_primary_10_1109_TSP_2024_3394659 crossref_primary_10_1109_TSP_2022_3198173 crossref_primary_10_1109_TCOMM_2023_3300335 crossref_primary_10_1007_s10586_024_04324_7 crossref_primary_10_1016_j_adhoc_2024_103559 crossref_primary_10_1109_TIT_2020_3046191 crossref_primary_10_1109_TSIPN_2021_3101992 crossref_primary_10_1109_TSP_2021_3075147 crossref_primary_10_1109_OJCOMS_2023_3332259 crossref_primary_10_1155_2019_4724507 crossref_primary_10_1109_TIT_2020_3047353 |
Cites_doi | 10.1016/j.sigpro.2012.01.007 10.1109/TIT.2013.2264716 10.1109/TCNS.2014.2310271 10.1109/TSP.2008.927480 10.1109/TSP.2012.2237170 10.1201/b17279 10.1109/5.554209 10.1109/JPROC.2010.2052531 10.1109/TIT.2008.920217 10.1109/TIFS.2015.2477796 10.1109/TSP.2012.2202657 10.1109/TPWRS.2015.2477285 10.1109/TIT.2017.2693156 10.1109/TSG.2014.2374577 10.1109/TSP.2009.2036046 10.1016/j.sysconle.2004.02.022 10.1109/ACC.2015.7171045 10.2307/2285509 10.1109/TSP.2008.917855 10.1109/CDC.2005.1583486 10.1214/aoms/1177730197 10.1137/1.9780898717907 10.1109/18.212274 10.1109/TSP.2009.2030610 10.1109/TSP.2011.2168219 10.1016/j.sigpro.2010.09.011 10.1109/TSP.2013.2288673 10.1109/TIT.2010.2090249 10.1109/JPROC.2006.887293 10.1007/BF01211521 10.1109/TSP.2015.2478737 10.1109/MSP.2012.2235193 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIT.2018.2806961 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9654 |
EndPage | 2758 |
ExternalDocumentID | 10_1109_TIT_2018_2806961 8293844 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Office of Naval Research grantid: N000141410667 funderid: 10.13039/100000006 – fundername: U.S. National Science Foundation grantid: CIF1064575 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-cd58d494953488756b6ed58e185facbf3067746714d58b10ee49899e1ad5c2803 |
IEDL.DBID | RIE |
ISSN | 0018-9448 |
IngestDate | Mon Jun 30 02:33:04 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Tue Jul 01 02:16:11 EDT 2025 Wed Aug 27 02:52:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-cd58d494953488756b6ed58e185facbf3067746714d58b10ee49899e1ad5c2803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3744-2139 |
PQID | 2015118618 |
PQPubID | 36024 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2015118618 crossref_citationtrail_10_1109_TIT_2018_2806961 crossref_primary_10_1109_TIT_2018_2806961 ieee_primary_8293844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information theory |
PublicationTitleAbbrev | TIT |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | lawler (ref36) 2006 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref11 ref32 ref10 poor (ref3) 2009 ref1 ref17 ref38 ref16 ref19 ref18 li (ref35) 2015 ref24 tsitsiklis (ref6) 1993; 2 ref23 ref26 ref25 ref20 liu (ref33) 2017 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 zhang (ref29) 2018 ref5 tartakovsky (ref2) 2014 |
References_xml | – ident: ref28 doi: 10.1016/j.sigpro.2012.01.007 – ident: ref21 doi: 10.1109/TIT.2013.2264716 – ident: ref30 doi: 10.1109/TCNS.2014.2310271 – ident: ref20 doi: 10.1109/TSP.2008.927480 – ident: ref10 doi: 10.1109/TSP.2012.2237170 – year: 2014 ident: ref2 publication-title: Sequential Analysis Hypothesis Testing and Change-Point Detection doi: 10.1201/b17279 – ident: ref4 doi: 10.1109/5.554209 – ident: ref16 doi: 10.1109/JPROC.2010.2052531 – ident: ref9 doi: 10.1109/TIT.2008.920217 – ident: ref13 doi: 10.1109/TIFS.2015.2477796 – year: 2009 ident: ref3 publication-title: Quickest Detection – ident: ref34 doi: 10.1109/TSP.2012.2202657 – ident: ref22 doi: 10.1109/TPWRS.2015.2477285 – ident: ref8 doi: 10.1109/TIT.2017.2693156 – ident: ref12 doi: 10.1109/TSG.2014.2374577 – ident: ref18 doi: 10.1109/TSP.2009.2036046 – year: 2015 ident: ref35 publication-title: Distributed Bayesian quickest change detection in sensor networks via twolayer large deviation analysis – ident: ref38 doi: 10.1016/j.sysconle.2004.02.022 – ident: ref31 doi: 10.1109/ACC.2015.7171045 – ident: ref14 doi: 10.2307/2285509 – ident: ref24 doi: 10.1109/TSP.2008.917855 – year: 2017 ident: ref33 publication-title: Improved Performance Properties of the CISPRT Algorithm for Distributed Sequential – ident: ref19 doi: 10.1109/CDC.2005.1583486 – ident: ref1 doi: 10.1214/aoms/1177730197 – ident: ref37 doi: 10.1137/1.9780898717907 – ident: ref5 doi: 10.1109/18.212274 – year: 2006 ident: ref36 publication-title: Introduction to Stochastic Processes – volume: 2 start-page: 297 year: 1993 ident: ref6 article-title: Decentralized detection publication-title: Adv Statist Signal Process – ident: ref25 doi: 10.1109/TSP.2009.2030610 – ident: ref26 doi: 10.1109/TSP.2011.2168219 – ident: ref27 doi: 10.1016/j.sigpro.2010.09.011 – ident: ref17 doi: 10.1109/TSP.2013.2288673 – ident: ref11 doi: 10.1109/TIT.2010.2090249 – year: 2018 ident: ref29 publication-title: Consensus-based distributed quickest detection of attacks with unknown parameters – ident: ref15 doi: 10.1109/JPROC.2006.887293 – ident: ref7 doi: 10.1007/BF01211521 – ident: ref32 doi: 10.1109/TSP.2015.2478737 – ident: ref23 doi: 10.1109/MSP.2012.2235193 |
SSID | ssj0014512 |
Score | 2.4075131 |
Snippet | This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2742 |
SubjectTerms | Algorithms Asymptotic methods asymptotic optimality Asymptotic properties Computer simulation consensus algorithm Distributed sequential detection Error analysis Error detection Error probability Exchanging Hypothesis testing Indexes Information exchange Message passing Samples sensor networks Sensors sequential probability ratio test Signal processing algorithms Statistical analysis Statistical methods stopping time Test procedures Vehicular ad hoc networks |
Title | Fully Distributed Sequential Hypothesis Testing: Algorithms and Asymptotic Analyses |
URI | https://ieeexplore.ieee.org/document/8293844 https://www.proquest.com/docview/2015118618 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTnrwAzWiaHrwYuJghXas3ohK0EQvYsJtabcWiTCIGwf86-3bB_ErxtvStFuT19fX397r7wdw7smu9DrKOKGUwmERQ8pbYxzeNb5g0u2aTO7t4dEbPLP7ER9V4HJ9F0ZrnRWf6SY-Zrn8aB4u8VdZy7exyWdsAzYscMvvaq0zBozTnBmcWge2mKNMSbqiNbwbYg2X38QsovDolxCUaar82Iiz6NLfgYdyXnlRyWtzmapm-P6NsvG_E9-F7eKYSXr5utiDio5rsFNKOJDCo2uw9YmPcB-eEJCuyA2S6aIOlo7IU1ZqbbeBKRmsFnhdK5kkZIjcHPH4ivSm4_nbJH2ZJUTGEeklq9kinduPkpztRCcH8Ny_HV4PnEJ1wQnbgqZOGHE_Qs4a3rHO3eWe8rRt0jawGxkqgxgDNUoos62KulozYUGbpjLiIWpdHUI1nsf6CAiN2pJ1Oso1FkRyLpUwbdGWQkljTxaa1aFVGiIIC0pyVMaYBhk0cUVgTReg6YLCdHW4WI9Y5HQcf_TdR0us-xVGqEOjtHVQ-GuC4xBqedQ__n3UCWziu_OanQZU07elPrXHkVSdZevwA_uJ28c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAc6IuKpaX4UA4cshtn7WyMxGFFqXbp49JU6i3YiV0qttlVkxVafkv_Cv-NmTxWUBC3StwiK44Vz2QemfH3ARyEeqDDvnFeqrXyRCYI8tY5Tw5cpIT2B66iezs9C0cX4tOlvFyBu-VZGGtt1Xxmu3RZ1fKzaTqnX2W9CH1TJETTQnlsF98wQSvejw9Rmm-C4Ohj_GHkNRwCXhooXnppJqOMEFhkH1V1IEMTWhyy6KacTo2jiJkYN7jAUcN9a4XCFMRyncmUmJvwuY9gDeMMGdSnw5Y1CiF5jUXO0WRgltMWQX3Vi8cxdY1FXapbqpD_5vQqFpc_TH_lz47W4Ue7E3Uby9fuvDTd9Ps9kMj_das24FkTSLNhrfmbsGLzLVhvSSpYY7O24OkviIvbcE4p94IdElwwMX3ZjJ1XzeRo6CZstJjRgbTiumAxoY_kV-_YcHI1vb0uv9wUTOcZGxaLm1k5xUVZjedii-dw8SAvugOr-TS3L4DxLNCi3ze-wzRZSm2UC1SgldEOYycrOtBrBZ-kDeg6cX9Mkir58lWCqpKQqiSNqnTg7XLGrAYc-ce92yT55X2N0Duw1-pW0likguZRMhny6OXfZ72Gx6P49CQ5GZ8d78ITWqfuUNqD1fJ2bl9h8FWa_eobYPD5oTXpJwjwN0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Distributed+Sequential+Hypothesis+Testing%3A+Algorithms+and+Asymptotic+Analyses&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Li%2C+Shang&rft.au=Wang%2C+Xiaodong&rft.date=2018-04-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=4&rft.spage=2742&rft.epage=2758&rft_id=info:doi/10.1109%2FTIT.2018.2806961&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2018_2806961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |