Fully Distributed Sequential Hypothesis Testing: Algorithms and Asymptotic Analyses

This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where ea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 64; no. 4; pp. 2742 - 2758
Main Authors Li, Shang, Wang, Xiaodong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where each sensor can observe samples over time, access the information from the adjacent sensors, and perform the sequential test based on its own decision statistic. Different from most literature, the sampling process and the information exchange process in our framework take place simultaneously (or, at least in comparable time-scales), thus cannot be decoupled from one another. Our goal is to achieve second-order asymptotically optimal performance at every sensor, i.e., the average detection delay is within a constant gap from the centralized optimal sequential test as the error rates approach zero for the fixed number of sensors. To that end, a type of test procedure that resembles the well-known sequential probability ratio test (SPRT), termed as distributed SPRT (DSPRT) in this paper, is studied based on two message-passing schemes, respectively. The first scheme features the dissemination of the raw samples. In specific, every sample propagates over the network by being relayed from one sensor to another until it reaches all the sensors in the network. Although the sample propagation-based DSPRT is shown to yield the asymptotically optimal performance at each sensor, it incurs excessive inter-sensor communication overhead due to the exchange of raw samples with index information. The second scheme adopts the consensus algorithm, where the local decision statistic is exchanged between sensors instead of the raw samples, thus significantly lowering the communication requirement compared with the first scheme. In particular, the decision statistic for DSPRT at each sensor is updated by the weighted average of the decision statistics in the neighborhood at every message-passing step. We show that, under certain regularity conditions, the consensus algorithm-based DSPRT also yields the second-order asymptotically optimal performance at all sensors given a fixed number of sensors. Our asymptotic analyses of the two message-passing-based DSPRTs are then corroborated by simulations using the Gaussian and Laplacian samples.
AbstractList This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where each sensor can observe samples over time, access the information from the adjacent sensors, and perform the sequential test based on its own decision statistic. Different from most literature, the sampling process and the information exchange process in our framework take place simultaneously (or, at least in comparable time-scales), thus cannot be decoupled from one another. Our goal is to achieve second-order asymptotically optimal performance at every sensor, i.e., the average detection delay is within a constant gap from the centralized optimal sequential test as the error rates approach zero for the fixed number of sensors. To that end, a type of test procedure that resembles the well-known sequential probability ratio test (SPRT), termed as distributed SPRT (DSPRT) in this paper, is studied based on two message-passing schemes, respectively. The first scheme features the dissemination of the raw samples. In specific, every sample propagates over the network by being relayed from one sensor to another until it reaches all the sensors in the network. Although the sample propagation-based DSPRT is shown to yield the asymptotically optimal performance at each sensor, it incurs excessive intersensor communication overhead due to the exchange of raw samples with index information. The second scheme adopts the consensus algorithm, where the local decision statistic is exchanged between sensors instead of the raw samples, thus significantly lowering the communication requirement compared with the first scheme. In particular, the decision statistic for DSPRT at each sensor is updated by the weighted average of the decision statistics in the neighborhood at every message-passing step. We show that, under certain regularity conditions, the consensus algorithm-based DSPRT also yields the secondorder asymptotically optimal performance at all sensors given a fixed number of sensors. Our asymptotic analyses of the two message-passing-based DSPRTs are then corroborated by simulations using the Gaussian and Laplacian samples.
This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach zero, in the context of a sensor network without a fusion center. In particular, the sensor network is defined by an undirected graph, where each sensor can observe samples over time, access the information from the adjacent sensors, and perform the sequential test based on its own decision statistic. Different from most literature, the sampling process and the information exchange process in our framework take place simultaneously (or, at least in comparable time-scales), thus cannot be decoupled from one another. Our goal is to achieve second-order asymptotically optimal performance at every sensor, i.e., the average detection delay is within a constant gap from the centralized optimal sequential test as the error rates approach zero for the fixed number of sensors. To that end, a type of test procedure that resembles the well-known sequential probability ratio test (SPRT), termed as distributed SPRT (DSPRT) in this paper, is studied based on two message-passing schemes, respectively. The first scheme features the dissemination of the raw samples. In specific, every sample propagates over the network by being relayed from one sensor to another until it reaches all the sensors in the network. Although the sample propagation-based DSPRT is shown to yield the asymptotically optimal performance at each sensor, it incurs excessive inter-sensor communication overhead due to the exchange of raw samples with index information. The second scheme adopts the consensus algorithm, where the local decision statistic is exchanged between sensors instead of the raw samples, thus significantly lowering the communication requirement compared with the first scheme. In particular, the decision statistic for DSPRT at each sensor is updated by the weighted average of the decision statistics in the neighborhood at every message-passing step. We show that, under certain regularity conditions, the consensus algorithm-based DSPRT also yields the second-order asymptotically optimal performance at all sensors given a fixed number of sensors. Our asymptotic analyses of the two message-passing-based DSPRTs are then corroborated by simulations using the Gaussian and Laplacian samples.
Author Wang, Xiaodong
Li, Shang
Author_xml – sequence: 1
  givenname: Shang
  surname: Li
  fullname: Li, Shang
  email: shang@ee.columbia.edu
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
– sequence: 2
  givenname: Xiaodong
  orcidid: 0000-0003-3744-2139
  surname: Wang
  fullname: Wang, Xiaodong
  email: wangx@ee.columbia.edu
  organization: Department of Electrical Engineering, Columbia University, New York, NY, USA
BookMark eNp9kDFPwzAQhS1UJNrCjsQSiTnFTmzHZosKpZUqMTTMkZNcWldpEmxnyL_HVSsGBqbT3b3v9O7N0KTtWkDokeAFIVi-ZJtsEWEiFpHAXHJyg6aEsSSUnNEJmmK_CiWl4g7NrD36ljISTdFuNTTNGLxp64wuBgdVsIPvAVqnVROsx75zB7DaBhlYp9v9a5A2-85odzjZQLVVkNrx1LvO6TJIW9WMFuw9uq1VY-HhWufoa_WeLdfh9vNjs0y3YRlJ4sKyYqKikkoWUyESxgsOfgREsFqVRR1jniSUJ4T6aUEwAJVCSiCqYqX_Mp6j58vd3nTesnX5sRuMN2FznwQjRHAivIpfVKXprDVQ56V2yumudUbpJic4PweY-wDPmMivAXoQ_wF7o0_KjP8hTxdEA8CvXEQyFpTGPzJRfW8
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_sigpro_2020_107573
crossref_primary_10_1109_TSP_2018_2869128
crossref_primary_10_1109_TIT_2019_2947494
crossref_primary_10_1007_s11227_024_06515_w
crossref_primary_10_1109_TSP_2024_3394659
crossref_primary_10_1109_TSP_2022_3198173
crossref_primary_10_1109_TCOMM_2023_3300335
crossref_primary_10_1007_s10586_024_04324_7
crossref_primary_10_1016_j_adhoc_2024_103559
crossref_primary_10_1109_TIT_2020_3046191
crossref_primary_10_1109_TSIPN_2021_3101992
crossref_primary_10_1109_TSP_2021_3075147
crossref_primary_10_1109_OJCOMS_2023_3332259
crossref_primary_10_1155_2019_4724507
crossref_primary_10_1109_TIT_2020_3047353
Cites_doi 10.1016/j.sigpro.2012.01.007
10.1109/TIT.2013.2264716
10.1109/TCNS.2014.2310271
10.1109/TSP.2008.927480
10.1109/TSP.2012.2237170
10.1201/b17279
10.1109/5.554209
10.1109/JPROC.2010.2052531
10.1109/TIT.2008.920217
10.1109/TIFS.2015.2477796
10.1109/TSP.2012.2202657
10.1109/TPWRS.2015.2477285
10.1109/TIT.2017.2693156
10.1109/TSG.2014.2374577
10.1109/TSP.2009.2036046
10.1016/j.sysconle.2004.02.022
10.1109/ACC.2015.7171045
10.2307/2285509
10.1109/TSP.2008.917855
10.1109/CDC.2005.1583486
10.1214/aoms/1177730197
10.1137/1.9780898717907
10.1109/18.212274
10.1109/TSP.2009.2030610
10.1109/TSP.2011.2168219
10.1016/j.sigpro.2010.09.011
10.1109/TSP.2013.2288673
10.1109/TIT.2010.2090249
10.1109/JPROC.2006.887293
10.1007/BF01211521
10.1109/TSP.2015.2478737
10.1109/MSP.2012.2235193
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2018.2806961
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 2758
ExternalDocumentID 10_1109_TIT_2018_2806961
8293844
Genre orig-research
GrantInformation_xml – fundername: U.S. Office of Naval Research
  grantid: N000141410667
  funderid: 10.13039/100000006
– fundername: U.S. National Science Foundation
  grantid: CIF1064575
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-cd58d494953488756b6ed58e185facbf3067746714d58b10ee49899e1ad5c2803
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Mon Jun 30 02:33:04 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Tue Jul 01 02:16:11 EDT 2025
Wed Aug 27 02:52:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cd58d494953488756b6ed58e185facbf3067746714d58b10ee49899e1ad5c2803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3744-2139
PQID 2015118618
PQPubID 36024
PageCount 17
ParticipantIDs proquest_journals_2015118618
crossref_citationtrail_10_1109_TIT_2018_2806961
crossref_primary_10_1109_TIT_2018_2806961
ieee_primary_8293844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References lawler (ref36) 2006
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref11
ref32
ref10
poor (ref3) 2009
ref1
ref17
ref38
ref16
ref19
ref18
li (ref35) 2015
ref24
tsitsiklis (ref6) 1993; 2
ref23
ref26
ref25
ref20
liu (ref33) 2017
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
zhang (ref29) 2018
ref5
tartakovsky (ref2) 2014
References_xml – ident: ref28
  doi: 10.1016/j.sigpro.2012.01.007
– ident: ref21
  doi: 10.1109/TIT.2013.2264716
– ident: ref30
  doi: 10.1109/TCNS.2014.2310271
– ident: ref20
  doi: 10.1109/TSP.2008.927480
– ident: ref10
  doi: 10.1109/TSP.2012.2237170
– year: 2014
  ident: ref2
  publication-title: Sequential Analysis Hypothesis Testing and Change-Point Detection
  doi: 10.1201/b17279
– ident: ref4
  doi: 10.1109/5.554209
– ident: ref16
  doi: 10.1109/JPROC.2010.2052531
– ident: ref9
  doi: 10.1109/TIT.2008.920217
– ident: ref13
  doi: 10.1109/TIFS.2015.2477796
– year: 2009
  ident: ref3
  publication-title: Quickest Detection
– ident: ref34
  doi: 10.1109/TSP.2012.2202657
– ident: ref22
  doi: 10.1109/TPWRS.2015.2477285
– ident: ref8
  doi: 10.1109/TIT.2017.2693156
– ident: ref12
  doi: 10.1109/TSG.2014.2374577
– ident: ref18
  doi: 10.1109/TSP.2009.2036046
– year: 2015
  ident: ref35
  publication-title: Distributed Bayesian quickest change detection in sensor networks via twolayer large deviation analysis
– ident: ref38
  doi: 10.1016/j.sysconle.2004.02.022
– ident: ref31
  doi: 10.1109/ACC.2015.7171045
– ident: ref14
  doi: 10.2307/2285509
– ident: ref24
  doi: 10.1109/TSP.2008.917855
– year: 2017
  ident: ref33
  publication-title: Improved Performance Properties of the CISPRT Algorithm for Distributed Sequential
– ident: ref19
  doi: 10.1109/CDC.2005.1583486
– ident: ref1
  doi: 10.1214/aoms/1177730197
– ident: ref37
  doi: 10.1137/1.9780898717907
– ident: ref5
  doi: 10.1109/18.212274
– year: 2006
  ident: ref36
  publication-title: Introduction to Stochastic Processes
– volume: 2
  start-page: 297
  year: 1993
  ident: ref6
  article-title: Decentralized detection
  publication-title: Adv Statist Signal Process
– ident: ref25
  doi: 10.1109/TSP.2009.2030610
– ident: ref26
  doi: 10.1109/TSP.2011.2168219
– ident: ref27
  doi: 10.1016/j.sigpro.2010.09.011
– ident: ref17
  doi: 10.1109/TSP.2013.2288673
– ident: ref11
  doi: 10.1109/TIT.2010.2090249
– year: 2018
  ident: ref29
  publication-title: Consensus-based distributed quickest detection of attacks with unknown parameters
– ident: ref15
  doi: 10.1109/JPROC.2006.887293
– ident: ref7
  doi: 10.1007/BF01211521
– ident: ref32
  doi: 10.1109/TSP.2015.2478737
– ident: ref23
  doi: 10.1109/MSP.2012.2235193
SSID ssj0014512
Score 2.4075131
Snippet This paper analyzes the asymptotic performances of fully distributed sequential hypothesis testing procedures as the type-I and type-II error rates approach...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2742
SubjectTerms Algorithms
Asymptotic methods
asymptotic optimality
Asymptotic properties
Computer simulation
consensus algorithm
Distributed sequential detection
Error analysis
Error detection
Error probability
Exchanging
Hypothesis testing
Indexes
Information exchange
Message passing
Samples
sensor networks
Sensors
sequential probability ratio test
Signal processing algorithms
Statistical analysis
Statistical methods
stopping time
Test procedures
Vehicular ad hoc networks
Title Fully Distributed Sequential Hypothesis Testing: Algorithms and Asymptotic Analyses
URI https://ieeexplore.ieee.org/document/8293844
https://www.proquest.com/docview/2015118618
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BTnrwAzWiaHrwYuJghXas3ohK0EQvYsJtabcWiTCIGwf86-3bB_ErxtvStFuT19fX397r7wdw7smu9DrKOKGUwmERQ8pbYxzeNb5g0u2aTO7t4dEbPLP7ER9V4HJ9F0ZrnRWf6SY-Zrn8aB4u8VdZy7exyWdsAzYscMvvaq0zBozTnBmcWge2mKNMSbqiNbwbYg2X38QsovDolxCUaar82Iiz6NLfgYdyXnlRyWtzmapm-P6NsvG_E9-F7eKYSXr5utiDio5rsFNKOJDCo2uw9YmPcB-eEJCuyA2S6aIOlo7IU1ZqbbeBKRmsFnhdK5kkZIjcHPH4ivSm4_nbJH2ZJUTGEeklq9kinduPkpztRCcH8Ny_HV4PnEJ1wQnbgqZOGHE_Qs4a3rHO3eWe8rRt0jawGxkqgxgDNUoos62KulozYUGbpjLiIWpdHUI1nsf6CAiN2pJ1Oso1FkRyLpUwbdGWQkljTxaa1aFVGiIIC0pyVMaYBhk0cUVgTReg6YLCdHW4WI9Y5HQcf_TdR0us-xVGqEOjtHVQ-GuC4xBqedQ__n3UCWziu_OanQZU07elPrXHkVSdZevwA_uJ28c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V9gAc6IuKpaX4UA4cshtn7WyMxGFFqXbp49JU6i3YiV0qttlVkxVafkv_Cv-NmTxWUBC3StwiK44Vz2QemfH3ARyEeqDDvnFeqrXyRCYI8tY5Tw5cpIT2B66iezs9C0cX4tOlvFyBu-VZGGtt1Xxmu3RZ1fKzaTqnX2W9CH1TJETTQnlsF98wQSvejw9Rmm-C4Ohj_GHkNRwCXhooXnppJqOMEFhkH1V1IEMTWhyy6KacTo2jiJkYN7jAUcN9a4XCFMRyncmUmJvwuY9gDeMMGdSnw5Y1CiF5jUXO0WRgltMWQX3Vi8cxdY1FXapbqpD_5vQqFpc_TH_lz47W4Ue7E3Uby9fuvDTd9Ps9kMj_das24FkTSLNhrfmbsGLzLVhvSSpYY7O24OkviIvbcE4p94IdElwwMX3ZjJ1XzeRo6CZstJjRgbTiumAxoY_kV-_YcHI1vb0uv9wUTOcZGxaLm1k5xUVZjedii-dw8SAvugOr-TS3L4DxLNCi3ze-wzRZSm2UC1SgldEOYycrOtBrBZ-kDeg6cX9Mkir58lWCqpKQqiSNqnTg7XLGrAYc-ce92yT55X2N0Duw1-pW0likguZRMhny6OXfZ72Gx6P49CQ5GZ8d78ITWqfuUNqD1fJ2bl9h8FWa_eobYPD5oTXpJwjwN0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+Distributed+Sequential+Hypothesis+Testing%3A+Algorithms+and+Asymptotic+Analyses&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Li%2C+Shang&rft.au=Wang%2C+Xiaodong&rft.date=2018-04-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=4&rft.spage=2742&rft.epage=2758&rft_id=info:doi/10.1109%2FTIT.2018.2806961&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2018_2806961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon