Wind Turbine Gearbox Anomaly Detection Based on Adaptive Threshold and Twin Support Vector Machines
Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a significant factor that calls for automated fault detection systems in wind turbines. In this manuscript, the anomaly detection problem for wind tu...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 36; no. 4; pp. 3462 - 3469 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a significant factor that calls for automated fault detection systems in wind turbines. In this manuscript, the anomaly detection problem for wind turbine gearbox is formulated based on adaptive threshold and twin support vector machine (TWSVM). In this work, SCADA data from wind farms located in the U.K. is considered with samples from twelve months before failure, and from one month before failure. Gearbox oil and bearing temperatures are used as two univariate time-series for analyzing adaptive threshold. The effectiveness of the proposed method is compared with standard classifiers like support vector machines (SVM), k-nearest neighbors (KNN), multi-layer perceptron neural network (MLPNN), and decision tree (DT). Anomaly detection of wind turbine gearbox using TWSVM and adaptive threshold results in an accurate performance, thus increasing the reliability. The missed failure and false positive rate that indicate the proposed methodology's ability is also investigated to discriminate between false alarms, and comparison with previous studies shows superior performance. |
---|---|
AbstractList | Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a significant factor that calls for automated fault detection systems in wind turbines. In this manuscript, the anomaly detection problem for wind turbine gearbox is formulated based on adaptive threshold and twin support vector machine (TWSVM). In this work, SCADA data from wind farms located in the U.K. is considered with samples from twelve months before failure, and from one month before failure. Gearbox oil and bearing temperatures are used as two univariate time-series for analyzing adaptive threshold. The effectiveness of the proposed method is compared with standard classifiers like support vector machines (SVM), k-nearest neighbors (KNN), multi-layer perceptron neural network (MLPNN), and decision tree (DT). Anomaly detection of wind turbine gearbox using TWSVM and adaptive threshold results in an accurate performance, thus increasing the reliability. The missed failure and false positive rate that indicate the proposed methodology's ability is also investigated to discriminate between false alarms, and comparison with previous studies shows superior performance. |
Author | Dhiman, Harsh Muyeen, S. M. Kamwa, Innocent Deb, Dipankar |
Author_xml | – sequence: 1 givenname: Harsh orcidid: 0000-0002-7394-7102 surname: Dhiman fullname: Dhiman, Harsh email: harsh.dhiman@aii.ac.in organization: Department of Electrical Engineering, Adani Institute of Infrastructure Engineering, Ahmedabad, India – sequence: 2 givenname: Dipankar orcidid: 0000-0003-4419-4516 surname: Deb fullname: Deb, Dipankar email: dipankardeb@iitram.ac.in organization: Department of Electrical Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India – sequence: 3 givenname: S. M. orcidid: 0000-0003-4955-6889 surname: Muyeen fullname: Muyeen, S. M. email: s.m.muyeen@ieee.org organization: School of Electrical Engineering Computing and Mathematical Sciences, Curtin University, Perth, Australia – sequence: 4 givenname: Innocent orcidid: 0000-0002-3568-3716 surname: Kamwa fullname: Kamwa, Innocent email: kamwa.innocent@ireq.ca organization: Hydro-Quebec/IREQ, Power Systems and Mathematics, Varennes, QC, Canada |
BookMark | eNp9kDFPwzAQhS1UJNrCjsRiiTnFdmLXHkspBamIgQJj5DgX1VUbBzsF-u9x1IqBgelueN-7e2-AerWrAaFLSkaUEnWznE1HjDA6SsmYSzU-QX3KuUwI4aqH-kRKnkgl1BkahLAmhGac0T4y77Yu8XLnC1sDnoP2hfvGk9pt9WaP76AF01pX41sdoMRxmZS6ae0n4OXKQ1i5TYl15_Bla_yyaxrnW_wWIefxkzar6BrO0WmlNwEujnOIXu9ny-lDsnieP04ni8QwRdvEmLEQmo85q-J3MYrQWmqV6pSoUkBVGGYKIlTGOWRUgyhkCcBkVhpGWZalQ3R98G28-9hBaPO12_k6nsyZIJliNNpGlTiojHcheKhyY1vdhWy9tpuckrwrNI-F5l2h-bHQCJI_YOPtVvv9f8jVAbEA8CtXGRWSsPQHTNOCXQ |
CODEN | ITCNE4 |
CitedBy_id | crossref_primary_10_1002_cpe_6772 crossref_primary_10_1177_14759217241265286 crossref_primary_10_1016_j_measurement_2023_113138 crossref_primary_10_1109_TIM_2022_3227606 crossref_primary_10_1109_TIM_2024_3379412 crossref_primary_10_1016_j_aei_2023_101949 crossref_primary_10_3390_en18051273 crossref_primary_10_1109_TASE_2023_3293931 crossref_primary_10_1016_j_eswa_2022_117297 crossref_primary_10_3390_en17091998 crossref_primary_10_1016_j_ifacol_2023_10_1508 crossref_primary_10_3390_ma15238504 crossref_primary_10_1016_j_aei_2024_102357 crossref_primary_10_3390_s24134259 crossref_primary_10_1016_j_suscom_2022_100795 crossref_primary_10_1109_TIM_2022_3187737 crossref_primary_10_1088_1361_6501_ac991f crossref_primary_10_1109_ACCESS_2021_3111408 crossref_primary_10_3390_electronics13122411 crossref_primary_10_3390_en17246456 crossref_primary_10_3390_en16197008 crossref_primary_10_3390_bioengineering9070281 crossref_primary_10_1109_ACCESS_2024_3515165 crossref_primary_10_32604_iasc_2023_037277 crossref_primary_10_1016_j_isatra_2024_01_008 crossref_primary_10_1016_j_ress_2023_109258 crossref_primary_10_1016_j_eswa_2023_122776 crossref_primary_10_3390_act11030067 crossref_primary_10_1016_j_engappai_2022_105775 crossref_primary_10_5334_dsj_2024_010 crossref_primary_10_1002_cpe_7886 crossref_primary_10_1016_j_compind_2022_103767 crossref_primary_10_3390_s24103215 crossref_primary_10_1080_15435075_2023_2194375 crossref_primary_10_3390_en15093180 crossref_primary_10_1016_j_ins_2022_07_161 crossref_primary_10_1177_01445987241291180 crossref_primary_10_1016_j_isatra_2023_03_045 crossref_primary_10_1109_JSEN_2023_3326738 crossref_primary_10_1109_ACCESS_2024_3412274 crossref_primary_10_1002_ese3_1706 crossref_primary_10_1109_JESTPE_2023_3347658 crossref_primary_10_1088_1742_6596_2351_1_012025 crossref_primary_10_1016_j_neucom_2022_11_002 crossref_primary_10_1016_j_engappai_2023_106757 crossref_primary_10_1016_j_future_2023_11_036 crossref_primary_10_1016_j_aei_2022_101852 crossref_primary_10_1080_14786451_2024_2326296 crossref_primary_10_3390_en16104123 crossref_primary_10_1016_j_engappai_2024_108046 crossref_primary_10_3390_en16093614 crossref_primary_10_1088_1361_6501_ad6f33 crossref_primary_10_3390_machines10111025 crossref_primary_10_1016_j_ress_2023_109235 crossref_primary_10_3390_electronics13152940 crossref_primary_10_3390_e24101394 crossref_primary_10_1002_2050_7038_13010 crossref_primary_10_1061_JLEED9_EYENG_4850 crossref_primary_10_1080_15435075_2024_2315445 crossref_primary_10_1109_ACCESS_2023_3324054 crossref_primary_10_1177_14727978251323099 crossref_primary_10_1007_s42835_022_01118_y crossref_primary_10_1038_s41598_024_51930_x crossref_primary_10_1016_j_compeleceng_2023_108988 crossref_primary_10_1109_JSEN_2023_3327138 crossref_primary_10_3390_s23218964 crossref_primary_10_1016_j_eswa_2022_118345 crossref_primary_10_1016_j_ijft_2024_100569 crossref_primary_10_1109_ACCESS_2022_3164717 crossref_primary_10_1016_j_ymssp_2023_110528 crossref_primary_10_1109_JIOT_2021_3117958 crossref_primary_10_1088_1361_6501_ad0956 crossref_primary_10_1145_3620676 crossref_primary_10_1049_tje2_12411 crossref_primary_10_1098_rsta_2022_0253 crossref_primary_10_3390_act12030125 crossref_primary_10_1016_j_ress_2024_110291 crossref_primary_10_1109_TFUZZ_2024_3421638 crossref_primary_10_3390_en15051768 crossref_primary_10_1007_s42417_022_00687_6 crossref_primary_10_1080_03772063_2024_2448588 crossref_primary_10_1371_journal_pone_0278491 crossref_primary_10_1108_SR_06_2022_0255 crossref_primary_10_61435_ijred_2025_60632 crossref_primary_10_1016_j_engappai_2024_109578 crossref_primary_10_1080_14786451_2022_2032060 crossref_primary_10_1016_j_measurement_2022_111616 crossref_primary_10_3390_app14167256 crossref_primary_10_1016_j_eswa_2022_118049 crossref_primary_10_3390_s23135873 crossref_primary_10_1016_j_knosys_2024_111533 crossref_primary_10_1016_j_knosys_2024_112225 crossref_primary_10_1016_j_ymssp_2023_110183 crossref_primary_10_1109_ACCESS_2024_3514747 crossref_primary_10_1109_ACCESS_2021_3123561 crossref_primary_10_1186_s10033_023_00978_3 crossref_primary_10_3390_electronics13020452 crossref_primary_10_1016_j_measurement_2023_112671 crossref_primary_10_48084_etasr_5595 crossref_primary_10_1002_qre_3643 crossref_primary_10_1109_TIM_2023_3329105 crossref_primary_10_1088_1361_6501_aca496 crossref_primary_10_1080_15435075_2023_2217901 crossref_primary_10_1016_j_patcog_2022_109253 crossref_primary_10_32604_cmc_2023_045008 crossref_primary_10_3390_s23073755 crossref_primary_10_1109_ACCESS_2024_3452168 crossref_primary_10_1109_TSTE_2023_3272317 crossref_primary_10_4236_jcc_2022_1011004 crossref_primary_10_3390_s23136219 crossref_primary_10_1109_JSEN_2023_3321417 crossref_primary_10_1109_TIA_2022_3145753 |
Cites_doi | 10.3390/s20236742 10.1016/j.renene.2018.05.024 10.1109/TEC.2013.2295301 10.1145/335191.335388 10.1109/TSG.2016.2621135 10.1109/TSG.2017.2691782 10.1109/TSTE.2018.2859764 10.1109/TIE.2018.2844805 10.1049/iet-rpg.2018.0156 10.1109/TSG.2014.2386305 10.1007/978-981-13-1966-2_45 10.1109/SysTol.2013.6693901 10.1109/TMECH.2017.2759301 10.1016/j.renene.2013.06.025 10.1002/we.1887 10.1109/TSTE.2011.2163177 10.1109/SysTol.2013.6693951 10.1016/j.renene.2015.10.061 10.1002/2050-7038.12818 10.1109/TII.2020.2967822 10.1109/TSTE.2019.2954834 10.1016/j.renene.2018.08.050 10.1109/TPAMI.2013.50 10.1016/j.rser.2007.05.008 10.1002/we.2290 10.1109/TSTE.2011.2167164 10.1016/j.renene.2012.03.003 10.1109/TIM.2017.2698738 10.1145/1541880.1541882 10.1109/TSG.2017.2763827 10.1109/TIA.2016.2628362 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TEC.2021.3075897 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0059 |
EndPage | 3469 |
ExternalDocumentID | 10_1109_TEC_2021_3075897 9416802 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c291t-cc766a5752f0140216aa8a93a309d6efbc2cb069455e41ae6b8dee284dc212443 |
IEDL.DBID | RIE |
ISSN | 0885-8969 |
IngestDate | Mon Jun 30 10:30:05 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Tue Jul 01 02:53:23 EDT 2025 Wed Aug 27 05:01:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-cc766a5752f0140216aa8a93a309d6efbc2cb069455e41ae6b8dee284dc212443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4419-4516 0000-0002-7394-7102 0000-0003-4955-6889 0000-0002-3568-3716 |
PQID | 2604921140 |
PQPubID | 85443 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_TEC_2021_3075897 ieee_primary_9416802 proquest_journals_2604921140 crossref_primary_10_1109_TEC_2021_3075897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Dec. 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on energy conversion |
PublicationTitleAbbrev | TEC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref14 ibrahim (ref16) 0 ref30 ref33 ref11 ref10 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref26 ref25 japkowicz (ref32) 1999; 10 ref20 ref21 leahy (ref15) 2018 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 breunig (ref31) 0 yampikulsakul (ref22) 2014; 29 |
References_xml | – ident: ref27 doi: 10.3390/s20236742 – ident: ref20 doi: 10.1016/j.renene.2018.05.024 – volume: 29 start-page: 288 year: 2014 ident: ref22 article-title: Condition monitoring of wind power system with nonparametric regression analysis publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2013.2295301 – start-page: 93 year: 0 ident: ref31 article-title: LOF:Identifying density-based local outliers publication-title: Proc ACM SIGMOD Int Conf Manage Data doi: 10.1145/335191.335388 – year: 2018 ident: ref15 article-title: Diagnosing and predicting wind turbine faults from SCADA data using support vector machines – ident: ref13 doi: 10.1109/TSG.2016.2621135 – ident: ref7 doi: 10.1109/TSG.2017.2691782 – ident: ref9 doi: 10.1109/TSTE.2018.2859764 – ident: ref18 doi: 10.1109/TIE.2018.2844805 – ident: ref28 doi: 10.1049/iet-rpg.2018.0156 – ident: ref14 doi: 10.1109/TSG.2014.2386305 – ident: ref1 doi: 10.1007/978-981-13-1966-2_45 – ident: ref26 doi: 10.1109/SysTol.2013.6693901 – ident: ref25 doi: 10.1109/TMECH.2017.2759301 – ident: ref17 doi: 10.1016/j.renene.2013.06.025 – ident: ref8 doi: 10.1002/we.1887 – ident: ref33 doi: 10.1109/TSTE.2011.2163177 – ident: ref12 doi: 10.1109/SysTol.2013.6693951 – year: 0 ident: ref16 article-title: Neural networks for wind turbine fault detection via current signature analysis – ident: ref34 doi: 10.1016/j.renene.2015.10.061 – ident: ref3 doi: 10.1002/2050-7038.12818 – ident: ref29 doi: 10.1109/TII.2020.2967822 – ident: ref5 doi: 10.1109/TSTE.2019.2954834 – ident: ref19 doi: 10.1016/j.renene.2018.08.050 – ident: ref23 doi: 10.1109/TPAMI.2013.50 – ident: ref6 doi: 10.1016/j.rser.2007.05.008 – ident: ref21 doi: 10.1002/we.2290 – volume: 10 start-page: 518 year: 1999 ident: ref32 article-title: A novelty detection approach to classification publication-title: Proc 14th Joint Conf Artif Intell – ident: ref11 doi: 10.1109/TSTE.2011.2167164 – ident: ref4 doi: 10.1016/j.renene.2012.03.003 – ident: ref24 doi: 10.1109/TIM.2017.2698738 – ident: ref30 doi: 10.1145/1541880.1541882 – ident: ref2 doi: 10.1109/TSG.2017.2763827 – ident: ref10 doi: 10.1109/TIA.2016.2628362 |
SSID | ssj0014521 |
Score | 2.6703115 |
Snippet | Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3462 |
SubjectTerms | Adaptive threshold Anomalies Anomaly detection condition monitoring Decision trees Downtime Failure False alarms Fault detection Fault diagnosis Gearboxes Machinery condition monitoring Multilayers neural network Neural networks Reliability aspects SCADA Support vector machines Temperature distribution Training Turbines Wind power Wind turbines |
Title | Wind Turbine Gearbox Anomaly Detection Based on Adaptive Threshold and Twin Support Vector Machines |
URI | https://ieeexplore.ieee.org/document/9416802 https://www.proquest.com/docview/2604921140 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Ukx7c0IhbevBi4sBsLe0RETQmeALlNmk7j8SIA5EhLr_e185AiBrjbQ5t0-Rr-75v3kbIOYdYMSRtnuCCeTEX0tOp8D2DptMfIUPQrmtJ757fDuK7IRuukctlLgwAuOAzqNtP58tPJ2Zuf5U1JLIHYStHrqNwK3K1lh6DmLkcK7w0zBOSy4VL0peNfqeNQjAM6niembDlnVZMkOup8uMhdtalu016i30VQSXP9Xmu6-bzW8nG_258h2yVNJO2inOxS9Yg2yObK8UHq8Q8ohyn_fkramOgN3ji9eSdtrLJixp_0GvIXZBWRq_QzqUUP1qpmtrHkfYR_5l1W1FlV3h7yqhtDopEnj44JwDtuRBNmO2TQbfTb996ZcsFz4QyyD1jmpwjeCwcWekVBlwpoWSkIl-mHEbahEbbXFnGIA4UcC1SADRxqQktU4gOSCWbZHBIKASB0siuQo2aTfKmGiH0dm0JkZJNXSONBQqJKeuR27YY48TpEl8miFticUtK3GrkYjljWtTi-GNs1cKwHFciUCMnC6CT8rLOEpR0sUQhHPtHv886Jht27SKK5YRU8tc5nCIXyfWZO4RfXt7ZFg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOMAeeO6K7vLwgQsSaZM0du1jeZZHOYXHLbKdqYSAFNFUu_DrGTtphQCtuPlgO5a-sWe-zAtgR2CiORltgRSSB4mQKjC5DANLqjMckIVgfNeS_qXoXSVnt_x2BvamuTCI6IPPsOmG3pefD-3Y_SprKbIepKscOUd6n0dVttbUZ5Bwn2VF14YHUgk1cUqGqpUeHRAVjKMmSTSXrsDTOyXku6p8eoq9fjlegv7kZFVYyX1zXJqmff1QtPG7R1-GxdrQZN1KMlZgBotV-PGu_OAa2Bsi5CwdPxM7RnZCMm-G_1i3GD7qhxd2iKUP0yrYPmm6nNGgm-sn9zyylCRg5BxXTLsd_t4VzLUHJVOeXXs3AOv7IE0c_YSr46P0oBfUTRcCG6uoDKztCEHw8XjgyFccCa2lVm3dDlUucGBsbI3LluUck0ijMDJHJCWX29jZCu1fMFsMC1wHhlGkDdlXsSHWpkRHDwh8t7fCtlYd04DWBIXM1hXJXWOMh8wzk1BlhFvmcMtq3BqwO13xVFXj-M_cNQfDdF6NQAM2JkBn9XUdZUTqEkVUOAl_f71qG-Z7af8iuzi9PP8DC-47VUzLBsyWz2PcJMukNFteIN8A28LcXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Gearbox+Anomaly+Detection+Based+on+Adaptive+Threshold+and+Twin+Support+Vector+Machines&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Dhiman%2C+Harsh&rft.au=Deb%2C+Dipankar&rft.au=Muyeen%2C+S+M&rft.au=Kamwa%2C+Innocent&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=36&rft.issue=4&rft.spage=3462&rft_id=info:doi/10.1109%2FTEC.2021.3075897&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon |