Wind Turbine Gearbox Anomaly Detection Based on Adaptive Threshold and Twin Support Vector Machines

Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a significant factor that calls for automated fault detection systems in wind turbines. In this manuscript, the anomaly detection problem for wind tu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 36; no. 4; pp. 3462 - 3469
Main Authors Dhiman, Harsh, Deb, Dipankar, Muyeen, S. M., Kamwa, Innocent
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a significant factor that calls for automated fault detection systems in wind turbines. In this manuscript, the anomaly detection problem for wind turbine gearbox is formulated based on adaptive threshold and twin support vector machine (TWSVM). In this work, SCADA data from wind farms located in the U.K. is considered with samples from twelve months before failure, and from one month before failure. Gearbox oil and bearing temperatures are used as two univariate time-series for analyzing adaptive threshold. The effectiveness of the proposed method is compared with standard classifiers like support vector machines (SVM), k-nearest neighbors (KNN), multi-layer perceptron neural network (MLPNN), and decision tree (DT). Anomaly detection of wind turbine gearbox using TWSVM and adaptive threshold results in an accurate performance, thus increasing the reliability. The missed failure and false positive rate that indicate the proposed methodology's ability is also investigated to discriminate between false alarms, and comparison with previous studies shows superior performance.
AbstractList Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a significant factor that calls for automated fault detection systems in wind turbines. In this manuscript, the anomaly detection problem for wind turbine gearbox is formulated based on adaptive threshold and twin support vector machine (TWSVM). In this work, SCADA data from wind farms located in the U.K. is considered with samples from twelve months before failure, and from one month before failure. Gearbox oil and bearing temperatures are used as two univariate time-series for analyzing adaptive threshold. The effectiveness of the proposed method is compared with standard classifiers like support vector machines (SVM), k-nearest neighbors (KNN), multi-layer perceptron neural network (MLPNN), and decision tree (DT). Anomaly detection of wind turbine gearbox using TWSVM and adaptive threshold results in an accurate performance, thus increasing the reliability. The missed failure and false positive rate that indicate the proposed methodology's ability is also investigated to discriminate between false alarms, and comparison with previous studies shows superior performance.
Author Dhiman, Harsh
Muyeen, S. M.
Kamwa, Innocent
Deb, Dipankar
Author_xml – sequence: 1
  givenname: Harsh
  orcidid: 0000-0002-7394-7102
  surname: Dhiman
  fullname: Dhiman, Harsh
  email: harsh.dhiman@aii.ac.in
  organization: Department of Electrical Engineering, Adani Institute of Infrastructure Engineering, Ahmedabad, India
– sequence: 2
  givenname: Dipankar
  orcidid: 0000-0003-4419-4516
  surname: Deb
  fullname: Deb, Dipankar
  email: dipankardeb@iitram.ac.in
  organization: Department of Electrical Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad, India
– sequence: 3
  givenname: S. M.
  orcidid: 0000-0003-4955-6889
  surname: Muyeen
  fullname: Muyeen, S. M.
  email: s.m.muyeen@ieee.org
  organization: School of Electrical Engineering Computing and Mathematical Sciences, Curtin University, Perth, Australia
– sequence: 4
  givenname: Innocent
  orcidid: 0000-0002-3568-3716
  surname: Kamwa
  fullname: Kamwa, Innocent
  email: kamwa.innocent@ireq.ca
  organization: Hydro-Quebec/IREQ, Power Systems and Mathematics, Varennes, QC, Canada
BookMark eNp9kDFPwzAQhS1UJNrCjsRiiTnFdmLXHkspBamIgQJj5DgX1VUbBzsF-u9x1IqBgelueN-7e2-AerWrAaFLSkaUEnWznE1HjDA6SsmYSzU-QX3KuUwI4aqH-kRKnkgl1BkahLAmhGac0T4y77Yu8XLnC1sDnoP2hfvGk9pt9WaP76AF01pX41sdoMRxmZS6ae0n4OXKQ1i5TYl15_Bla_yyaxrnW_wWIefxkzar6BrO0WmlNwEujnOIXu9ny-lDsnieP04ni8QwRdvEmLEQmo85q-J3MYrQWmqV6pSoUkBVGGYKIlTGOWRUgyhkCcBkVhpGWZalQ3R98G28-9hBaPO12_k6nsyZIJliNNpGlTiojHcheKhyY1vdhWy9tpuckrwrNI-F5l2h-bHQCJI_YOPtVvv9f8jVAbEA8CtXGRWSsPQHTNOCXQ
CODEN ITCNE4
CitedBy_id crossref_primary_10_1002_cpe_6772
crossref_primary_10_1177_14759217241265286
crossref_primary_10_1016_j_measurement_2023_113138
crossref_primary_10_1109_TIM_2022_3227606
crossref_primary_10_1109_TIM_2024_3379412
crossref_primary_10_1016_j_aei_2023_101949
crossref_primary_10_3390_en18051273
crossref_primary_10_1109_TASE_2023_3293931
crossref_primary_10_1016_j_eswa_2022_117297
crossref_primary_10_3390_en17091998
crossref_primary_10_1016_j_ifacol_2023_10_1508
crossref_primary_10_3390_ma15238504
crossref_primary_10_1016_j_aei_2024_102357
crossref_primary_10_3390_s24134259
crossref_primary_10_1016_j_suscom_2022_100795
crossref_primary_10_1109_TIM_2022_3187737
crossref_primary_10_1088_1361_6501_ac991f
crossref_primary_10_1109_ACCESS_2021_3111408
crossref_primary_10_3390_electronics13122411
crossref_primary_10_3390_en17246456
crossref_primary_10_3390_en16197008
crossref_primary_10_3390_bioengineering9070281
crossref_primary_10_1109_ACCESS_2024_3515165
crossref_primary_10_32604_iasc_2023_037277
crossref_primary_10_1016_j_isatra_2024_01_008
crossref_primary_10_1016_j_ress_2023_109258
crossref_primary_10_1016_j_eswa_2023_122776
crossref_primary_10_3390_act11030067
crossref_primary_10_1016_j_engappai_2022_105775
crossref_primary_10_5334_dsj_2024_010
crossref_primary_10_1002_cpe_7886
crossref_primary_10_1016_j_compind_2022_103767
crossref_primary_10_3390_s24103215
crossref_primary_10_1080_15435075_2023_2194375
crossref_primary_10_3390_en15093180
crossref_primary_10_1016_j_ins_2022_07_161
crossref_primary_10_1177_01445987241291180
crossref_primary_10_1016_j_isatra_2023_03_045
crossref_primary_10_1109_JSEN_2023_3326738
crossref_primary_10_1109_ACCESS_2024_3412274
crossref_primary_10_1002_ese3_1706
crossref_primary_10_1109_JESTPE_2023_3347658
crossref_primary_10_1088_1742_6596_2351_1_012025
crossref_primary_10_1016_j_neucom_2022_11_002
crossref_primary_10_1016_j_engappai_2023_106757
crossref_primary_10_1016_j_future_2023_11_036
crossref_primary_10_1016_j_aei_2022_101852
crossref_primary_10_1080_14786451_2024_2326296
crossref_primary_10_3390_en16104123
crossref_primary_10_1016_j_engappai_2024_108046
crossref_primary_10_3390_en16093614
crossref_primary_10_1088_1361_6501_ad6f33
crossref_primary_10_3390_machines10111025
crossref_primary_10_1016_j_ress_2023_109235
crossref_primary_10_3390_electronics13152940
crossref_primary_10_3390_e24101394
crossref_primary_10_1002_2050_7038_13010
crossref_primary_10_1061_JLEED9_EYENG_4850
crossref_primary_10_1080_15435075_2024_2315445
crossref_primary_10_1109_ACCESS_2023_3324054
crossref_primary_10_1177_14727978251323099
crossref_primary_10_1007_s42835_022_01118_y
crossref_primary_10_1038_s41598_024_51930_x
crossref_primary_10_1016_j_compeleceng_2023_108988
crossref_primary_10_1109_JSEN_2023_3327138
crossref_primary_10_3390_s23218964
crossref_primary_10_1016_j_eswa_2022_118345
crossref_primary_10_1016_j_ijft_2024_100569
crossref_primary_10_1109_ACCESS_2022_3164717
crossref_primary_10_1016_j_ymssp_2023_110528
crossref_primary_10_1109_JIOT_2021_3117958
crossref_primary_10_1088_1361_6501_ad0956
crossref_primary_10_1145_3620676
crossref_primary_10_1049_tje2_12411
crossref_primary_10_1098_rsta_2022_0253
crossref_primary_10_3390_act12030125
crossref_primary_10_1016_j_ress_2024_110291
crossref_primary_10_1109_TFUZZ_2024_3421638
crossref_primary_10_3390_en15051768
crossref_primary_10_1007_s42417_022_00687_6
crossref_primary_10_1080_03772063_2024_2448588
crossref_primary_10_1371_journal_pone_0278491
crossref_primary_10_1108_SR_06_2022_0255
crossref_primary_10_61435_ijred_2025_60632
crossref_primary_10_1016_j_engappai_2024_109578
crossref_primary_10_1080_14786451_2022_2032060
crossref_primary_10_1016_j_measurement_2022_111616
crossref_primary_10_3390_app14167256
crossref_primary_10_1016_j_eswa_2022_118049
crossref_primary_10_3390_s23135873
crossref_primary_10_1016_j_knosys_2024_111533
crossref_primary_10_1016_j_knosys_2024_112225
crossref_primary_10_1016_j_ymssp_2023_110183
crossref_primary_10_1109_ACCESS_2024_3514747
crossref_primary_10_1109_ACCESS_2021_3123561
crossref_primary_10_1186_s10033_023_00978_3
crossref_primary_10_3390_electronics13020452
crossref_primary_10_1016_j_measurement_2023_112671
crossref_primary_10_48084_etasr_5595
crossref_primary_10_1002_qre_3643
crossref_primary_10_1109_TIM_2023_3329105
crossref_primary_10_1088_1361_6501_aca496
crossref_primary_10_1080_15435075_2023_2217901
crossref_primary_10_1016_j_patcog_2022_109253
crossref_primary_10_32604_cmc_2023_045008
crossref_primary_10_3390_s23073755
crossref_primary_10_1109_ACCESS_2024_3452168
crossref_primary_10_1109_TSTE_2023_3272317
crossref_primary_10_4236_jcc_2022_1011004
crossref_primary_10_3390_s23136219
crossref_primary_10_1109_JSEN_2023_3321417
crossref_primary_10_1109_TIA_2022_3145753
Cites_doi 10.3390/s20236742
10.1016/j.renene.2018.05.024
10.1109/TEC.2013.2295301
10.1145/335191.335388
10.1109/TSG.2016.2621135
10.1109/TSG.2017.2691782
10.1109/TSTE.2018.2859764
10.1109/TIE.2018.2844805
10.1049/iet-rpg.2018.0156
10.1109/TSG.2014.2386305
10.1007/978-981-13-1966-2_45
10.1109/SysTol.2013.6693901
10.1109/TMECH.2017.2759301
10.1016/j.renene.2013.06.025
10.1002/we.1887
10.1109/TSTE.2011.2163177
10.1109/SysTol.2013.6693951
10.1016/j.renene.2015.10.061
10.1002/2050-7038.12818
10.1109/TII.2020.2967822
10.1109/TSTE.2019.2954834
10.1016/j.renene.2018.08.050
10.1109/TPAMI.2013.50
10.1016/j.rser.2007.05.008
10.1002/we.2290
10.1109/TSTE.2011.2167164
10.1016/j.renene.2012.03.003
10.1109/TIM.2017.2698738
10.1145/1541880.1541882
10.1109/TSG.2017.2763827
10.1109/TIA.2016.2628362
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TEC.2021.3075897
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0059
EndPage 3469
ExternalDocumentID 10_1109_TEC_2021_3075897
9416802
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-cc766a5752f0140216aa8a93a309d6efbc2cb069455e41ae6b8dee284dc212443
IEDL.DBID RIE
ISSN 0885-8969
IngestDate Mon Jun 30 10:30:05 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Tue Jul 01 02:53:23 EDT 2025
Wed Aug 27 05:01:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cc766a5752f0140216aa8a93a309d6efbc2cb069455e41ae6b8dee284dc212443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4419-4516
0000-0002-7394-7102
0000-0003-4955-6889
0000-0002-3568-3716
PQID 2604921140
PQPubID 85443
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TEC_2021_3075897
ieee_primary_9416802
proquest_journals_2604921140
crossref_primary_10_1109_TEC_2021_3075897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Dec.
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on energy conversion
PublicationTitleAbbrev TEC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref14
ibrahim (ref16) 0
ref30
ref33
ref11
ref10
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref26
ref25
japkowicz (ref32) 1999; 10
ref20
ref21
leahy (ref15) 2018
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
breunig (ref31) 0
yampikulsakul (ref22) 2014; 29
References_xml – ident: ref27
  doi: 10.3390/s20236742
– ident: ref20
  doi: 10.1016/j.renene.2018.05.024
– volume: 29
  start-page: 288
  year: 2014
  ident: ref22
  article-title: Condition monitoring of wind power system with nonparametric regression analysis
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2013.2295301
– start-page: 93
  year: 0
  ident: ref31
  article-title: LOF:Identifying density-based local outliers
  publication-title: Proc ACM SIGMOD Int Conf Manage Data
  doi: 10.1145/335191.335388
– year: 2018
  ident: ref15
  article-title: Diagnosing and predicting wind turbine faults from SCADA data using support vector machines
– ident: ref13
  doi: 10.1109/TSG.2016.2621135
– ident: ref7
  doi: 10.1109/TSG.2017.2691782
– ident: ref9
  doi: 10.1109/TSTE.2018.2859764
– ident: ref18
  doi: 10.1109/TIE.2018.2844805
– ident: ref28
  doi: 10.1049/iet-rpg.2018.0156
– ident: ref14
  doi: 10.1109/TSG.2014.2386305
– ident: ref1
  doi: 10.1007/978-981-13-1966-2_45
– ident: ref26
  doi: 10.1109/SysTol.2013.6693901
– ident: ref25
  doi: 10.1109/TMECH.2017.2759301
– ident: ref17
  doi: 10.1016/j.renene.2013.06.025
– ident: ref8
  doi: 10.1002/we.1887
– ident: ref33
  doi: 10.1109/TSTE.2011.2163177
– ident: ref12
  doi: 10.1109/SysTol.2013.6693951
– year: 0
  ident: ref16
  article-title: Neural networks for wind turbine fault detection via current signature analysis
– ident: ref34
  doi: 10.1016/j.renene.2015.10.061
– ident: ref3
  doi: 10.1002/2050-7038.12818
– ident: ref29
  doi: 10.1109/TII.2020.2967822
– ident: ref5
  doi: 10.1109/TSTE.2019.2954834
– ident: ref19
  doi: 10.1016/j.renene.2018.08.050
– ident: ref23
  doi: 10.1109/TPAMI.2013.50
– ident: ref6
  doi: 10.1016/j.rser.2007.05.008
– ident: ref21
  doi: 10.1002/we.2290
– volume: 10
  start-page: 518
  year: 1999
  ident: ref32
  article-title: A novelty detection approach to classification
  publication-title: Proc 14th Joint Conf Artif Intell
– ident: ref11
  doi: 10.1109/TSTE.2011.2167164
– ident: ref4
  doi: 10.1016/j.renene.2012.03.003
– ident: ref24
  doi: 10.1109/TIM.2017.2698738
– ident: ref30
  doi: 10.1145/1541880.1541882
– ident: ref2
  doi: 10.1109/TSG.2017.2763827
– ident: ref10
  doi: 10.1109/TIA.2016.2628362
SSID ssj0014521
Score 2.6703115
Snippet Data-driven condition monitoring reduces downtime of wind turbines and increases reliability. Wind turbine operation and maintenance (O&M) cost is a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3462
SubjectTerms Adaptive threshold
Anomalies
Anomaly detection
condition monitoring
Decision trees
Downtime
Failure
False alarms
Fault detection
Fault diagnosis
Gearboxes
Machinery condition monitoring
Multilayers
neural network
Neural networks
Reliability aspects
SCADA
Support vector machines
Temperature distribution
Training
Turbines
Wind power
Wind turbines
Title Wind Turbine Gearbox Anomaly Detection Based on Adaptive Threshold and Twin Support Vector Machines
URI https://ieeexplore.ieee.org/document/9416802
https://www.proquest.com/docview/2604921140
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Ukx7c0IhbevBi4sBsLe0RETQmeALlNmk7j8SIA5EhLr_e185AiBrjbQ5t0-Rr-75v3kbIOYdYMSRtnuCCeTEX0tOp8D2DptMfIUPQrmtJ757fDuK7IRuukctlLgwAuOAzqNtP58tPJ2Zuf5U1JLIHYStHrqNwK3K1lh6DmLkcK7w0zBOSy4VL0peNfqeNQjAM6niembDlnVZMkOup8uMhdtalu016i30VQSXP9Xmu6-bzW8nG_258h2yVNJO2inOxS9Yg2yObK8UHq8Q8ohyn_fkramOgN3ji9eSdtrLJixp_0GvIXZBWRq_QzqUUP1qpmtrHkfYR_5l1W1FlV3h7yqhtDopEnj44JwDtuRBNmO2TQbfTb996ZcsFz4QyyD1jmpwjeCwcWekVBlwpoWSkIl-mHEbahEbbXFnGIA4UcC1SADRxqQktU4gOSCWbZHBIKASB0siuQo2aTfKmGiH0dm0JkZJNXSONBQqJKeuR27YY48TpEl8miFticUtK3GrkYjljWtTi-GNs1cKwHFciUCMnC6CT8rLOEpR0sUQhHPtHv886Jht27SKK5YRU8tc5nCIXyfWZO4RfXt7ZFg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOMAeeO6K7vLwgQsSaZM0du1jeZZHOYXHLbKdqYSAFNFUu_DrGTtphQCtuPlgO5a-sWe-zAtgR2CiORltgRSSB4mQKjC5DANLqjMckIVgfNeS_qXoXSVnt_x2BvamuTCI6IPPsOmG3pefD-3Y_SprKbIepKscOUd6n0dVttbUZ5Bwn2VF14YHUgk1cUqGqpUeHRAVjKMmSTSXrsDTOyXku6p8eoq9fjlegv7kZFVYyX1zXJqmff1QtPG7R1-GxdrQZN1KMlZgBotV-PGu_OAa2Bsi5CwdPxM7RnZCMm-G_1i3GD7qhxd2iKUP0yrYPmm6nNGgm-sn9zyylCRg5BxXTLsd_t4VzLUHJVOeXXs3AOv7IE0c_YSr46P0oBfUTRcCG6uoDKztCEHw8XjgyFccCa2lVm3dDlUucGBsbI3LluUck0ijMDJHJCWX29jZCu1fMFsMC1wHhlGkDdlXsSHWpkRHDwh8t7fCtlYd04DWBIXM1hXJXWOMh8wzk1BlhFvmcMtq3BqwO13xVFXj-M_cNQfDdF6NQAM2JkBn9XUdZUTqEkVUOAl_f71qG-Z7af8iuzi9PP8DC-47VUzLBsyWz2PcJMukNFteIN8A28LcXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+Turbine+Gearbox+Anomaly+Detection+Based+on+Adaptive+Threshold+and+Twin+Support+Vector+Machines&rft.jtitle=IEEE+transactions+on+energy+conversion&rft.au=Dhiman%2C+Harsh&rft.au=Deb%2C+Dipankar&rft.au=Muyeen%2C+S+M&rft.au=Kamwa%2C+Innocent&rft.date=2021-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8969&rft.eissn=1558-0059&rft.volume=36&rft.issue=4&rft.spage=3462&rft_id=info:doi/10.1109%2FTEC.2021.3075897&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8969&client=summon