3-D Face Morphing Attacks: Generation, Vulnerability and Detection
Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a...
Saved in:
Published in | IEEE transactions on biometrics, behavior, and identity science Vol. 6; no. 1; pp. 103 - 117 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2637-6407 2637-6407 |
DOI | 10.1109/TBIOM.2023.3324684 |
Cover
Abstract | Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the proposed 3D morph-generation scheme against automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques. |
---|---|
AbstractList | Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the proposed 3D morph-generation scheme against automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques. |
Author | Singh, Jag Mohan Ramachandra, Raghavendra |
Author_xml | – sequence: 1 givenname: Jag Mohan orcidid: 0000-0002-8901-6791 surname: Singh fullname: Singh, Jag Mohan email: jag.m.singh@ntnu.no organization: Norwegian Biometrics Laboratory, the Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway – sequence: 2 givenname: Raghavendra orcidid: 0000-0003-0484-3956 surname: Ramachandra fullname: Ramachandra, Raghavendra email: raghavendra.ramachandra@ntnu.no organization: Norwegian Biometrics Laboratory, the Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway |
BookMark | eNpNkE1PAjEQhhuDiYj8AeOhiVcX-7Vt1xsfgiQQLui16Xa7uohdbLsH_r27woFkkpnJ-74zyXMLeq52FoB7jEYYo-x5O1lu1iOCCB1RShiX7Ar0Caci4QyJ3sV8A4Yh7BBCBLGsrT6Y0GQG59pYuK794atyn3Acozbf4QUurLNex6p2T_Cj2XdLXu2reITaFXBmozWdeAeuS70PdnjuA_A-f91O35LVZrGcjleJIRmOiREFS1ObMlFmmuRWYpanRnJccJNiKUnJWlUzXKCykFpjioUWgjFhcF4KQwfg8XT34OvfxoaodnXjXftSkYwJSXhG09ZFTi7j6xC8LdXBVz_aHxVGqsOl_nGpDpc642pDD6dQZa29CBDJCSX0D9S_ZmI |
CODEN | ITBBCT |
Cites_doi | 10.1111/j.1467-8659.2009.01388.x 10.1145/2487228.2487237 10.1109/IWBF49977.2020.9107970 10.1145/3130800.3130813 10.1109/BTAS.2017.8272742 10.1111/j.1467-8659.2008.01282.x 10.1145/1276377.1276406 10.1080/10867651.2004.10487596 10.1007/3-540-48481-7_29 10.3403/30392862u 10.1109/TIFS.2017.2777340 10.1109/CVPR.2005.268 10.23919/BIOSIG.2017.8053499 10.1109/TPAMI.2010.46 10.1109/ICCV.2009.5459161 10.1109/34.121791 10.1109/CVPR42600.2020.00068 10.1109/CVPR.2005.581 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136 10.1145/311535.311556 10.1145/3395208 10.1109/CVPR46437.2021.00599 10.1109/CVPR.2019.00592 10.1109/CVPR.2015.7298682 10.1109/BTAS.2014.6996240 10.1109/BTAS.2018.8698563 10.1109/BTAS.2016.7791169 10.1109/tcsvt.2022.3186894 10.1109/TIP.2019.2909197 10.1088/1742-6596/77/1/012006 10.1109/CVPR42600.2020.00762 10.1109/ICCV.2011.6126544 10.3403/30255472 10.1109/CVPR.2019.00482 10.1109/FGR.2006.6 10.1111/cgf.14502 10.1109/TBIOM.2021.3072349 10.1109/TTS.2021.3066254 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TBIOM.2023.3324684 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2637-6407 |
EndPage | 117 |
ExternalDocumentID | 10_1109_TBIOM_2023_3324684 10286232 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-c7d455e547f9a2be814b5c861d6c51882f45e5a41d0fd8aa1317a77447c1bf7c3 |
IEDL.DBID | RIE |
ISSN | 2637-6407 |
IngestDate | Mon Jun 30 04:38:27 EDT 2025 Tue Jul 01 02:43:55 EDT 2025 Wed Aug 27 02:02:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-c7d455e547f9a2be814b5c861d6c51882f45e5a41d0fd8aa1317a77447c1bf7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8901-6791 0000-0003-0484-3956 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10286232 |
PQID | 2947826935 |
PQPubID | 4437219 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TBIOM_2023_3324684 ieee_primary_10286232 proquest_journals_2947826935 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jan. 2024-1-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on biometrics, behavior, and identity science |
PublicationTitleAbbrev | TBIOM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref58 ref53 ref52 ref11 Ngan (ref12) 2021 ref55 ref10 Foley (ref45) 1994; 55 ref19 ref18 Goyal (ref56) Gelfand (ref26) ref51 ref50 ref46 ref47 ref41 Deeb (ref13) 2020 ref44 Ter Hennepe (ref15) 2010 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 (ref16) 2021 ref5 ref40 ref34 ref37 ref36 ref30 ref32 (ref54) 2015 ref2 ref1 ref39 Trappolini (ref33); 34 (ref35) 2021 Qi (ref48) 2017 King (ref42) 2009; 10 Vardam (ref21) 2021 ref24 ref23 ref25 ref22 (ref14) 2020 Dent (ref17) 2017 (ref20) 2017 Zampogiannis (ref31) 2018 Wu (ref57) 2014 ref28 ref27 ref29 Haehnel (ref38); 3 |
References_xml | – ident: ref41 doi: 10.1111/j.1467-8659.2009.01388.x – volume-title: Apple face ID year: 2017 ident: ref20 – ident: ref39 doi: 10.1145/2487228.2487237 – ident: ref10 doi: 10.1109/IWBF49977.2020.9107970 – start-page: 197 volume-title: Proc. Symp. Geom. Process. ident: ref26 article-title: Robust global registration – ident: ref46 doi: 10.1145/3130800.3130813 – ident: ref8 doi: 10.1109/BTAS.2017.8272742 – ident: ref25 doi: 10.1111/j.1467-8659.2008.01282.x – volume-title: UAE reviews features of new ID card, 3D photo included year: 2020 ident: ref13 – volume-title: Best Practice Technical Guidelines for Automated Border Control ABC Systems year: 2015 ident: ref54 – volume-title: Vulnerability of 3D face recognition systems of morphing attacks year: 2021 ident: ref21 – volume-title: Artec Eva sensor year: 2021 ident: ref35 – ident: ref40 doi: 10.1145/1276377.1276406 – ident: ref43 doi: 10.1080/10867651.2004.10487596 – ident: ref37 doi: 10.1007/3-540-48481-7_29 – start-page: 3809 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref56 article-title: Revisiting point cloud shape classification with a simple and effective baseline – ident: ref19 doi: 10.3403/30392862u – volume-title: 3D face enrolment for ID cards, D. face based ABC systems year: 2021 ident: ref16 – ident: ref5 doi: 10.1109/TIFS.2017.2777340 – volume-title: Using a 3D render as a french ID card ‘photo’ year: 2017 ident: ref17 – ident: ref50 doi: 10.1109/CVPR.2005.268 – volume-title: Topology-aware non-rigid point cloud registration year: 2018 ident: ref31 – year: 2017 ident: ref48 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space publication-title: arXiv:1706.02413 – ident: ref7 doi: 10.23919/BIOSIG.2017.8053499 – ident: ref32 doi: 10.1109/TPAMI.2010.46 – volume-title: 3D photo ID year: 2010 ident: ref15 – ident: ref29 doi: 10.1109/ICCV.2009.5459161 – volume-title: Stereo Laser Image year: 2020 ident: ref14 – ident: ref27 doi: 10.1109/34.121791 – ident: ref53 doi: 10.1109/CVPR42600.2020.00068 – ident: ref52 doi: 10.1109/CVPR.2005.581 – ident: ref36 doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136 – ident: ref22 doi: 10.1145/311535.311556 – ident: ref23 doi: 10.1145/3395208 – ident: ref34 doi: 10.1109/CVPR46437.2021.00599 – volume: 55 volume-title: Introduction to Computer Graphics year: 1994 ident: ref45 – ident: ref47 doi: 10.1109/IWBF49977.2020.9107970 – ident: ref49 doi: 10.1109/CVPR.2019.00592 – ident: ref1 doi: 10.1109/CVPR.2015.7298682 – ident: ref3 doi: 10.1109/BTAS.2014.6996240 – ident: ref9 doi: 10.1109/BTAS.2018.8698563 – ident: ref4 doi: 10.1109/BTAS.2016.7791169 – year: 2021 ident: ref12 article-title: Part 4: MORPH - performance of automated face MORPH detection. – ident: ref55 doi: 10.1109/tcsvt.2022.3186894 – ident: ref30 doi: 10.1109/TIP.2019.2909197 – ident: ref18 doi: 10.1088/1742-6596/77/1/012006 – ident: ref24 doi: 10.1109/CVPR42600.2020.00762 – volume: 10 start-page: 1755 year: 2009 ident: ref42 article-title: Dlib-ml: A machine learning toolkit publication-title: J. Mach. Learn. Res. – ident: ref44 doi: 10.1109/ICCV.2011.6126544 – ident: ref58 doi: 10.3403/30255472 – ident: ref2 doi: 10.1109/CVPR.2019.00482 – volume: 3 start-page: 915 volume-title: Proc. IJCAI ident: ref38 article-title: An extension of the ICP algorithm for modeling nonrigid objects with mobile robots – ident: ref51 doi: 10.1109/FGR.2006.6 – volume-title: 3D ShapeNets for 2.5D object recognition and next-best-view prediction year: 2014 ident: ref57 – ident: ref28 doi: 10.1111/cgf.14502 – ident: ref6 doi: 10.1109/TBIOM.2021.3072349 – volume: 34 start-page: 5731 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref33 article-title: Shape registration in the time of transformers – ident: ref11 doi: 10.1109/TTS.2021.3066254 |
SSID | ssj0002049049 |
Score | 2.256789 |
Snippet | Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 103 |
SubjectTerms | 3D morphing Algorithm design and analysis Algorithms Benchmarks Biometrics Biometrics (access control) Blending Color imagery Deformation Face recognition Image morphing Morphing morphing attack detection Point cloud compression point clouds Quality assessment Three dimensional models Three-dimensional displays Two dimensional analysis vulnerability |
Title | 3-D Face Morphing Attacks: Generation, Vulnerability and Detection |
URI | https://ieeexplore.ieee.org/document/10286232 https://www.proquest.com/docview/2947826935 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEhILzyIKBXlgg6Rx7DzM1lKqgtSytKhb5NjOAkoRJEP59ZztFPEQEluiOJF1d_F9Pt93h9BFEmjwpAp2qgIsmPGCe1yE0qNMAJ6QGhCEYSNPpvF4zu4X0aIhq1sujNbaJp9p31zas3y1lLUJlfWMMwR3DSvuJtiZI2t9BlRCc4bF-JoYE_DebHD3MPFNf3CfAm6IU_bN-dhuKr-WYOtXRrtoup6RSyd58usq9-X7j2KN_57yHtppECbuO5PYRxu6PEBbrufk6hANqDfEIyE1nixBxuC5cL-qDNP-Grsa1EZVV_ixfjY3Nnd2hUWp8FBXNm-rbKP56HZ2M_aaRgqeDDmpPJkoFkU6YkkBish1SlgeyTQmKpamIFtYMHgqGFFBoVIhCIAKAbiQJZLkRSLpEWqVy1IfI6wpzzUMMtQSFhdpSlUiAqq0qSNHFOmgy7WEsxdXLyOz-4yAZ1YfmdFH1uijg9pGZF9GOml1UHetlaz5p96ykDOAMzGn0ckfr52ibfg6cxGSLmpVr7U-A8xQ5efWVj4AV3K8Yg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQEYKFZxGFAh7YIGmcOA-ztZSqhaYsLeoWObazgFIEyVB-PWcnRTyExJYojmLdOf4-2_fdIXQROgqQVMJKlcMIpixjFuOusDzKgU8IBQxCq5HjSTCc0bu5P6_F6kYLo5QywWfK1pfmLF8uRKm3yjoaDAGuYcZdB-CnfiXX-txScfUpFmUraYzDOtPe6CG2dYVw2wPmEET0G_yYeiq_JmGDLIMdNFn1qQooebLLIrXF-490jf_u9C7arjkm7laDYg-tqXwfbVRVJ5cHqOdZfTzgQuF4AVYG7MLdotBa-2tcZaHWzrrCj-WzvjHRs0vMc4n7qjCRW3kTzQa305uhVZdSsITLSGGJUFLfVz4NM3BFqiJCU19EAZGB0CnZ3IzCU06JdDIZcU6AVnBghjQUJM1C4R2iRr7I1RHCymOpgkZaXEKDLIo8GXLHk0pnkiOStNDlysLJS5UxIzErDYclxh-J9kdS-6OFmtpkX1pW1mqh9sorSf1XvSUuo0BoAub5x3-8do42h9N4nIxHk_sTtAVfotV-SRs1itdSnQKDKNIzM24-AGUXv68 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Face+Morphing+Attacks%3A+Generation%2C+Vulnerability+and+Detection&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Singh%2C+Jag+Mohan&rft.au=Ramachandra%2C+Raghavendra&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2637-6407&rft.volume=6&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1109%2FTBIOM.2023.3324684&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon |