3-D Face Morphing Attacks: Generation, Vulnerability and Detection

Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biometrics, behavior, and identity science Vol. 6; no. 1; pp. 103 - 117
Main Authors Singh, Jag Mohan, Ramachandra, Raghavendra
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2637-6407
2637-6407
DOI10.1109/TBIOM.2023.3324684

Cover

Abstract Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the proposed 3D morph-generation scheme against automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques.
AbstractList Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from contributory data subjects. This work presents a novel direction for generating face-morphing attacks in 3D. To this extent, we introduced a novel approach based on blending 3D face point clouds corresponding to contributory data subjects. The proposed method generates 3D face morphing by projecting the input 3D face point clouds onto depth maps and 2D color images, followed by image blending and wrapping operations performed independently on the color images and depth maps. We then back-projected the 2D morphing color map and the depth map to the point cloud using the canonical (fixed) view. Given that the generated 3D face morphing models will result in holes owing to a single canonical view, we have proposed a new algorithm for hole filling that will result in a high-quality 3D face morphing model. Extensive experiments were conducted on the newly generated 3D face dataset comprising 675 3D scans corresponding to 41 unique data subjects and a publicly available database (Facescape) with 100 data subjects. Experiments were performed to benchmark the vulnerability of the proposed 3D morph-generation scheme against automatic 2D, 3D FRS, and human observer analysis. We also presented a quantitative assessment of the quality of the generated 3D face-morphing models using eight different quality metrics. Finally, we propose three different 3D face Morphing Attack Detection (3D-MAD) algorithms to benchmark the performance of 3D face morphing attack detection techniques.
Author Singh, Jag Mohan
Ramachandra, Raghavendra
Author_xml – sequence: 1
  givenname: Jag Mohan
  orcidid: 0000-0002-8901-6791
  surname: Singh
  fullname: Singh, Jag Mohan
  email: jag.m.singh@ntnu.no
  organization: Norwegian Biometrics Laboratory, the Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
– sequence: 2
  givenname: Raghavendra
  orcidid: 0000-0003-0484-3956
  surname: Ramachandra
  fullname: Ramachandra, Raghavendra
  email: raghavendra.ramachandra@ntnu.no
  organization: Norwegian Biometrics Laboratory, the Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
BookMark eNpNkE1PAjEQhhuDiYj8AeOhiVcX-7Vt1xsfgiQQLui16Xa7uohdbLsH_r27woFkkpnJ-74zyXMLeq52FoB7jEYYo-x5O1lu1iOCCB1RShiX7Ar0Caci4QyJ3sV8A4Yh7BBCBLGsrT6Y0GQG59pYuK794atyn3Acozbf4QUurLNex6p2T_Cj2XdLXu2reITaFXBmozWdeAeuS70PdnjuA_A-f91O35LVZrGcjleJIRmOiREFS1ObMlFmmuRWYpanRnJccJNiKUnJWlUzXKCykFpjioUWgjFhcF4KQwfg8XT34OvfxoaodnXjXftSkYwJSXhG09ZFTi7j6xC8LdXBVz_aHxVGqsOl_nGpDpc642pDD6dQZa29CBDJCSX0D9S_ZmI
CODEN ITBBCT
Cites_doi 10.1111/j.1467-8659.2009.01388.x
10.1145/2487228.2487237
10.1109/IWBF49977.2020.9107970
10.1145/3130800.3130813
10.1109/BTAS.2017.8272742
10.1111/j.1467-8659.2008.01282.x
10.1145/1276377.1276406
10.1080/10867651.2004.10487596
10.1007/3-540-48481-7_29
10.3403/30392862u
10.1109/TIFS.2017.2777340
10.1109/CVPR.2005.268
10.23919/BIOSIG.2017.8053499
10.1109/TPAMI.2010.46
10.1109/ICCV.2009.5459161
10.1109/34.121791
10.1109/CVPR42600.2020.00068
10.1109/CVPR.2005.581
10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
10.1145/311535.311556
10.1145/3395208
10.1109/CVPR46437.2021.00599
10.1109/CVPR.2019.00592
10.1109/CVPR.2015.7298682
10.1109/BTAS.2014.6996240
10.1109/BTAS.2018.8698563
10.1109/BTAS.2016.7791169
10.1109/tcsvt.2022.3186894
10.1109/TIP.2019.2909197
10.1088/1742-6596/77/1/012006
10.1109/CVPR42600.2020.00762
10.1109/ICCV.2011.6126544
10.3403/30255472
10.1109/CVPR.2019.00482
10.1109/FGR.2006.6
10.1111/cgf.14502
10.1109/TBIOM.2021.3072349
10.1109/TTS.2021.3066254
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TBIOM.2023.3324684
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2637-6407
EndPage 117
ExternalDocumentID 10_1109_TBIOM_2023_3324684
10286232
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-c7d455e547f9a2be814b5c861d6c51882f45e5a41d0fd8aa1317a77447c1bf7c3
IEDL.DBID RIE
ISSN 2637-6407
IngestDate Mon Jun 30 04:38:27 EDT 2025
Tue Jul 01 02:43:55 EDT 2025
Wed Aug 27 02:02:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c7d455e547f9a2be814b5c861d6c51882f45e5a41d0fd8aa1317a77447c1bf7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8901-6791
0000-0003-0484-3956
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10286232
PQID 2947826935
PQPubID 4437219
PageCount 15
ParticipantIDs crossref_primary_10_1109_TBIOM_2023_3324684
ieee_primary_10286232
proquest_journals_2947826935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jan.
2024-1-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on biometrics, behavior, and identity science
PublicationTitleAbbrev TBIOM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref58
ref53
ref52
ref11
Ngan (ref12) 2021
ref55
ref10
Foley (ref45) 1994; 55
ref19
ref18
Goyal (ref56)
Gelfand (ref26)
ref51
ref50
ref46
ref47
ref41
Deeb (ref13) 2020
ref44
Ter Hennepe (ref15) 2010
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
(ref16) 2021
ref5
ref40
ref34
ref37
ref36
ref30
ref32
(ref54) 2015
ref2
ref1
ref39
Trappolini (ref33); 34
(ref35) 2021
Qi (ref48) 2017
King (ref42) 2009; 10
Vardam (ref21) 2021
ref24
ref23
ref25
ref22
(ref14) 2020
Dent (ref17) 2017
(ref20) 2017
Zampogiannis (ref31) 2018
Wu (ref57) 2014
ref28
ref27
ref29
Haehnel (ref38); 3
References_xml – ident: ref41
  doi: 10.1111/j.1467-8659.2009.01388.x
– volume-title: Apple face ID
  year: 2017
  ident: ref20
– ident: ref39
  doi: 10.1145/2487228.2487237
– ident: ref10
  doi: 10.1109/IWBF49977.2020.9107970
– start-page: 197
  volume-title: Proc. Symp. Geom. Process.
  ident: ref26
  article-title: Robust global registration
– ident: ref46
  doi: 10.1145/3130800.3130813
– ident: ref8
  doi: 10.1109/BTAS.2017.8272742
– ident: ref25
  doi: 10.1111/j.1467-8659.2008.01282.x
– volume-title: UAE reviews features of new ID card, 3D photo included
  year: 2020
  ident: ref13
– volume-title: Best Practice Technical Guidelines for Automated Border Control ABC Systems
  year: 2015
  ident: ref54
– volume-title: Vulnerability of 3D face recognition systems of morphing attacks
  year: 2021
  ident: ref21
– volume-title: Artec Eva sensor
  year: 2021
  ident: ref35
– ident: ref40
  doi: 10.1145/1276377.1276406
– ident: ref43
  doi: 10.1080/10867651.2004.10487596
– ident: ref37
  doi: 10.1007/3-540-48481-7_29
– start-page: 3809
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref56
  article-title: Revisiting point cloud shape classification with a simple and effective baseline
– ident: ref19
  doi: 10.3403/30392862u
– volume-title: 3D face enrolment for ID cards, D. face based ABC systems
  year: 2021
  ident: ref16
– ident: ref5
  doi: 10.1109/TIFS.2017.2777340
– volume-title: Using a 3D render as a french ID card ‘photo’
  year: 2017
  ident: ref17
– ident: ref50
  doi: 10.1109/CVPR.2005.268
– volume-title: Topology-aware non-rigid point cloud registration
  year: 2018
  ident: ref31
– year: 2017
  ident: ref48
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: arXiv:1706.02413
– ident: ref7
  doi: 10.23919/BIOSIG.2017.8053499
– ident: ref32
  doi: 10.1109/TPAMI.2010.46
– volume-title: 3D photo ID
  year: 2010
  ident: ref15
– ident: ref29
  doi: 10.1109/ICCV.2009.5459161
– volume-title: Stereo Laser Image
  year: 2020
  ident: ref14
– ident: ref27
  doi: 10.1109/34.121791
– ident: ref53
  doi: 10.1109/CVPR42600.2020.00068
– ident: ref52
  doi: 10.1109/CVPR.2005.581
– ident: ref36
  doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
– ident: ref22
  doi: 10.1145/311535.311556
– ident: ref23
  doi: 10.1145/3395208
– ident: ref34
  doi: 10.1109/CVPR46437.2021.00599
– volume: 55
  volume-title: Introduction to Computer Graphics
  year: 1994
  ident: ref45
– ident: ref47
  doi: 10.1109/IWBF49977.2020.9107970
– ident: ref49
  doi: 10.1109/CVPR.2019.00592
– ident: ref1
  doi: 10.1109/CVPR.2015.7298682
– ident: ref3
  doi: 10.1109/BTAS.2014.6996240
– ident: ref9
  doi: 10.1109/BTAS.2018.8698563
– ident: ref4
  doi: 10.1109/BTAS.2016.7791169
– year: 2021
  ident: ref12
  article-title: Part 4: MORPH - performance of automated face MORPH detection.
– ident: ref55
  doi: 10.1109/tcsvt.2022.3186894
– ident: ref30
  doi: 10.1109/TIP.2019.2909197
– ident: ref18
  doi: 10.1088/1742-6596/77/1/012006
– ident: ref24
  doi: 10.1109/CVPR42600.2020.00762
– volume: 10
  start-page: 1755
  year: 2009
  ident: ref42
  article-title: Dlib-ml: A machine learning toolkit
  publication-title: J. Mach. Learn. Res.
– ident: ref44
  doi: 10.1109/ICCV.2011.6126544
– ident: ref58
  doi: 10.3403/30255472
– ident: ref2
  doi: 10.1109/CVPR.2019.00482
– volume: 3
  start-page: 915
  volume-title: Proc. IJCAI
  ident: ref38
  article-title: An extension of the ICP algorithm for modeling nonrigid objects with mobile robots
– ident: ref51
  doi: 10.1109/FGR.2006.6
– volume-title: 3D ShapeNets for 2.5D object recognition and next-best-view prediction
  year: 2014
  ident: ref57
– ident: ref28
  doi: 10.1111/cgf.14502
– ident: ref6
  doi: 10.1109/TBIOM.2021.3072349
– volume: 34
  start-page: 5731
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Shape registration in the time of transformers
– ident: ref11
  doi: 10.1109/TTS.2021.3066254
SSID ssj0002049049
Score 2.256789
Snippet Face Recognition systems (FRS) have been found to be vulnerable to morphing attacks, where the morphed face image is generated by blending the face images from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 103
SubjectTerms 3D morphing
Algorithm design and analysis
Algorithms
Benchmarks
Biometrics
Biometrics (access control)
Blending
Color imagery
Deformation
Face recognition
Image morphing
Morphing
morphing attack detection
Point cloud compression
point clouds
Quality assessment
Three dimensional models
Three-dimensional displays
Two dimensional analysis
vulnerability
Title 3-D Face Morphing Attacks: Generation, Vulnerability and Detection
URI https://ieeexplore.ieee.org/document/10286232
https://www.proquest.com/docview/2947826935
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEhILzyIKBXlgg6Rx7DzM1lKqgtSytKhb5NjOAkoRJEP59ZztFPEQEluiOJF1d_F9Pt93h9BFEmjwpAp2qgIsmPGCe1yE0qNMAJ6QGhCEYSNPpvF4zu4X0aIhq1sujNbaJp9p31zas3y1lLUJlfWMMwR3DSvuJtiZI2t9BlRCc4bF-JoYE_DebHD3MPFNf3CfAm6IU_bN-dhuKr-WYOtXRrtoup6RSyd58usq9-X7j2KN_57yHtppECbuO5PYRxu6PEBbrufk6hANqDfEIyE1nixBxuC5cL-qDNP-Grsa1EZVV_ixfjY3Nnd2hUWp8FBXNm-rbKP56HZ2M_aaRgqeDDmpPJkoFkU6YkkBish1SlgeyTQmKpamIFtYMHgqGFFBoVIhCIAKAbiQJZLkRSLpEWqVy1IfI6wpzzUMMtQSFhdpSlUiAqq0qSNHFOmgy7WEsxdXLyOz-4yAZ1YfmdFH1uijg9pGZF9GOml1UHetlaz5p96ykDOAMzGn0ckfr52ibfg6cxGSLmpVr7U-A8xQ5efWVj4AV3K8Yg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQEYKFZxGFAh7YIGmcOA-ztZSqhaYsLeoWObazgFIEyVB-PWcnRTyExJYojmLdOf4-2_fdIXQROgqQVMJKlcMIpixjFuOusDzKgU8IBQxCq5HjSTCc0bu5P6_F6kYLo5QywWfK1pfmLF8uRKm3yjoaDAGuYcZdB-CnfiXX-txScfUpFmUraYzDOtPe6CG2dYVw2wPmEET0G_yYeiq_JmGDLIMdNFn1qQooebLLIrXF-490jf_u9C7arjkm7laDYg-tqXwfbVRVJ5cHqOdZfTzgQuF4AVYG7MLdotBa-2tcZaHWzrrCj-WzvjHRs0vMc4n7qjCRW3kTzQa305uhVZdSsITLSGGJUFLfVz4NM3BFqiJCU19EAZGB0CnZ3IzCU06JdDIZcU6AVnBghjQUJM1C4R2iRr7I1RHCymOpgkZaXEKDLIo8GXLHk0pnkiOStNDlysLJS5UxIzErDYclxh-J9kdS-6OFmtpkX1pW1mqh9sorSf1XvSUuo0BoAub5x3-8do42h9N4nIxHk_sTtAVfotV-SRs1itdSnQKDKNIzM24-AGUXv68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+Face+Morphing+Attacks%3A+Generation%2C+Vulnerability+and+Detection&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Singh%2C+Jag+Mohan&rft.au=Ramachandra%2C+Raghavendra&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2637-6407&rft.volume=6&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1109%2FTBIOM.2023.3324684&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon