Prediction of the dynamic pressure distribution in hydraulic structures using soft computing methods
Prediction of dynamic pressure distribution ( P ∗ ) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets, using as hydraulic structures for dissipation of the excess energy outflow, are usually constructed at the end of the chute of the spillways. In...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 25; no. 5; pp. 3873 - 3888 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-020-05413-6 |
Cover
Loading…
Abstract | Prediction of dynamic pressure distribution (
P
∗
) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets, using as hydraulic structures for dissipation of the excess energy outflow, are usually constructed at the end of the chute of the spillways. In this research, based on experimental studies of large hydraulic models, five well-known soft computing methods including artificial neural networks (ANN), gene expression programming (GEP), classification and regression trees (CART), M5 model tree (M5MT), and multivariate adaptive regression splines (MARS) approaches are examined. Mathematical expressions are obtained by these methods to predict
P
∗
in flip buckets. Compared to ANN and GEP expressions, explicit formulas derived by CART, M5MT, and MARS demonstrated more straightforward calculations. In addition, linear and nonlinear equations are generated for better comparison with the outcomes of the proposed soft computing methods. The obtained results showed the high performance of the suggested soft computing methods for the prediction of
P
∗
in flip buckets. It is found that the GEP approach culminated in more accurate results than other proposed soft computing methods and conventional linear and nonlinear regression techniques. Error measures in the testing stage showed that the formula provided by GEP with root mean square error (RMSE = 0.095), scatter index (SI = 13%), and mean absolute error (MAE = 0.073) has the best accuracy among the other predictive equations. |
---|---|
AbstractList | Prediction of dynamic pressure distribution (
P
∗
) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets, using as hydraulic structures for dissipation of the excess energy outflow, are usually constructed at the end of the chute of the spillways. In this research, based on experimental studies of large hydraulic models, five well-known soft computing methods including artificial neural networks (ANN), gene expression programming (GEP), classification and regression trees (CART), M5 model tree (M5MT), and multivariate adaptive regression splines (MARS) approaches are examined. Mathematical expressions are obtained by these methods to predict
P
∗
in flip buckets. Compared to ANN and GEP expressions, explicit formulas derived by CART, M5MT, and MARS demonstrated more straightforward calculations. In addition, linear and nonlinear equations are generated for better comparison with the outcomes of the proposed soft computing methods. The obtained results showed the high performance of the suggested soft computing methods for the prediction of
P
∗
in flip buckets. It is found that the GEP approach culminated in more accurate results than other proposed soft computing methods and conventional linear and nonlinear regression techniques. Error measures in the testing stage showed that the formula provided by GEP with root mean square error (RMSE = 0.095), scatter index (SI = 13%), and mean absolute error (MAE = 0.073) has the best accuracy among the other predictive equations. |
Author | Samadi, Mehrshad Sarkardeh, Hamed Jabbari, Ebrahim |
Author_xml | – sequence: 1 givenname: Mehrshad surname: Samadi fullname: Samadi, Mehrshad organization: School of Civil Engineering, Iran University of Science and Technology (IUST) – sequence: 2 givenname: Hamed surname: Sarkardeh fullname: Sarkardeh, Hamed organization: Department of Civil Engineering, Hakim Sabzevari University – sequence: 3 givenname: Ebrahim surname: Jabbari fullname: Jabbari, Ebrahim email: Jabbari@iust.ac.ir organization: School of Civil Engineering, Iran University of Science and Technology (IUST) |
BookMark | eNp9kE1vAiEQhkljk6rtH-iJP7DtLCwLe2xMvxKT9tCeCbKgGBcMsAf_fVF78uBhMh95n5nMO0MTH7xB6LGGpxqAPycABlABKcGamlbtDZrWDaUVb3g3OdWk4m1D79AspS0AqTmjU9R_R9M7nV3wOFicNwb3B68Gp_E-mpTGWAYu5ehW40nkPN4c-qjGXZGU-ahz0SQ8JufXOAWbsQ7DvohLO5i8CX26R7dW7ZJ5-M9z9Pv2-rP4qJZf75-Ll2WlSVfnSjNuCBEc-s62gnTCCKHBaEqtaRlYJqDnVhkiGrViXNGO6tZYphU3VChG54ic9-oYUorGyn10g4oHWYM8-iTPPsnikzz5JNsCiQtIu6yOv-ao3O46Ss9oKnf82kS5DWP05cVr1B_ZB4HY |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40783 crossref_primary_10_2166_aqua_2024_305 crossref_primary_10_3390_w15213841 crossref_primary_10_2166_ws_2021_253 crossref_primary_10_2166_wst_2024_393 crossref_primary_10_1007_s11082_024_06377_9 crossref_primary_10_2166_ws_2021_293 crossref_primary_10_1016_j_padiff_2023_100600 crossref_primary_10_1007_s42107_024_01223_5 crossref_primary_10_1155_2023_8272566 crossref_primary_10_1016_j_heliyon_2024_e25786 crossref_primary_10_1080_2374068X_2023_2247282 crossref_primary_10_1016_j_mtcomm_2023_106754 crossref_primary_10_1016_j_jmrt_2023_09_105 crossref_primary_10_1007_s11356_022_20989_2 crossref_primary_10_2166_ws_2023_127 crossref_primary_10_1007_s40899_024_01092_5 crossref_primary_10_1155_2022_2495631 crossref_primary_10_1007_s12346_023_00896_8 crossref_primary_10_1007_s13201_025_02391_8 crossref_primary_10_1111_wej_12845 crossref_primary_10_1061_JOEEDU_EEENG_7834 crossref_primary_10_2166_ws_2021_304 crossref_primary_10_2166_ws_2024_238 crossref_primary_10_1016_j_rinp_2023_107053 crossref_primary_10_1007_s11082_024_06497_2 crossref_primary_10_1016_j_measurement_2023_113982 crossref_primary_10_1016_j_padiff_2023_100599 crossref_primary_10_1007_s10661_023_11462_9 crossref_primary_10_1016_j_istruc_2023_105505 crossref_primary_10_1155_2024_8812792 crossref_primary_10_2166_aqua_2023_236 crossref_primary_10_1016_j_heliyon_2024_e27179 crossref_primary_10_1016_j_jwpe_2022_102736 crossref_primary_10_1016_j_arabjc_2023_105378 crossref_primary_10_1007_s40996_024_01720_2 crossref_primary_10_1007_s40808_024_02279_7 crossref_primary_10_1007_s12205_024_1309_8 crossref_primary_10_2166_wcc_2023_526 crossref_primary_10_2166_ws_2022_248 crossref_primary_10_3390_w16202916 crossref_primary_10_1007_s10765_023_03215_0 |
Cites_doi | 10.1080/1064119x.2020.1731025 10.1007/s00521-012-1230-9 10.1007/978-981-15-5772-9_18 10.2166/hydro.2020.129 10.1108/EC-08-2018-0348 10.1007/s00500-019-04413-5 10.1007/s13201-018-0831-6 10.1016/j.apor.2008.11.001 10.1139/l06-101 10.1007/s00477-020-01794-0 10.1007/978-3-319-20883-1_4 10.1080/09715010.2017.1344572 10.1007/s00500-019-03847-1 10.1214/aos/1176347963 10.1007/s00500-019-04648-2 10.1080/19942060.2015.1011826 10.1016/j.gloplacha.2017.10.008 10.1007/3-540-32849-1_2 10.1016/S0043-1354(01)00195-6 10.1007/s00366-020-01118-4 10.1007/s12145-013-0140-4 10.1007/s00500-018-3580-4 10.1061/(ASCE)0733-9429(1988)114:8(829) 10.1007/s00500-019-04623-x 10.1007/s00500-019-03877-9 10.1007/s00500-018-3037-9 10.1016/j.eswa.2011.02.073 10.1007/s11356-020-07802-8 10.1007/s11831-019-09382-4 10.1080/02626667.2020.1749763 10.1016/j.apor.2010.05.003 10.1002/fld.2318 10.1007/s00500-019-03775-0 10.1016/j.scitotenv.2010.07.048 10.1061/(ASCE)0733-9429(2000)126:11(837) 10.1061/(ASCE)0733-9429(2005)131:5(347) 10.1007/s00500-016-2480-8 10.1007/s11269-017-1708-4 10.2166/wst.2012.100 10.1016/0893-6080(89)90020-8 10.1080/09715010.2020.1752831 10.2166/wst.2014.495 10.1002/clen.201700494 10.1016/j.jhydrol.2017.01.018 10.1007/s00500-018-3528-8 10.1007/s00500-020-05090-5 10.1680/jwama.15.00075 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00500-020-05413-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 3888 |
ExternalDocumentID | 10_1007_s00500_020_05413_6 |
GrantInformation_xml | – fundername: Iran National Science Foundation grantid: 97014783 funderid: http://dx.doi.org/10.13039/501100003968 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-c57e22870d9f68298e88c0ec33fe650f580d7fae284ab57a393c6ef5ca7e38a53 |
IEDL.DBID | U2A |
ISSN | 1432-7643 |
IngestDate | Fri Jul 04 01:04:12 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Fri Feb 21 02:49:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Dynamic pressure distribution Soft computing methods Hydraulic structures |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-c57e22870d9f68298e88c0ec33fe650f580d7fae284ab57a393c6ef5ca7e38a53 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1007_s00500_020_05413_6 crossref_citationtrail_10_1007_s00500_020_05413_6 springer_journals_10_1007_s00500_020_05413_6 |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Hariri-Ardebili, Salazar (CR18) 2020; 24 Zahiri, Dehghani, Azamathulla, Gandomi, Alavi, Ryan (CR55) 2015 Samadi, Jabbari, Azamathulla (CR42) 2014; 24 Aminoroayaie Yamini, Kavianpour, Mousavi, Movahedi, Bavandpour (CR4) 2018; 24 CR38 CR37 Friedman (CR13) 1991; 19 Sihag, Esmaeilbeiki, Singh, Ebtehaj, Bonakdari (CR46) 2019; 23 Mahjoobi, Etemad-Shahidi (CR27) 2008; 30 Mirzahosseini, Jiao, Barri, Riding, Alavi (CR28) 2019; 36 Parsaie, Azamathulla, Haghiabi (CR34) 2020; 581 Guven (CR15) 2011; 66 Azamathulla, Rathnayake, Shatnawi (CR8) 2018; 8 Zahiri, Azamathulla, Ghorbani, Islam, Srivastava, Gupta, Zhu, Mukherjee (CR54) 2014 Samadi, Jabbari, Azamathulla, Mojallal (CR43) 2015; 9 CR48 Kumar, Tiwari, Ranjan (CR25) 2020 Zahiri, Nezaratian (CR56) 2020; 27 Ayoubloo, Etemad-Shahidi, Mahjoobi (CR6) 2010; 32 Huang, Foo (CR22) 2002; 36 Samadi, Sarkardeh, Jabbari (CR44) 2020; 34 Breiman, Friedman, Olshen, Stone (CR9) 1984; 37 Tabari, Sanayei (CR50) 2019; 23 Pouladi, Afshar, Molajou, Afshar (CR35) 2020 Aghababaei, Etemad-Shahidi, Jabbari, Taghipour (CR2) 2017; 31 Ghorbani, Deo, Kim, Kashani, Karimi, Izadkhah (CR14) 2020; 24 Najafzadeh, Oliveto (CR31) 2020 Delafrouz, Ghaheri, Ghorbani (CR10) 2018; 22 Guven, Azamathulla (CR16) 2012; 65 Pradhan, Kumar, Kumar, Sharma (CR36) 2019; 23 Sahoo, Bhaskaran (CR40) 2019; 23 CR53 Toso, Bowers (CR51) 1988; 114 Smith (CR47) 1986 Haykin (CR19) 1994 Vaghefi, Mahmoodi, Setayeshi, Akbari (CR52) 2020; 24 Akhbari, Ibrahim, Zinatizadeh, Bonakdari, Ebtehaj, Khozani, Vafaeifard, Gharabaghi (CR3) 2019; 47 Ayoubloo, Azamathulla, Jabbari, Zanganeh (CR5) 2011; 38 Najafzadeh, Barani, Hessami-Kermani (CR30) 2014; 7 Sharafati, Haghbin, Motta, Yaseen (CR45) 2019 Ferreira (CR12) 2006 Guven, Günal, Cevik (CR17) 2006; 33 Zakaria, Azamathulla, Chang, Ghani (CR57) 2010; 408 Samadi, Afshar, Jabbari, Sarkardeh (CR41) 2020 Najafzadeh (CR29) 2019; 23 Fadaei Kermani, Barani, Ghaeini-Hessaroeyeh (CR11) 2015; 71 Juon, Hager (CR23) 2000; 126 Swingler (CR49) 1996 Heller, Hager, Minor (CR20) 2005; 131 CR24 Adnan, Zounemat-Kermani, Kuriqi, Kisi, Deo, Samui, Kisi, Yaseen (CR1) 2020 Liang, Foong, Lyu (CR26) 2020 Safarzadeh, Zaji, Bonakdari (CR39) 2019; 23 Nourani, Molajou (CR33) 2017; 159 Hornik, Stinchcombe, White (CR21) 1989; 2 Nazari, Jabbari, Sarkardeh (CR32) 2015; 13 HM Azamathulla (5413_CR8) 2018; 8 L Breiman (5413_CR9) 1984; 37 C Ferreira (5413_CR12) 2006 A Zahiri (5413_CR54) 2014 A Guven (5413_CR15) 2011; 66 S Pradhan (5413_CR36) 2019; 23 5413_CR53 E Fadaei Kermani (5413_CR11) 2015; 71 S Liang (5413_CR26) 2020 P Pouladi (5413_CR35) 2020 M Mirzahosseini (5413_CR28) 2019; 36 A Akhbari (5413_CR3) 2019; 47 W Huang (5413_CR22) 2002; 36 V Nourani (5413_CR33) 2017; 159 A Zahiri (5413_CR55) 2015 RM Adnan (5413_CR1) 2020 O Aminoroayaie Yamini (5413_CR4) 2018; 24 J Mahjoobi (5413_CR27) 2008; 30 K Hornik (5413_CR21) 1989; 2 M Najafzadeh (5413_CR30) 2014; 7 M Samadi (5413_CR43) 2015; 9 JW Toso (5413_CR51) 1988; 114 M Aghababaei (5413_CR2) 2017; 31 H Delafrouz (5413_CR10) 2018; 22 K Swingler (5413_CR49) 1996 JH Friedman (5413_CR13) 1991; 19 A Sharafati (5413_CR45) 2019 NA Zakaria (5413_CR57) 2010; 408 V Heller (5413_CR20) 2005; 131 5413_CR24 M Kumar (5413_CR25) 2020 MA Ghorbani (5413_CR14) 2020; 24 MMR Tabari (5413_CR50) 2019; 23 M Najafzadeh (5413_CR29) 2019; 23 5413_CR38 5413_CR37 J Zahiri (5413_CR56) 2020; 27 P Sihag (5413_CR46) 2019; 23 M Samadi (5413_CR41) 2020 A Guven (5413_CR16) 2012; 65 GN Smith (5413_CR47) 1986 O Nazari (5413_CR32) 2015; 13 R Juon (5413_CR23) 2000; 126 M Samadi (5413_CR42) 2014; 24 M Vaghefi (5413_CR52) 2020; 24 5413_CR48 MK Ayoubloo (5413_CR6) 2010; 32 B Sahoo (5413_CR40) 2019; 23 A Guven (5413_CR17) 2006; 33 S Haykin (5413_CR19) 1994 A Parsaie (5413_CR34) 2020; 581 MK Ayoubloo (5413_CR5) 2011; 38 M Najafzadeh (5413_CR31) 2020 A Safarzadeh (5413_CR39) 2019; 23 M Samadi (5413_CR44) 2020; 34 MA Hariri-Ardebili (5413_CR18) 2020; 24 |
References_xml | – year: 2020 ident: CR41 article-title: Prediction of current-induced scour depth around pile groups using MARS, CART, and ANN approaches publication-title: Marine Georesour Geotechnol doi: 10.1080/1064119x.2020.1731025 – volume: 24 start-page: 357 issue: 2 year: 2014 end-page: 366 ident: CR42 article-title: Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1230-9 – start-page: 383 year: 2020 end-page: 403 ident: CR1 article-title: Machine learning method in prediction streamflow considering periodicity component publication-title: Intelligent data analytics for decision-support systems in hazard mitigation doi: 10.1007/978-981-15-5772-9_18 – year: 1994 ident: CR19 publication-title: Neural networks – year: 2014 ident: CR54 article-title: Prediction of local scour depth downstream of bed sills using soft computing models publication-title: Computational intelligence techniques in earth and environmental sciences – year: 2020 ident: CR31 article-title: Riprap incipient motion for overtopping flows with machine learning models publication-title: J Hydroinform doi: 10.2166/hydro.2020.129 – volume: 36 start-page: 876 issue: 3 year: 2019 end-page: 898 ident: CR28 article-title: New machine learning prediction models for compressive strength of concrete modified with glass cullet publication-title: Eng Comput doi: 10.1108/EC-08-2018-0348 – volume: 24 start-page: 8805 year: 2020 end-page: 8821 ident: CR52 article-title: Application of artificial neural networks to predict flow velocity in a 180° sharp bend with and without a spur dike publication-title: Soft Comput doi: 10.1007/s00500-019-04413-5 – volume: 8 start-page: 184 issue: 6 year: 2018 ident: CR8 article-title: Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia publication-title: Appl Water Sci doi: 10.1007/s13201-018-0831-6 – volume: 30 start-page: 172 issue: 3 year: 2008 end-page: 177 ident: CR27 article-title: An alternative approach for the prediction of significant wave heights based on classification and regression trees publication-title: Appl Ocean Res doi: 10.1016/j.apor.2008.11.001 – volume: 33 start-page: 1379 issue: 11 year: 2006 end-page: 1388 ident: CR17 article-title: Prediction of pressure fluctuations on sloping stilling basins publication-title: Can J Civ Eng doi: 10.1139/l06-101 – volume: 34 start-page: 691 issue: 5 year: 2020 end-page: 707 ident: CR44 article-title: Explicit data-driven models for prediction of pressure fluctuations occur during turbulent flows on sloping channels publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-020-01794-0 – year: 2015 ident: CR55 article-title: Application of gene-expression programming in hydraulic engineering publication-title: Handbook of genetic programming applications doi: 10.1007/978-3-319-20883-1_4 – volume: 24 start-page: 45 issue: 1 year: 2018 end-page: 52 ident: CR4 article-title: Experimental investigation of pressure fluctuation on the bed of compound flip buckets publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2017.1344572 – volume: 23 start-page: 12897 issue: 23 year: 2019 end-page: 12910 ident: CR46 article-title: Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques publication-title: Soft Comput doi: 10.1007/s00500-019-03847-1 – volume: 19 start-page: 1 issue: 1 year: 1991 end-page: 67 ident: CR13 article-title: Multivariate adaptive regression splines publication-title: Ann Stat doi: 10.1214/aos/1176347963 – volume: 24 start-page: 12079 year: 2020 end-page: 12090 ident: CR14 article-title: Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia publication-title: Soft Comput doi: 10.1007/s00500-019-04648-2 – volume: 9 start-page: 291 issue: 1 year: 2015 end-page: 300 ident: CR43 article-title: Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2015.1011826 – volume: 159 start-page: 37 year: 2017 end-page: 45 ident: CR33 article-title: Application of a hybrid association rules/decision tree model for drought monitoring publication-title: Global Planet Change doi: 10.1016/j.gloplacha.2017.10.008 – year: 2006 ident: CR12 publication-title: Gene expression programming doi: 10.1007/3-540-32849-1_2 – volume: 36 start-page: 356 issue: 1 year: 2002 end-page: 362 ident: CR22 article-title: Neural network modeling of salinity variation in Apalachicola River publication-title: Water Res doi: 10.1016/S0043-1354(01)00195-6 – year: 2020 ident: CR26 article-title: Determination of the friction capacity of driven piles using three sophisticated search schemes publication-title: Eng Comput doi: 10.1007/s00366-020-01118-4 – volume: 7 start-page: 231 issue: 4 year: 2014 end-page: 248 ident: CR30 article-title: Group method of data handling to predict scour at downstream of a ski-jump bucket spillway publication-title: Earth Sci Inf doi: 10.1007/s12145-013-0140-4 – volume: 23 start-page: 10261 issue: 20 year: 2019 end-page: 10285 ident: CR36 article-title: Assessment of groundwater utilization status and prediction of water table depth using different heuristic models in an Indian interbasin publication-title: Soft Comput doi: 10.1007/s00500-018-3580-4 – volume: 114 start-page: 829 issue: 8 year: 1988 end-page: 843 ident: CR51 article-title: Extreme pressures in hydraulic-jump stilling basins publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1988)114:8(829) – volume: 13 start-page: 45 issue: 1 year: 2015 end-page: 54 ident: CR32 article-title: Dynamic pressure analysis at chute flip buckets of five dam model studies publication-title: Int J Civ Eng Trans A Civ Eng – volume: 37 start-page: 237 issue: 15 year: 1984 end-page: 251 ident: CR9 article-title: Classification and regression trees publication-title: Wadsworth Int. Group – volume: 24 start-page: 11583 year: 2020 end-page: 11604 ident: CR18 article-title: Engaging soft computing in material and modeling uncertainty quantification of dam engineering problems publication-title: Soft Comput doi: 10.1007/s00500-019-04623-x – volume: 23 start-page: 13375 issue: 24 year: 2019 end-page: 13391 ident: CR29 article-title: Evaluation of conjugate depths of hydraulic jump in circular pipes using evolutionary computing publication-title: Soft Comput doi: 10.1007/s00500-019-03877-9 – year: 1996 ident: CR49 publication-title: Applying neural networks: A practical guide – volume: 23 start-page: 3757 issue: 11 year: 2019 end-page: 3777 ident: CR39 article-title: 3D flow simulation of straight groynes using hybrid DE-based artificial intelligence methods publication-title: Soft Comput doi: 10.1007/s00500-018-3037-9 – volume: 38 start-page: 10114 issue: 8 year: 2011 end-page: 10123 ident: CR5 article-title: Predictive model-based for the critical submergence of horizontal intakes in open channel flows with different clearance bottoms using CART, ANN and linear regression approaches publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.073 – volume: 27 start-page: 14553 year: 2020 end-page: 14566 ident: CR56 article-title: Estimation of transverse mixing coefficient in streams using M5, MARS, GA, and PSO approaches publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07802-8 – ident: CR37 – year: 2019 ident: CR45 article-title: The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: a comprehensive review, assessment and possible future research direction publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-019-09382-4 – ident: CR53 – year: 2020 ident: CR35 article-title: Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling publication-title: Hydrol Sci J doi: 10.1080/02626667.2020.1749763 – volume: 32 start-page: 34 issue: 1 year: 2010 end-page: 39 ident: CR6 article-title: Evaluation of regular wave scour around a circular pile using data mining approaches publication-title: Appl Ocean Res doi: 10.1016/j.apor.2010.05.003 – volume: 66 start-page: 1371 issue: 11 year: 2011 end-page: 1382 ident: CR15 article-title: A predictive model for pressure fluctuations on sloping channels using support vector machine publication-title: Int J Numer Meth Fluids doi: 10.1002/fld.2318 – volume: 23 start-page: 12363 issue: 23 year: 2019 end-page: 12383 ident: CR40 article-title: Prediction of storm surge and inundation using climatological datasets for the Indian coast using soft computing techniques publication-title: Soft Comput doi: 10.1007/s00500-019-03775-0 – volume: 408 start-page: 5078 issue: 21 year: 2010 end-page: 5085 ident: CR57 article-title: Gene expression programming for total bed material load estimation-a case study publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.07.048 – year: 1986 ident: CR47 publication-title: Probability and statistics in civil engineering: an introduction – volume: 126 start-page: 837 issue: 11 year: 2000 end-page: 845 ident: CR23 article-title: Flip bucket without and with deflectors publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2000)126:11(837) – volume: 131 start-page: 347 issue: 5 year: 2005 end-page: 355 ident: CR20 article-title: Ski jump hydraulics publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2005)131:5(347) – volume: 22 start-page: 2205 issue: 7 year: 2018 end-page: 2215 ident: CR10 article-title: A novel hybrid neural network based on phase space reconstruction technique for daily river flow prediction publication-title: Soft Comput doi: 10.1007/s00500-016-2480-8 – volume: 31 start-page: 3809 issue: 12 year: 2017 end-page: 3827 ident: CR2 article-title: Estimation of transverse mixing coefficient in straight and meandering streams publication-title: Water Resour Manage doi: 10.1007/s11269-017-1708-4 – ident: CR48 – volume: 65 start-page: 1982 issue: 11 year: 2012 end-page: 1987 ident: CR16 article-title: Gene-expression programming for flip-bucket spillway scour publication-title: Water Sci Technol doi: 10.2166/wst.2012.100 – ident: CR38 – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 ident: CR21 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – year: 2020 ident: CR25 article-title: Soft computing based predictive modelling of oxygen transfer performance of plunging hollow jets publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2020.1752831 – volume: 71 start-page: 347 issue: 3 year: 2015 end-page: 352 ident: CR11 article-title: Prediction of cavitation damage on spillway using K-nearest neighbor modeling publication-title: Water Sci Technol doi: 10.2166/wst.2014.495 – volume: 47 start-page: 1700494 issue: 1 year: 2019 ident: CR3 article-title: Evolutionary prediction of biohydrogen production by dark fermentation publication-title: CLEAN-Soil, Air, Water doi: 10.1002/clen.201700494 – volume: 581 start-page: 121757 year: 2020 ident: CR34 article-title: Physical and numerical modeling of performance of detention dams publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.01.018 – volume: 23 start-page: 9629 issue: 19 year: 2019 end-page: 9645 ident: CR50 article-title: Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models publication-title: Soft Comput doi: 10.1007/s00500-018-3528-8 – ident: CR24 – ident: 5413_CR48 – ident: 5413_CR38 doi: 10.1007/s00500-020-05090-5 – volume: 36 start-page: 356 issue: 1 year: 2002 ident: 5413_CR22 publication-title: Water Res doi: 10.1016/S0043-1354(01)00195-6 – volume: 33 start-page: 1379 issue: 11 year: 2006 ident: 5413_CR17 publication-title: Can J Civ Eng doi: 10.1139/l06-101 – year: 2019 ident: 5413_CR45 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-019-09382-4 – volume: 31 start-page: 3809 issue: 12 year: 2017 ident: 5413_CR2 publication-title: Water Resour Manage doi: 10.1007/s11269-017-1708-4 – volume: 24 start-page: 45 issue: 1 year: 2018 ident: 5413_CR4 publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2017.1344572 – volume: 9 start-page: 291 issue: 1 year: 2015 ident: 5413_CR43 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2015.1011826 – volume: 24 start-page: 8805 year: 2020 ident: 5413_CR52 publication-title: Soft Comput doi: 10.1007/s00500-019-04413-5 – volume: 23 start-page: 9629 issue: 19 year: 2019 ident: 5413_CR50 publication-title: Soft Comput doi: 10.1007/s00500-018-3528-8 – volume: 24 start-page: 12079 year: 2020 ident: 5413_CR14 publication-title: Soft Comput doi: 10.1007/s00500-019-04648-2 – year: 2020 ident: 5413_CR26 publication-title: Eng Comput doi: 10.1007/s00366-020-01118-4 – volume: 23 start-page: 13375 issue: 24 year: 2019 ident: 5413_CR29 publication-title: Soft Comput doi: 10.1007/s00500-019-03877-9 – volume: 23 start-page: 10261 issue: 20 year: 2019 ident: 5413_CR36 publication-title: Soft Comput doi: 10.1007/s00500-018-3580-4 – volume: 23 start-page: 12363 issue: 23 year: 2019 ident: 5413_CR40 publication-title: Soft Comput doi: 10.1007/s00500-019-03775-0 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 5413_CR21 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 126 start-page: 837 issue: 11 year: 2000 ident: 5413_CR23 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2000)126:11(837) – volume: 30 start-page: 172 issue: 3 year: 2008 ident: 5413_CR27 publication-title: Appl Ocean Res doi: 10.1016/j.apor.2008.11.001 – ident: 5413_CR24 doi: 10.1680/jwama.15.00075 – volume-title: Handbook of genetic programming applications year: 2015 ident: 5413_CR55 doi: 10.1007/978-3-319-20883-1_4 – volume: 7 start-page: 231 issue: 4 year: 2014 ident: 5413_CR30 publication-title: Earth Sci Inf doi: 10.1007/s12145-013-0140-4 – volume: 159 start-page: 37 year: 2017 ident: 5413_CR33 publication-title: Global Planet Change doi: 10.1016/j.gloplacha.2017.10.008 – volume: 24 start-page: 11583 year: 2020 ident: 5413_CR18 publication-title: Soft Comput doi: 10.1007/s00500-019-04623-x – year: 2020 ident: 5413_CR35 publication-title: Hydrol Sci J doi: 10.1080/02626667.2020.1749763 – volume: 131 start-page: 347 issue: 5 year: 2005 ident: 5413_CR20 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(2005)131:5(347) – volume: 24 start-page: 357 issue: 2 year: 2014 ident: 5413_CR42 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1230-9 – year: 2020 ident: 5413_CR31 publication-title: J Hydroinform doi: 10.2166/hydro.2020.129 – volume: 581 start-page: 121757 year: 2020 ident: 5413_CR34 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.01.018 – volume: 32 start-page: 34 issue: 1 year: 2010 ident: 5413_CR6 publication-title: Appl Ocean Res doi: 10.1016/j.apor.2010.05.003 – volume: 37 start-page: 237 issue: 15 year: 1984 ident: 5413_CR9 publication-title: Wadsworth Int. Group – year: 2020 ident: 5413_CR41 publication-title: Marine Georesour Geotechnol doi: 10.1080/1064119x.2020.1731025 – volume: 19 start-page: 1 issue: 1 year: 1991 ident: 5413_CR13 publication-title: Ann Stat doi: 10.1214/aos/1176347963 – volume-title: Computational intelligence techniques in earth and environmental sciences year: 2014 ident: 5413_CR54 – year: 2020 ident: 5413_CR25 publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2020.1752831 – start-page: 383 volume-title: Intelligent data analytics for decision-support systems in hazard mitigation year: 2020 ident: 5413_CR1 doi: 10.1007/978-981-15-5772-9_18 – volume: 71 start-page: 347 issue: 3 year: 2015 ident: 5413_CR11 publication-title: Water Sci Technol doi: 10.2166/wst.2014.495 – ident: 5413_CR37 – volume-title: Applying neural networks: A practical guide year: 1996 ident: 5413_CR49 – volume: 47 start-page: 1700494 issue: 1 year: 2019 ident: 5413_CR3 publication-title: CLEAN-Soil, Air, Water doi: 10.1002/clen.201700494 – volume: 8 start-page: 184 issue: 6 year: 2018 ident: 5413_CR8 publication-title: Appl Water Sci doi: 10.1007/s13201-018-0831-6 – volume: 408 start-page: 5078 issue: 21 year: 2010 ident: 5413_CR57 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.07.048 – volume: 114 start-page: 829 issue: 8 year: 1988 ident: 5413_CR51 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1988)114:8(829) – volume: 23 start-page: 12897 issue: 23 year: 2019 ident: 5413_CR46 publication-title: Soft Comput doi: 10.1007/s00500-019-03847-1 – volume: 36 start-page: 876 issue: 3 year: 2019 ident: 5413_CR28 publication-title: Eng Comput doi: 10.1108/EC-08-2018-0348 – volume: 65 start-page: 1982 issue: 11 year: 2012 ident: 5413_CR16 publication-title: Water Sci Technol doi: 10.2166/wst.2012.100 – volume: 23 start-page: 3757 issue: 11 year: 2019 ident: 5413_CR39 publication-title: Soft Comput doi: 10.1007/s00500-018-3037-9 – volume: 27 start-page: 14553 year: 2020 ident: 5413_CR56 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-07802-8 – volume: 22 start-page: 2205 issue: 7 year: 2018 ident: 5413_CR10 publication-title: Soft Comput doi: 10.1007/s00500-016-2480-8 – volume-title: Probability and statistics in civil engineering: an introduction year: 1986 ident: 5413_CR47 – volume-title: Gene expression programming year: 2006 ident: 5413_CR12 doi: 10.1007/3-540-32849-1_2 – volume: 13 start-page: 45 issue: 1 year: 2015 ident: 5413_CR32 publication-title: Int J Civ Eng Trans A Civ Eng – ident: 5413_CR53 – volume: 34 start-page: 691 issue: 5 year: 2020 ident: 5413_CR44 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-020-01794-0 – volume: 38 start-page: 10114 issue: 8 year: 2011 ident: 5413_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.02.073 – volume-title: Neural networks year: 1994 ident: 5413_CR19 – volume: 66 start-page: 1371 issue: 11 year: 2011 ident: 5413_CR15 publication-title: Int J Numer Meth Fluids doi: 10.1002/fld.2318 |
SSID | ssj0021753 |
Score | 2.4407096 |
Snippet | Prediction of dynamic pressure distribution (
P
∗
) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets,... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3873 |
SubjectTerms | Artificial Intelligence Computational Intelligence Control Engineering Mathematical Logic and Foundations Mechatronics Methodologies and Application Robotics |
Title | Prediction of the dynamic pressure distribution in hydraulic structures using soft computing methods |
URI | https://link.springer.com/article/10.1007/s00500-020-05413-6 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBR1Wsj7IHb7qQZLvJ7rGV1qJYPFiop7DZhwqllaY9-O-dTTbBghQ8hYRJAjM7O98yM98gdNOVOgh1rEkiAkW6IgKX0lISIbk1sRLChK7f-Xkcjybdxymb-qawvKp2r1KSxU5dN7s5qpKAuOMOwIyQkngXNZk7u8MqnkS9-pjluScBCAB2hIDrW2X-_sZmONrMhRYhZniEDjw2xL3SmMdox8xb6LCau4C9G7bQ_i8SwROkX5Yu2eIUjBcWA6DDuhwzj4si1_USHjh6XD_ZCn_O8ce3Xsr1DERK_liQybErgX_HOezLWBX_dLflhOn8FE2Gg9f7EfGzE4iKRLgiiiUmcklMLWzMI8EN5yowilIwAQss44FOrDQQnWTGEkkFVbGxTMnEUC4ZPUON-WJuzhG2wpqQG5Vlhrnwn0HU45onWcJVRI1po7BSYao8sbibbzFLa0rkQu0pqD0t1J7GbXRbv_NV0mpslb6rLJN6F8u3iF_8T_wS7UWuUKUoLLtCDdC7uQaksco6qNkb9vtjd314exp0ioX2A9Srzps |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSDj6pYn3vwpoEk2012j0UsVdvioYXewmYfKpRWmvbgv3d2swkWpOAxYZLATHbnW2bm-xC6awsVRipRQcpDGbR5DEtKCRFwwYxOJOc6svPOg2HSG7dfJnTih8KKqtu9Kkm6nboedrNUJWFgjzsAMyISJNtoB8AAs41c47hTH7M89yQAAcCOkHD9qMzf71hPR-u1UJdiukfowGND3CmDeYy29KyJDivdBeyXYRPt_yIRPEHqbWGLLdbBeG4wADqsSpl57JpcVwu4YelxvbIV_pzhj2-1EKspmJT8sWBTYNsC_44L2JexdN-0l6XCdHGKxt2n0WMv8NoJgYx5tAwkTXVsi5iKm4TFnGnGZKglIRACGhrKQpUaoSE7iZymgnAiE22oFKkmTFByhhqz-UyfI2y40RHTMs81tek_h6zHFEvzlMmYaN1CUeXCTHpicatvMc1qSmTn9gzcnjm3Z0kL3dfPfJW0GhutH6rIZH6JFRvML_5nfot2e6NBP-s_D18v0V5sm1Zck9kVakAM9DWgjmV-436yH8Q0zn4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gujBR1Wszz1408Uk2012j0Ut9VV6sNBb2OxDhZKWpj34753Nixak4CkkzCYws5P5lpn5BqGbttSer0NNIuEp0hYBuJSWkgjJrQmVEMZ3_c7v_bA3bL-M2Gipiz-vdq9SkkVPg2NpSuf3U23v68Y3R1viEXf0AcjhUxJuoi24-m5fD4NOfeQqeSgBFACOhOBbts38_Y7V0LSaF83DTfcA7ZU4EXcKwx6iDZM20X41gwGXLtlEu0uEgkdID2Yu8eKUjScWA7jDuhg5j_OC18UMHjiq3HLKFf5O8dePnsnFGEQKLlmQybArh__EGfyjscq_6W6LadPZMRp2nz4eeqSco0BUIPw5USwygUtoamFDHghuOFeeUZSCOZhnGfd0ZKWBSCUTFkkqqAqNZUpGhnLJ6AlqpJPUnCJshTU-NypJDHNQIIEIyDWPkoirgBrTQn6lwliVJONu1sU4rumRc7XHoPY4V3scttBtvWZaUGyslb6rLBOX7patET_7n_g12h48duO35_7rOdoJXP1KXm92gRpgAnMJAGSeXOV77BfXptK6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+dynamic+pressure+distribution+in+hydraulic+structures+using+soft+computing+methods&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Samadi%2C+Mehrshad&rft.au=Sarkardeh%2C+Hamed&rft.au=Jabbari%2C+Ebrahim&rft.date=2021-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=5&rft.spage=3873&rft.epage=3888&rft_id=info:doi/10.1007%2Fs00500-020-05413-6&rft.externalDocID=10_1007_s00500_020_05413_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |