Prediction of the dynamic pressure distribution in hydraulic structures using soft computing methods

Prediction of dynamic pressure distribution ( P ∗ ) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets, using as hydraulic structures for dissipation of the excess energy outflow, are usually constructed at the end of the chute of the spillways. In...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 25; no. 5; pp. 3873 - 3888
Main Authors Samadi, Mehrshad, Sarkardeh, Hamed, Jabbari, Ebrahim
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-020-05413-6

Cover

Loading…
Abstract Prediction of dynamic pressure distribution ( P ∗ ) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets, using as hydraulic structures for dissipation of the excess energy outflow, are usually constructed at the end of the chute of the spillways. In this research, based on experimental studies of large hydraulic models, five well-known soft computing methods including artificial neural networks (ANN), gene expression programming (GEP), classification and regression trees (CART), M5 model tree (M5MT), and multivariate adaptive regression splines (MARS) approaches are examined. Mathematical expressions are obtained by these methods to predict P ∗ in flip buckets. Compared to ANN and GEP expressions, explicit formulas derived by CART, M5MT, and MARS demonstrated more straightforward calculations. In addition, linear and nonlinear equations are generated for better comparison with the outcomes of the proposed soft computing methods. The obtained results showed the high performance of the suggested soft computing methods for the prediction of P ∗ in flip buckets. It is found that the GEP approach culminated in more accurate results than other proposed soft computing methods and conventional linear and nonlinear regression techniques. Error measures in the testing stage showed that the formula provided by GEP with root mean square error (RMSE = 0.095), scatter index (SI = 13%), and mean absolute error (MAE = 0.073) has the best accuracy among the other predictive equations.
AbstractList Prediction of dynamic pressure distribution ( P ∗ ) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets, using as hydraulic structures for dissipation of the excess energy outflow, are usually constructed at the end of the chute of the spillways. In this research, based on experimental studies of large hydraulic models, five well-known soft computing methods including artificial neural networks (ANN), gene expression programming (GEP), classification and regression trees (CART), M5 model tree (M5MT), and multivariate adaptive regression splines (MARS) approaches are examined. Mathematical expressions are obtained by these methods to predict P ∗ in flip buckets. Compared to ANN and GEP expressions, explicit formulas derived by CART, M5MT, and MARS demonstrated more straightforward calculations. In addition, linear and nonlinear equations are generated for better comparison with the outcomes of the proposed soft computing methods. The obtained results showed the high performance of the suggested soft computing methods for the prediction of P ∗ in flip buckets. It is found that the GEP approach culminated in more accurate results than other proposed soft computing methods and conventional linear and nonlinear regression techniques. Error measures in the testing stage showed that the formula provided by GEP with root mean square error (RMSE = 0.095), scatter index (SI = 13%), and mean absolute error (MAE = 0.073) has the best accuracy among the other predictive equations.
Author Samadi, Mehrshad
Sarkardeh, Hamed
Jabbari, Ebrahim
Author_xml – sequence: 1
  givenname: Mehrshad
  surname: Samadi
  fullname: Samadi, Mehrshad
  organization: School of Civil Engineering, Iran University of Science and Technology (IUST)
– sequence: 2
  givenname: Hamed
  surname: Sarkardeh
  fullname: Sarkardeh, Hamed
  organization: Department of Civil Engineering, Hakim Sabzevari University
– sequence: 3
  givenname: Ebrahim
  surname: Jabbari
  fullname: Jabbari, Ebrahim
  email: Jabbari@iust.ac.ir
  organization: School of Civil Engineering, Iran University of Science and Technology (IUST)
BookMark eNp9kE1vAiEQhkljk6rtH-iJP7DtLCwLe2xMvxKT9tCeCbKgGBcMsAf_fVF78uBhMh95n5nMO0MTH7xB6LGGpxqAPycABlABKcGamlbtDZrWDaUVb3g3OdWk4m1D79AspS0AqTmjU9R_R9M7nV3wOFicNwb3B68Gp_E-mpTGWAYu5ehW40nkPN4c-qjGXZGU-ahz0SQ8JufXOAWbsQ7DvohLO5i8CX26R7dW7ZJ5-M9z9Pv2-rP4qJZf75-Ll2WlSVfnSjNuCBEc-s62gnTCCKHBaEqtaRlYJqDnVhkiGrViXNGO6tZYphU3VChG54ic9-oYUorGyn10g4oHWYM8-iTPPsnikzz5JNsCiQtIu6yOv-ao3O46Ss9oKnf82kS5DWP05cVr1B_ZB4HY
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40783
crossref_primary_10_2166_aqua_2024_305
crossref_primary_10_3390_w15213841
crossref_primary_10_2166_ws_2021_253
crossref_primary_10_2166_wst_2024_393
crossref_primary_10_1007_s11082_024_06377_9
crossref_primary_10_2166_ws_2021_293
crossref_primary_10_1016_j_padiff_2023_100600
crossref_primary_10_1007_s42107_024_01223_5
crossref_primary_10_1155_2023_8272566
crossref_primary_10_1016_j_heliyon_2024_e25786
crossref_primary_10_1080_2374068X_2023_2247282
crossref_primary_10_1016_j_mtcomm_2023_106754
crossref_primary_10_1016_j_jmrt_2023_09_105
crossref_primary_10_1007_s11356_022_20989_2
crossref_primary_10_2166_ws_2023_127
crossref_primary_10_1007_s40899_024_01092_5
crossref_primary_10_1155_2022_2495631
crossref_primary_10_1007_s12346_023_00896_8
crossref_primary_10_1007_s13201_025_02391_8
crossref_primary_10_1111_wej_12845
crossref_primary_10_1061_JOEEDU_EEENG_7834
crossref_primary_10_2166_ws_2021_304
crossref_primary_10_2166_ws_2024_238
crossref_primary_10_1016_j_rinp_2023_107053
crossref_primary_10_1007_s11082_024_06497_2
crossref_primary_10_1016_j_measurement_2023_113982
crossref_primary_10_1016_j_padiff_2023_100599
crossref_primary_10_1007_s10661_023_11462_9
crossref_primary_10_1016_j_istruc_2023_105505
crossref_primary_10_1155_2024_8812792
crossref_primary_10_2166_aqua_2023_236
crossref_primary_10_1016_j_heliyon_2024_e27179
crossref_primary_10_1016_j_jwpe_2022_102736
crossref_primary_10_1016_j_arabjc_2023_105378
crossref_primary_10_1007_s40996_024_01720_2
crossref_primary_10_1007_s40808_024_02279_7
crossref_primary_10_1007_s12205_024_1309_8
crossref_primary_10_2166_wcc_2023_526
crossref_primary_10_2166_ws_2022_248
crossref_primary_10_3390_w16202916
crossref_primary_10_1007_s10765_023_03215_0
Cites_doi 10.1080/1064119x.2020.1731025
10.1007/s00521-012-1230-9
10.1007/978-981-15-5772-9_18
10.2166/hydro.2020.129
10.1108/EC-08-2018-0348
10.1007/s00500-019-04413-5
10.1007/s13201-018-0831-6
10.1016/j.apor.2008.11.001
10.1139/l06-101
10.1007/s00477-020-01794-0
10.1007/978-3-319-20883-1_4
10.1080/09715010.2017.1344572
10.1007/s00500-019-03847-1
10.1214/aos/1176347963
10.1007/s00500-019-04648-2
10.1080/19942060.2015.1011826
10.1016/j.gloplacha.2017.10.008
10.1007/3-540-32849-1_2
10.1016/S0043-1354(01)00195-6
10.1007/s00366-020-01118-4
10.1007/s12145-013-0140-4
10.1007/s00500-018-3580-4
10.1061/(ASCE)0733-9429(1988)114:8(829)
10.1007/s00500-019-04623-x
10.1007/s00500-019-03877-9
10.1007/s00500-018-3037-9
10.1016/j.eswa.2011.02.073
10.1007/s11356-020-07802-8
10.1007/s11831-019-09382-4
10.1080/02626667.2020.1749763
10.1016/j.apor.2010.05.003
10.1002/fld.2318
10.1007/s00500-019-03775-0
10.1016/j.scitotenv.2010.07.048
10.1061/(ASCE)0733-9429(2000)126:11(837)
10.1061/(ASCE)0733-9429(2005)131:5(347)
10.1007/s00500-016-2480-8
10.1007/s11269-017-1708-4
10.2166/wst.2012.100
10.1016/0893-6080(89)90020-8
10.1080/09715010.2020.1752831
10.2166/wst.2014.495
10.1002/clen.201700494
10.1016/j.jhydrol.2017.01.018
10.1007/s00500-018-3528-8
10.1007/s00500-020-05090-5
10.1680/jwama.15.00075
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
DBID AAYXX
CITATION
DOI 10.1007/s00500-020-05413-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 3888
ExternalDocumentID 10_1007_s00500_020_05413_6
GrantInformation_xml – fundername: Iran National Science Foundation
  grantid: 97014783
  funderid: http://dx.doi.org/10.13039/501100003968
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-c57e22870d9f68298e88c0ec33fe650f580d7fae284ab57a393c6ef5ca7e38a53
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Fri Jul 04 01:04:12 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Fri Feb 21 02:49:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Dynamic pressure distribution
Soft computing methods
Hydraulic structures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c57e22870d9f68298e88c0ec33fe650f580d7fae284ab57a393c6ef5ca7e38a53
PageCount 16
ParticipantIDs crossref_primary_10_1007_s00500_020_05413_6
crossref_citationtrail_10_1007_s00500_020_05413_6
springer_journals_10_1007_s00500_020_05413_6
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Hariri-Ardebili, Salazar (CR18) 2020; 24
Zahiri, Dehghani, Azamathulla, Gandomi, Alavi, Ryan (CR55) 2015
Samadi, Jabbari, Azamathulla (CR42) 2014; 24
Aminoroayaie Yamini, Kavianpour, Mousavi, Movahedi, Bavandpour (CR4) 2018; 24
CR38
CR37
Friedman (CR13) 1991; 19
Sihag, Esmaeilbeiki, Singh, Ebtehaj, Bonakdari (CR46) 2019; 23
Mahjoobi, Etemad-Shahidi (CR27) 2008; 30
Mirzahosseini, Jiao, Barri, Riding, Alavi (CR28) 2019; 36
Parsaie, Azamathulla, Haghiabi (CR34) 2020; 581
Guven (CR15) 2011; 66
Azamathulla, Rathnayake, Shatnawi (CR8) 2018; 8
Zahiri, Azamathulla, Ghorbani, Islam, Srivastava, Gupta, Zhu, Mukherjee (CR54) 2014
Samadi, Jabbari, Azamathulla, Mojallal (CR43) 2015; 9
CR48
Kumar, Tiwari, Ranjan (CR25) 2020
Zahiri, Nezaratian (CR56) 2020; 27
Ayoubloo, Etemad-Shahidi, Mahjoobi (CR6) 2010; 32
Huang, Foo (CR22) 2002; 36
Samadi, Sarkardeh, Jabbari (CR44) 2020; 34
Breiman, Friedman, Olshen, Stone (CR9) 1984; 37
Tabari, Sanayei (CR50) 2019; 23
Pouladi, Afshar, Molajou, Afshar (CR35) 2020
Aghababaei, Etemad-Shahidi, Jabbari, Taghipour (CR2) 2017; 31
Ghorbani, Deo, Kim, Kashani, Karimi, Izadkhah (CR14) 2020; 24
Najafzadeh, Oliveto (CR31) 2020
Delafrouz, Ghaheri, Ghorbani (CR10) 2018; 22
Guven, Azamathulla (CR16) 2012; 65
Pradhan, Kumar, Kumar, Sharma (CR36) 2019; 23
Sahoo, Bhaskaran (CR40) 2019; 23
CR53
Toso, Bowers (CR51) 1988; 114
Smith (CR47) 1986
Haykin (CR19) 1994
Vaghefi, Mahmoodi, Setayeshi, Akbari (CR52) 2020; 24
Akhbari, Ibrahim, Zinatizadeh, Bonakdari, Ebtehaj, Khozani, Vafaeifard, Gharabaghi (CR3) 2019; 47
Ayoubloo, Azamathulla, Jabbari, Zanganeh (CR5) 2011; 38
Najafzadeh, Barani, Hessami-Kermani (CR30) 2014; 7
Sharafati, Haghbin, Motta, Yaseen (CR45) 2019
Ferreira (CR12) 2006
Guven, Günal, Cevik (CR17) 2006; 33
Zakaria, Azamathulla, Chang, Ghani (CR57) 2010; 408
Samadi, Afshar, Jabbari, Sarkardeh (CR41) 2020
Najafzadeh (CR29) 2019; 23
Fadaei Kermani, Barani, Ghaeini-Hessaroeyeh (CR11) 2015; 71
Juon, Hager (CR23) 2000; 126
Swingler (CR49) 1996
Heller, Hager, Minor (CR20) 2005; 131
CR24
Adnan, Zounemat-Kermani, Kuriqi, Kisi, Deo, Samui, Kisi, Yaseen (CR1) 2020
Liang, Foong, Lyu (CR26) 2020
Safarzadeh, Zaji, Bonakdari (CR39) 2019; 23
Nourani, Molajou (CR33) 2017; 159
Hornik, Stinchcombe, White (CR21) 1989; 2
Nazari, Jabbari, Sarkardeh (CR32) 2015; 13
HM Azamathulla (5413_CR8) 2018; 8
L Breiman (5413_CR9) 1984; 37
C Ferreira (5413_CR12) 2006
A Zahiri (5413_CR54) 2014
A Guven (5413_CR15) 2011; 66
S Pradhan (5413_CR36) 2019; 23
5413_CR53
E Fadaei Kermani (5413_CR11) 2015; 71
S Liang (5413_CR26) 2020
P Pouladi (5413_CR35) 2020
M Mirzahosseini (5413_CR28) 2019; 36
A Akhbari (5413_CR3) 2019; 47
W Huang (5413_CR22) 2002; 36
V Nourani (5413_CR33) 2017; 159
A Zahiri (5413_CR55) 2015
RM Adnan (5413_CR1) 2020
O Aminoroayaie Yamini (5413_CR4) 2018; 24
J Mahjoobi (5413_CR27) 2008; 30
K Hornik (5413_CR21) 1989; 2
M Najafzadeh (5413_CR30) 2014; 7
M Samadi (5413_CR43) 2015; 9
JW Toso (5413_CR51) 1988; 114
M Aghababaei (5413_CR2) 2017; 31
H Delafrouz (5413_CR10) 2018; 22
K Swingler (5413_CR49) 1996
JH Friedman (5413_CR13) 1991; 19
A Sharafati (5413_CR45) 2019
NA Zakaria (5413_CR57) 2010; 408
V Heller (5413_CR20) 2005; 131
5413_CR24
M Kumar (5413_CR25) 2020
MA Ghorbani (5413_CR14) 2020; 24
MMR Tabari (5413_CR50) 2019; 23
M Najafzadeh (5413_CR29) 2019; 23
5413_CR38
5413_CR37
J Zahiri (5413_CR56) 2020; 27
P Sihag (5413_CR46) 2019; 23
M Samadi (5413_CR41) 2020
A Guven (5413_CR16) 2012; 65
GN Smith (5413_CR47) 1986
O Nazari (5413_CR32) 2015; 13
R Juon (5413_CR23) 2000; 126
M Samadi (5413_CR42) 2014; 24
M Vaghefi (5413_CR52) 2020; 24
5413_CR48
MK Ayoubloo (5413_CR6) 2010; 32
B Sahoo (5413_CR40) 2019; 23
A Guven (5413_CR17) 2006; 33
S Haykin (5413_CR19) 1994
A Parsaie (5413_CR34) 2020; 581
MK Ayoubloo (5413_CR5) 2011; 38
M Najafzadeh (5413_CR31) 2020
A Safarzadeh (5413_CR39) 2019; 23
M Samadi (5413_CR44) 2020; 34
MA Hariri-Ardebili (5413_CR18) 2020; 24
References_xml – year: 2020
  ident: CR41
  article-title: Prediction of current-induced scour depth around pile groups using MARS, CART, and ANN approaches
  publication-title: Marine Georesour Geotechnol
  doi: 10.1080/1064119x.2020.1731025
– volume: 24
  start-page: 357
  issue: 2
  year: 2014
  end-page: 366
  ident: CR42
  article-title: Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1230-9
– start-page: 383
  year: 2020
  end-page: 403
  ident: CR1
  article-title: Machine learning method in prediction streamflow considering periodicity component
  publication-title: Intelligent data analytics for decision-support systems in hazard mitigation
  doi: 10.1007/978-981-15-5772-9_18
– year: 1994
  ident: CR19
  publication-title: Neural networks
– year: 2014
  ident: CR54
  article-title: Prediction of local scour depth downstream of bed sills using soft computing models
  publication-title: Computational intelligence techniques in earth and environmental sciences
– year: 2020
  ident: CR31
  article-title: Riprap incipient motion for overtopping flows with machine learning models
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2020.129
– volume: 36
  start-page: 876
  issue: 3
  year: 2019
  end-page: 898
  ident: CR28
  article-title: New machine learning prediction models for compressive strength of concrete modified with glass cullet
  publication-title: Eng Comput
  doi: 10.1108/EC-08-2018-0348
– volume: 24
  start-page: 8805
  year: 2020
  end-page: 8821
  ident: CR52
  article-title: Application of artificial neural networks to predict flow velocity in a 180° sharp bend with and without a spur dike
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04413-5
– volume: 8
  start-page: 184
  issue: 6
  year: 2018
  ident: CR8
  article-title: Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk, Saudi Arabia
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-018-0831-6
– volume: 30
  start-page: 172
  issue: 3
  year: 2008
  end-page: 177
  ident: CR27
  article-title: An alternative approach for the prediction of significant wave heights based on classification and regression trees
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2008.11.001
– volume: 33
  start-page: 1379
  issue: 11
  year: 2006
  end-page: 1388
  ident: CR17
  article-title: Prediction of pressure fluctuations on sloping stilling basins
  publication-title: Can J Civ Eng
  doi: 10.1139/l06-101
– volume: 34
  start-page: 691
  issue: 5
  year: 2020
  end-page: 707
  ident: CR44
  article-title: Explicit data-driven models for prediction of pressure fluctuations occur during turbulent flows on sloping channels
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-020-01794-0
– year: 2015
  ident: CR55
  article-title: Application of gene-expression programming in hydraulic engineering
  publication-title: Handbook of genetic programming applications
  doi: 10.1007/978-3-319-20883-1_4
– volume: 24
  start-page: 45
  issue: 1
  year: 2018
  end-page: 52
  ident: CR4
  article-title: Experimental investigation of pressure fluctuation on the bed of compound flip buckets
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2017.1344572
– volume: 23
  start-page: 12897
  issue: 23
  year: 2019
  end-page: 12910
  ident: CR46
  article-title: Modeling unsaturated hydraulic conductivity by hybrid soft computing techniques
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03847-1
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  end-page: 67
  ident: CR13
  article-title: Multivariate adaptive regression splines
  publication-title: Ann Stat
  doi: 10.1214/aos/1176347963
– volume: 24
  start-page: 12079
  year: 2020
  end-page: 12090
  ident: CR14
  article-title: Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04648-2
– volume: 9
  start-page: 291
  issue: 1
  year: 2015
  end-page: 300
  ident: CR43
  article-title: Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2015.1011826
– volume: 159
  start-page: 37
  year: 2017
  end-page: 45
  ident: CR33
  article-title: Application of a hybrid association rules/decision tree model for drought monitoring
  publication-title: Global Planet Change
  doi: 10.1016/j.gloplacha.2017.10.008
– year: 2006
  ident: CR12
  publication-title: Gene expression programming
  doi: 10.1007/3-540-32849-1_2
– volume: 36
  start-page: 356
  issue: 1
  year: 2002
  end-page: 362
  ident: CR22
  article-title: Neural network modeling of salinity variation in Apalachicola River
  publication-title: Water Res
  doi: 10.1016/S0043-1354(01)00195-6
– year: 2020
  ident: CR26
  article-title: Determination of the friction capacity of driven piles using three sophisticated search schemes
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01118-4
– volume: 7
  start-page: 231
  issue: 4
  year: 2014
  end-page: 248
  ident: CR30
  article-title: Group method of data handling to predict scour at downstream of a ski-jump bucket spillway
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-013-0140-4
– volume: 23
  start-page: 10261
  issue: 20
  year: 2019
  end-page: 10285
  ident: CR36
  article-title: Assessment of groundwater utilization status and prediction of water table depth using different heuristic models in an Indian interbasin
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3580-4
– volume: 114
  start-page: 829
  issue: 8
  year: 1988
  end-page: 843
  ident: CR51
  article-title: Extreme pressures in hydraulic-jump stilling basins
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1988)114:8(829)
– volume: 13
  start-page: 45
  issue: 1
  year: 2015
  end-page: 54
  ident: CR32
  article-title: Dynamic pressure analysis at chute flip buckets of five dam model studies
  publication-title: Int J Civ Eng Trans A Civ Eng
– volume: 37
  start-page: 237
  issue: 15
  year: 1984
  end-page: 251
  ident: CR9
  article-title: Classification and regression trees
  publication-title: Wadsworth Int. Group
– volume: 24
  start-page: 11583
  year: 2020
  end-page: 11604
  ident: CR18
  article-title: Engaging soft computing in material and modeling uncertainty quantification of dam engineering problems
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04623-x
– volume: 23
  start-page: 13375
  issue: 24
  year: 2019
  end-page: 13391
  ident: CR29
  article-title: Evaluation of conjugate depths of hydraulic jump in circular pipes using evolutionary computing
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03877-9
– year: 1996
  ident: CR49
  publication-title: Applying neural networks: A practical guide
– volume: 23
  start-page: 3757
  issue: 11
  year: 2019
  end-page: 3777
  ident: CR39
  article-title: 3D flow simulation of straight groynes using hybrid DE-based artificial intelligence methods
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3037-9
– volume: 38
  start-page: 10114
  issue: 8
  year: 2011
  end-page: 10123
  ident: CR5
  article-title: Predictive model-based for the critical submergence of horizontal intakes in open channel flows with different clearance bottoms using CART, ANN and linear regression approaches
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.073
– volume: 27
  start-page: 14553
  year: 2020
  end-page: 14566
  ident: CR56
  article-title: Estimation of transverse mixing coefficient in streams using M5, MARS, GA, and PSO approaches
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07802-8
– ident: CR37
– year: 2019
  ident: CR45
  article-title: The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: a comprehensive review, assessment and possible future research direction
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09382-4
– ident: CR53
– year: 2020
  ident: CR35
  article-title: Socio-hydrological framework for investigating farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2020.1749763
– volume: 32
  start-page: 34
  issue: 1
  year: 2010
  end-page: 39
  ident: CR6
  article-title: Evaluation of regular wave scour around a circular pile using data mining approaches
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2010.05.003
– volume: 66
  start-page: 1371
  issue: 11
  year: 2011
  end-page: 1382
  ident: CR15
  article-title: A predictive model for pressure fluctuations on sloping channels using support vector machine
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.2318
– volume: 23
  start-page: 12363
  issue: 23
  year: 2019
  end-page: 12383
  ident: CR40
  article-title: Prediction of storm surge and inundation using climatological datasets for the Indian coast using soft computing techniques
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03775-0
– volume: 408
  start-page: 5078
  issue: 21
  year: 2010
  end-page: 5085
  ident: CR57
  article-title: Gene expression programming for total bed material load estimation-a case study
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.07.048
– year: 1986
  ident: CR47
  publication-title: Probability and statistics in civil engineering: an introduction
– volume: 126
  start-page: 837
  issue: 11
  year: 2000
  end-page: 845
  ident: CR23
  article-title: Flip bucket without and with deflectors
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2000)126:11(837)
– volume: 131
  start-page: 347
  issue: 5
  year: 2005
  end-page: 355
  ident: CR20
  article-title: Ski jump hydraulics
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2005)131:5(347)
– volume: 22
  start-page: 2205
  issue: 7
  year: 2018
  end-page: 2215
  ident: CR10
  article-title: A novel hybrid neural network based on phase space reconstruction technique for daily river flow prediction
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2480-8
– volume: 31
  start-page: 3809
  issue: 12
  year: 2017
  end-page: 3827
  ident: CR2
  article-title: Estimation of transverse mixing coefficient in straight and meandering streams
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1708-4
– ident: CR48
– volume: 65
  start-page: 1982
  issue: 11
  year: 2012
  end-page: 1987
  ident: CR16
  article-title: Gene-expression programming for flip-bucket spillway scour
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2012.100
– ident: CR38
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  ident: CR21
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– year: 2020
  ident: CR25
  article-title: Soft computing based predictive modelling of oxygen transfer performance of plunging hollow jets
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2020.1752831
– volume: 71
  start-page: 347
  issue: 3
  year: 2015
  end-page: 352
  ident: CR11
  article-title: Prediction of cavitation damage on spillway using K-nearest neighbor modeling
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2014.495
– volume: 47
  start-page: 1700494
  issue: 1
  year: 2019
  ident: CR3
  article-title: Evolutionary prediction of biohydrogen production by dark fermentation
  publication-title: CLEAN-Soil, Air, Water
  doi: 10.1002/clen.201700494
– volume: 581
  start-page: 121757
  year: 2020
  ident: CR34
  article-title: Physical and numerical modeling of performance of detention dams
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.01.018
– volume: 23
  start-page: 9629
  issue: 19
  year: 2019
  end-page: 9645
  ident: CR50
  article-title: Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3528-8
– ident: CR24
– ident: 5413_CR48
– ident: 5413_CR38
  doi: 10.1007/s00500-020-05090-5
– volume: 36
  start-page: 356
  issue: 1
  year: 2002
  ident: 5413_CR22
  publication-title: Water Res
  doi: 10.1016/S0043-1354(01)00195-6
– volume: 33
  start-page: 1379
  issue: 11
  year: 2006
  ident: 5413_CR17
  publication-title: Can J Civ Eng
  doi: 10.1139/l06-101
– year: 2019
  ident: 5413_CR45
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-019-09382-4
– volume: 31
  start-page: 3809
  issue: 12
  year: 2017
  ident: 5413_CR2
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1708-4
– volume: 24
  start-page: 45
  issue: 1
  year: 2018
  ident: 5413_CR4
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2017.1344572
– volume: 9
  start-page: 291
  issue: 1
  year: 2015
  ident: 5413_CR43
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2015.1011826
– volume: 24
  start-page: 8805
  year: 2020
  ident: 5413_CR52
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04413-5
– volume: 23
  start-page: 9629
  issue: 19
  year: 2019
  ident: 5413_CR50
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3528-8
– volume: 24
  start-page: 12079
  year: 2020
  ident: 5413_CR14
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04648-2
– year: 2020
  ident: 5413_CR26
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01118-4
– volume: 23
  start-page: 13375
  issue: 24
  year: 2019
  ident: 5413_CR29
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03877-9
– volume: 23
  start-page: 10261
  issue: 20
  year: 2019
  ident: 5413_CR36
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3580-4
– volume: 23
  start-page: 12363
  issue: 23
  year: 2019
  ident: 5413_CR40
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03775-0
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 5413_CR21
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 126
  start-page: 837
  issue: 11
  year: 2000
  ident: 5413_CR23
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2000)126:11(837)
– volume: 30
  start-page: 172
  issue: 3
  year: 2008
  ident: 5413_CR27
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2008.11.001
– ident: 5413_CR24
  doi: 10.1680/jwama.15.00075
– volume-title: Handbook of genetic programming applications
  year: 2015
  ident: 5413_CR55
  doi: 10.1007/978-3-319-20883-1_4
– volume: 7
  start-page: 231
  issue: 4
  year: 2014
  ident: 5413_CR30
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-013-0140-4
– volume: 159
  start-page: 37
  year: 2017
  ident: 5413_CR33
  publication-title: Global Planet Change
  doi: 10.1016/j.gloplacha.2017.10.008
– volume: 24
  start-page: 11583
  year: 2020
  ident: 5413_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04623-x
– year: 2020
  ident: 5413_CR35
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2020.1749763
– volume: 131
  start-page: 347
  issue: 5
  year: 2005
  ident: 5413_CR20
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(2005)131:5(347)
– volume: 24
  start-page: 357
  issue: 2
  year: 2014
  ident: 5413_CR42
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1230-9
– year: 2020
  ident: 5413_CR31
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2020.129
– volume: 581
  start-page: 121757
  year: 2020
  ident: 5413_CR34
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.01.018
– volume: 32
  start-page: 34
  issue: 1
  year: 2010
  ident: 5413_CR6
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2010.05.003
– volume: 37
  start-page: 237
  issue: 15
  year: 1984
  ident: 5413_CR9
  publication-title: Wadsworth Int. Group
– year: 2020
  ident: 5413_CR41
  publication-title: Marine Georesour Geotechnol
  doi: 10.1080/1064119x.2020.1731025
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 5413_CR13
  publication-title: Ann Stat
  doi: 10.1214/aos/1176347963
– volume-title: Computational intelligence techniques in earth and environmental sciences
  year: 2014
  ident: 5413_CR54
– year: 2020
  ident: 5413_CR25
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2020.1752831
– start-page: 383
  volume-title: Intelligent data analytics for decision-support systems in hazard mitigation
  year: 2020
  ident: 5413_CR1
  doi: 10.1007/978-981-15-5772-9_18
– volume: 71
  start-page: 347
  issue: 3
  year: 2015
  ident: 5413_CR11
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2014.495
– ident: 5413_CR37
– volume-title: Applying neural networks: A practical guide
  year: 1996
  ident: 5413_CR49
– volume: 47
  start-page: 1700494
  issue: 1
  year: 2019
  ident: 5413_CR3
  publication-title: CLEAN-Soil, Air, Water
  doi: 10.1002/clen.201700494
– volume: 8
  start-page: 184
  issue: 6
  year: 2018
  ident: 5413_CR8
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-018-0831-6
– volume: 408
  start-page: 5078
  issue: 21
  year: 2010
  ident: 5413_CR57
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.07.048
– volume: 114
  start-page: 829
  issue: 8
  year: 1988
  ident: 5413_CR51
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1988)114:8(829)
– volume: 23
  start-page: 12897
  issue: 23
  year: 2019
  ident: 5413_CR46
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03847-1
– volume: 36
  start-page: 876
  issue: 3
  year: 2019
  ident: 5413_CR28
  publication-title: Eng Comput
  doi: 10.1108/EC-08-2018-0348
– volume: 65
  start-page: 1982
  issue: 11
  year: 2012
  ident: 5413_CR16
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2012.100
– volume: 23
  start-page: 3757
  issue: 11
  year: 2019
  ident: 5413_CR39
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3037-9
– volume: 27
  start-page: 14553
  year: 2020
  ident: 5413_CR56
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-07802-8
– volume: 22
  start-page: 2205
  issue: 7
  year: 2018
  ident: 5413_CR10
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2480-8
– volume-title: Probability and statistics in civil engineering: an introduction
  year: 1986
  ident: 5413_CR47
– volume-title: Gene expression programming
  year: 2006
  ident: 5413_CR12
  doi: 10.1007/3-540-32849-1_2
– volume: 13
  start-page: 45
  issue: 1
  year: 2015
  ident: 5413_CR32
  publication-title: Int J Civ Eng Trans A Civ Eng
– ident: 5413_CR53
– volume: 34
  start-page: 691
  issue: 5
  year: 2020
  ident: 5413_CR44
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-020-01794-0
– volume: 38
  start-page: 10114
  issue: 8
  year: 2011
  ident: 5413_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.02.073
– volume-title: Neural networks
  year: 1994
  ident: 5413_CR19
– volume: 66
  start-page: 1371
  issue: 11
  year: 2011
  ident: 5413_CR15
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.2318
SSID ssj0021753
Score 2.4407096
Snippet Prediction of dynamic pressure distribution ( P ∗ ) is a subject of great importance in the design and operation of the hydraulic structures. Flip buckets,...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 3873
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Robotics
Title Prediction of the dynamic pressure distribution in hydraulic structures using soft computing methods
URI https://link.springer.com/article/10.1007/s00500-020-05413-6
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vejBR1Wsj7IHb7qQZLvJ7rGV1qJYPFiop7DZhwqllaY9-O-dTTbBghQ8hYRJAjM7O98yM98gdNOVOgh1rEkiAkW6IgKX0lISIbk1sRLChK7f-Xkcjybdxymb-qawvKp2r1KSxU5dN7s5qpKAuOMOwIyQkngXNZk7u8MqnkS9-pjluScBCAB2hIDrW2X-_sZmONrMhRYhZniEDjw2xL3SmMdox8xb6LCau4C9G7bQ_i8SwROkX5Yu2eIUjBcWA6DDuhwzj4si1_USHjh6XD_ZCn_O8ce3Xsr1DERK_liQybErgX_HOezLWBX_dLflhOn8FE2Gg9f7EfGzE4iKRLgiiiUmcklMLWzMI8EN5yowilIwAQss44FOrDQQnWTGEkkFVbGxTMnEUC4ZPUON-WJuzhG2wpqQG5Vlhrnwn0HU45onWcJVRI1po7BSYao8sbibbzFLa0rkQu0pqD0t1J7GbXRbv_NV0mpslb6rLJN6F8u3iF_8T_wS7UWuUKUoLLtCDdC7uQaksco6qNkb9vtjd314exp0ioX2A9Srzps
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HtSDj6pYn3vwpoEk2012j0UsVdvioYXewmYfKpRWmvbgv3d2swkWpOAxYZLATHbnW2bm-xC6awsVRipRQcpDGbR5DEtKCRFwwYxOJOc6svPOg2HSG7dfJnTih8KKqtu9Kkm6nboedrNUJWFgjzsAMyISJNtoB8AAs41c47hTH7M89yQAAcCOkHD9qMzf71hPR-u1UJdiukfowGND3CmDeYy29KyJDivdBeyXYRPt_yIRPEHqbWGLLdbBeG4wADqsSpl57JpcVwu4YelxvbIV_pzhj2-1EKspmJT8sWBTYNsC_44L2JexdN-0l6XCdHGKxt2n0WMv8NoJgYx5tAwkTXVsi5iKm4TFnGnGZKglIRACGhrKQpUaoSE7iZymgnAiE22oFKkmTFByhhqz-UyfI2y40RHTMs81tek_h6zHFEvzlMmYaN1CUeXCTHpicatvMc1qSmTn9gzcnjm3Z0kL3dfPfJW0GhutH6rIZH6JFRvML_5nfot2e6NBP-s_D18v0V5sm1Zck9kVakAM9DWgjmV-436yH8Q0zn4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gujBR1Wszz1408Uk2012j0Ut9VV6sNBb2OxDhZKWpj34753Nixak4CkkzCYws5P5lpn5BqGbttSer0NNIuEp0hYBuJSWkgjJrQmVEMZ3_c7v_bA3bL-M2Gipiz-vdq9SkkVPg2NpSuf3U23v68Y3R1viEXf0AcjhUxJuoi24-m5fD4NOfeQqeSgBFACOhOBbts38_Y7V0LSaF83DTfcA7ZU4EXcKwx6iDZM20X41gwGXLtlEu0uEgkdID2Yu8eKUjScWA7jDuhg5j_OC18UMHjiq3HLKFf5O8dePnsnFGEQKLlmQybArh__EGfyjscq_6W6LadPZMRp2nz4eeqSco0BUIPw5USwygUtoamFDHghuOFeeUZSCOZhnGfd0ZKWBSCUTFkkqqAqNZUpGhnLJ6AlqpJPUnCJshTU-NypJDHNQIIEIyDWPkoirgBrTQn6lwliVJONu1sU4rumRc7XHoPY4V3scttBtvWZaUGyslb6rLBOX7patET_7n_g12h48duO35_7rOdoJXP1KXm92gRpgAnMJAGSeXOV77BfXptK6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+dynamic+pressure+distribution+in+hydraulic+structures+using+soft+computing+methods&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Samadi%2C+Mehrshad&rft.au=Sarkardeh%2C+Hamed&rft.au=Jabbari%2C+Ebrahim&rft.date=2021-03-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=5&rft.spage=3873&rft.epage=3888&rft_id=info:doi/10.1007%2Fs00500-020-05413-6&rft.externalDocID=10_1007_s00500_020_05413_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon