Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 9; pp. 4406 - 4421 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2022.3166851 |
Cover
Loading…
Abstract | In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of Willems et al. We use new input-output measurements online to update the data, exploiting local linear approximations of the underlying system. We prove that our MPC scheme, which only requires solving strictly convex quadratic programs online, ensures that the closed loop (practically) converges to the (unknown) optimal reachable equilibrium that tracks a desired output reference while satisfying polytopic input constraints. As intermediate results of independent interest, we extend the fundamental lemma to affine systems and we derive novel robustness bounds w.r.t. noisy data for the open-loop optimal control problem, which are directly transferable to other data-driven MPC schemes in the literature. The applicability of our approach is illustrated with a numerical application to a continuous stirred tank reactor. |
---|---|
AbstractList | In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input–output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of Willems et al. We use new input–output measurements online to update the data, exploiting local linear approximations of the underlying system. We prove that our MPC scheme, which only requires solving strictly convex quadratic programs online, ensures that the closed loop (practically) converges to the (unknown) optimal reachable equilibrium that tracks a desired output reference while satisfying polytopic input constraints. As intermediate results of independent interest, we extend the fundamental lemma to affine systems and we derive novel robustness bounds w.r.t. noisy data for the open-loop optimal control problem, which are directly transferable to other data-driven MPC schemes in the literature. The applicability of our approach is illustrated with a numerical application to a continuous stirred tank reactor. |
Author | Berberich, Julian Muller, Matthias A. Allgower, Frank Kohler, Johannes |
Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0001-6366-6238 surname: Berberich fullname: Berberich, Julian email: julian.berberich@ist.uni-stuttgart.de organization: University of Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart, Germany – sequence: 2 givenname: Johannes orcidid: 0000-0002-5556-604X surname: Kohler fullname: Kohler, Johannes email: jkoehle@ethz.ch organization: University of Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart, Germany – sequence: 3 givenname: Matthias A. orcidid: 0000-0002-4911-9526 surname: Muller fullname: Muller, Matthias A. email: mueller@irt.uni-hannover.de organization: Leibniz University Hannover, Institute of Automatic Control, Hannover, Germany – sequence: 4 givenname: Frank orcidid: 0000-0002-3702-3658 surname: Allgower fullname: Allgower, Frank email: frank.allgower@ist.uni-stuttgart.de organization: University of Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart, Germany |
BookMark | eNp9kE1PAjEUABuDiYjeTbw08bzYj21pvZFFkQSVxPXclNJqEbrYFhP-vUsgHjx4al46814y56ATmmABuMKojzGSt_Ww6hNESJ9izgXDJ6CLGRMFYYR2QBchLApJBD8D5ykt25GXJe6C8dQHqyOsozafPrzDp1kFXRPhcxNWh6_XXcp2nYqZjhlOJnew_rBwpLMuRtF_2wArnewFOHV6lezl8e2Bt4f7unospi_jSTWcFoZInAtDNaWCsLnUcyaIE6XjVHBMSuc4l0gusCi1E8wOGDaIY4aZmRMttSELRDDtgZvD3k1svrY2ZbVstjG0JxUZIMFbXpYtxQ-UiU1K0TplfNbZNyFH7VcKI7WPptpoah9NHaO1IvojbqJf67j7T7k-KN5a-4vLAeOIUfoDutd12g |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1016_j_automatica_2023_111228 crossref_primary_10_1016_j_arcontrol_2023_100911 crossref_primary_10_1109_TAC_2022_3163110 crossref_primary_10_1016_j_conengprac_2024_105879 crossref_primary_10_1016_j_arcontrol_2023_03_005 crossref_primary_10_1109_OJCSYS_2023_3291596 crossref_primary_10_1016_j_isatra_2023_11_023 crossref_primary_10_1109_TAC_2023_3249289 crossref_primary_10_1007_s40313_024_01112_x crossref_primary_10_1016_j_heliyon_2024_e40253 crossref_primary_10_1088_1402_4896_ad514e crossref_primary_10_1109_TAC_2022_3232442 crossref_primary_10_1016_j_ifacol_2024_09_034 crossref_primary_10_1016_j_ifacol_2023_12_091 crossref_primary_10_1109_JIOT_2022_3194945 crossref_primary_10_1109_TAC_2022_3166851 crossref_primary_10_1002_oca_3207 crossref_primary_10_1007_s40313_024_01115_8 crossref_primary_10_3390_wevj14050118 crossref_primary_10_1109_TAC_2022_3180692 crossref_primary_10_1109_TSMC_2023_3291691 crossref_primary_10_1016_j_asoc_2025_112829 crossref_primary_10_1016_j_jfranklin_2025_107610 crossref_primary_10_1016_j_jprocont_2024_103252 crossref_primary_10_1016_j_sysconle_2024_105914 crossref_primary_10_1109_TAC_2023_3305191 crossref_primary_10_3390_math11081845 crossref_primary_10_1109_TCST_2023_3259641 crossref_primary_10_1109_TITS_2023_3329484 crossref_primary_10_1016_j_ifacol_2023_10_877 crossref_primary_10_1109_TSMC_2023_3331231 crossref_primary_10_1016_j_ifacol_2023_10_1806 crossref_primary_10_1080_00207721_2025_2455997 crossref_primary_10_1016_j_ifacol_2023_10_1640 crossref_primary_10_1016_j_arcontrol_2023_100929 crossref_primary_10_1002_rnc_6532 crossref_primary_10_1109_TCST_2023_3293790 crossref_primary_10_3390_aerospace11060486 crossref_primary_10_1007_s12555_024_0516_x crossref_primary_10_3390_math12020199 crossref_primary_10_1109_TCST_2023_3288636 crossref_primary_10_1016_j_ifacol_2024_09_014 crossref_primary_10_1016_j_ast_2024_108915 crossref_primary_10_1016_j_ifacol_2023_10_1636 crossref_primary_10_1109_MCS_2023_3291638 crossref_primary_10_1109_TAC_2022_3166872 crossref_primary_10_1109_TITS_2024_3514117 crossref_primary_10_1073_pnas_2311893121 crossref_primary_10_1080_21642583_2025_2479526 crossref_primary_10_1109_LCSYS_2024_3403525 crossref_primary_10_1109_LCSYS_2024_3405823 crossref_primary_10_1109_LCSYS_2022_3180898 crossref_primary_10_1016_j_sysconle_2024_105892 crossref_primary_10_1109_LCSYS_2024_3359068 crossref_primary_10_1016_j_arcontrol_2023_100915 crossref_primary_10_1016_j_apenergy_2024_123965 crossref_primary_10_1109_LCSYS_2024_3522594 crossref_primary_10_1016_j_trc_2025_105087 crossref_primary_10_1016_j_aei_2024_102381 crossref_primary_10_1016_j_jprocont_2024_103230 crossref_primary_10_1016_j_jfranklin_2024_107335 |
Cites_doi | 10.1109/TAC.2021.3115436 10.1109/LCSYS.2022.3180898 10.1109/TAC.2021.3137788 10.1109/TCST.2019.2949757 10.1109/CDC40024.2019.9029522 10.1109/TAC.2021.3097706 10.1016/j.ifacol.2020.12.389 10.1016/j.automatica.2018.03.046 10.23919/ECC.2019.8795956 10.1016/j.sysconle.2004.09.003 10.1002/rnc.5686 10.1109/CDC42340.2020.9303965 10.1080/00207170801942170 10.1016/S0005-1098(01)00174-1 10.1109/CDC45484.2021.9683151 10.1016/j.ins.2012.07.014 10.1109/CDC45484.2021.9682795 10.1109/TAC.2022.3166851 10.1109/CDC45484.2021.9683327 10.1002/rnc.1758 10.23919/ECC51009.2020.9143608 10.1109/CDC42340.2020.9304441 10.1016/j.automatica.2004.02.002 10.1109/TAC.2022.3180692 10.1109/TAC.2020.3000182 10.1109/TAC.2022.3166872 10.1109/TAC.2021.3116179 10.1016/j.automatica.2020.109030 10.1016/j.automatica.2012.06.038 10.1109/CDC.2018.8619781 10.1007/978-3-540-73451-2_63 10.1109/TAC.2022.3163110 10.1109/TNN.1998.712192 10.1049/PBCE083E 10.1109/TAC.2018.2798803 10.1109/CDC42340.2020.9304122 10.1002/rnc.5175 10.1515/auto-2021-0024 10.1109/ASCC.2015.7244723 10.1109/LCSYS.2020.3037842 10.1109/TAC.2022.3148374 10.1016/0005-1098(95)00120-8 10.1109/CDC45484.2021.9683211 10.23919/ECC.2019.8795639 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2022.3166851 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 4421 |
ExternalDocumentID | 10_1109_TAC_2022_3166851 9756053 |
Genre | orig-research |
GrantInformation_xml | – fundername: Germany's Excellence Strategy - EXC 2075 grantid: 390740016; 468094890 – fundername: Deutsche Forschungsgemeinschaft funderid: 10.13039/501100001659 – fundername: European Research Council funderid: 10.13039/501100000781 – fundername: German Research Foundation – fundername: European Union's Horizon 2020 research and innovation programme grantid: 948679 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-c3a33825b9ab582f84f6386124ff66909d184af85e751c061515cb2a9ac2d0213 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:16:21 EDT 2025 Thu Apr 24 22:51:27 EDT 2025 Tue Jul 01 03:36:41 EDT 2025 Wed Aug 27 02:29:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-c3a33825b9ab582f84f6386124ff66909d184af85e751c061515cb2a9ac2d0213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4911-9526 0000-0001-6366-6238 0000-0002-5556-604X 0000-0002-3702-3658 |
PQID | 2708651594 |
PQPubID | 85475 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2708651594 ieee_primary_9756053 crossref_citationtrail_10_1109_TAC_2022_3166851 crossref_primary_10_1109_TAC_2022_3166851 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Rawlings (ref42) 2020 ref50 ref46 ref45 ref48 ref47 ref41 ref44 ref43 Guay (ref35) 2015 ref49 ref8 ref7 ref9 ref4 ref3 Ljung (ref30) 1987 ref5 ref40 ref34 ref37 ref36 ref31 ref32 ref2 ref1 ref39 ref38 Calliess (ref33) 2014 Lian (ref26) 2021 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref29 Lian (ref27) 2021 Xue (ref6) 2021 |
References_xml | – start-page: 189 volume-title: Proc. 3rd Conf. Learn. Dyn. Control year: 2021 ident: ref6 article-title: Data-driven system level synthesis – year: 2021 ident: ref26 article-title: Koopman based data-driven predictive control – ident: ref16 doi: 10.1109/TAC.2021.3115436 – ident: ref38 doi: 10.1109/LCSYS.2022.3180898 – ident: ref7 doi: 10.1109/TAC.2021.3137788 – ident: ref29 doi: 10.1109/TCST.2019.2949757 – ident: ref12 doi: 10.1109/CDC40024.2019.9029522 – ident: ref5 doi: 10.1109/TAC.2021.3097706 – start-page: 523 volume-title: Proc. 3rd Conf. Learn. Dyn. Control year: 2021 ident: ref27 article-title: Nonlinear data-enabled prediction and control – ident: ref43 doi: 10.1016/j.ifacol.2020.12.389 – ident: ref25 doi: 10.1016/j.automatica.2018.03.046 – ident: ref40 doi: 10.23919/ECC.2019.8795956 – ident: ref2 doi: 10.1016/j.sysconle.2004.09.003 – ident: ref11 doi: 10.1002/rnc.5686 – ident: ref47 doi: 10.1109/CDC42340.2020.9303965 – ident: ref44 doi: 10.1080/00207170801942170 – ident: ref45 doi: 10.1016/S0005-1098(01)00174-1 – volume-title: System Identification: Theory for the User year: 1987 ident: ref30 – ident: ref19 doi: 10.1109/CDC45484.2021.9683151 – ident: ref1 doi: 10.1016/j.ins.2012.07.014 – ident: ref41 doi: 10.1109/CDC45484.2021.9682795 – ident: ref39 doi: 10.1109/TAC.2022.3166851 – ident: ref18 doi: 10.1109/CDC45484.2021.9683327 – ident: ref48 doi: 10.1002/rnc.1758 – ident: ref13 doi: 10.23919/ECC51009.2020.9143608 – ident: ref24 doi: 10.1109/CDC42340.2020.9304441 – ident: ref32 doi: 10.1016/j.automatica.2004.02.002 – ident: ref8 doi: 10.1109/TAC.2022.3180692 – ident: ref9 doi: 10.1109/TAC.2020.3000182 – ident: ref20 doi: 10.1109/TAC.2022.3166872 – ident: ref49 doi: 10.1109/TAC.2021.3116179 – ident: ref22 doi: 10.1016/j.automatica.2020.109030 – ident: ref37 doi: 10.1016/j.automatica.2012.06.038 – ident: ref50 doi: 10.1109/CDC.2018.8619781 – ident: ref23 doi: 10.1007/978-3-540-73451-2_63 – ident: ref10 doi: 10.1109/TAC.2022.3163110 – ident: ref28 doi: 10.1109/TNN.1998.712192 – volume-title: Robust and Adaptive Model Predictive Control of Non-Linear Systems (Control, Robotics, Sensors) year: 2015 ident: ref35 doi: 10.1049/PBCE083E – ident: ref21 doi: 10.1109/TAC.2018.2798803 – ident: ref14 doi: 10.1109/CDC42340.2020.9304122 – ident: ref46 doi: 10.1002/rnc.5175 – ident: ref36 doi: 10.1515/auto-2021-0024 – ident: ref3 doi: 10.1109/ASCC.2015.7244723 – year: 2014 ident: ref33 article-title: Conservative decision-making and inference in uncertain dynamical systems – ident: ref15 doi: 10.1109/LCSYS.2020.3037842 – ident: ref31 doi: 10.1109/TAC.2022.3148374 – ident: ref34 doi: 10.1016/0005-1098(95)00120-8 – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2020 ident: ref42 – ident: ref17 doi: 10.1109/CDC45484.2021.9683211 – ident: ref4 doi: 10.23919/ECC.2019.8795639 |
SSID | ssj0016441 |
Score | 2.6803887 |
Snippet | In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output... In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input–output... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4406 |
SubjectTerms | Closed loops Continuously stirred tank reactors Data-driven control Linear systems Noise measurement Nonlinear control Nonlinear dynamical systems Nonlinear systems Numerical stability Optimal control Parameterization Predictive control predictive control for linear systems Predictive models Robustness (mathematics) Stability analysis time varying systems Trajectory |
Title | Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case |
URI | https://ieeexplore.ieee.org/document/9756053 https://www.proquest.com/docview/2708651594 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgjSgveWBBIm3q2InDVrWUh9SKoZW6RfbFWUAtgnTh13NO0oiXEFuk2JblO9_3fX6cAS50ZkQktPQIfdATSLZQErVnjTK-RgIldAv640l4NxMPczlvwFV9F8ZaWxw-sx33Wezlp0tcuaWybhwRPsugCU0SbuVdrXrHwOF6GXVpAnNVb0n6cXfaH5AQ5Jz0aRgq2fsCQcWbKj8CcYEuo20Yr_tVHip56qxy08H3bykb_9vxHdiqaCbrl36xCw272IPNT8kH9-GWZCi5OSO0QrdezsaPA0YUlk3K7Bn0q0pn7j2Sf7H7-2tGTsWGOtfe8NVFSTYgDDyA2ehmOrjzqmcVPORxL_cw0KRLuTSxNlLxTImMJiExHZFlIYnlOCXVpzMlbSR7WFIeNFzHGnlKlCA4hNZiubBHwFQodGr9yKIvBPYoYJGFMQ0Do9Mgi_w2dNcjnWCVc9w9ffGcFNrDjxOyTeJsk1S2acNlXeOlzLfxR9l9N9R1uWqU23C6NmZSTci3hEek3Rx3E8e_1zqBDdd2eXzsFFr568qeEd_IzXnhaB_KtM5F |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShgAcWJNKmjp0HGyqUFmjF0ErdIvviLKCCIF349ZyTNOIlxBYptmz5zvd9nx9ngFOVahEIJR1CH3QEki1CicoxOtSuQgIltAv6w5Hfn4jbqZzW4Ly6C2OMyQ-fmZb9zPfyk2ec26WydhQQPktvCZalvYxb3Naq9gwsshdxl6YwD6tNSTdqjy-7JAU5J4Xq-6HsfAGh_FWVH6E4x5feBgwXPSuOlTy25plu4fu3pI3_7fomrJdEk10WnrEFNTPbhrVP6Qd34IaEKDk6I7xCu2LOhg9dRiSWjYr8GfSrTGjuPJCHscHggpFbsSuVKefq1cZJ1iUU3IVJ73rc7TvlwwoO8qiTOegpUqZc6khpGfI0FClNQ-I6Ik19kstRQrpPpaE0gexgQXpQcxUp5AmRAm8P6rPnmdkHFvpCJcYNDLpCYIdCFtkYE9_TKvHSwG1AezHSMZZZx-3jF09xrj7cKCbbxNY2cWmbBpxVNV6KjBt_lN2xQ12VK0e5Ac2FMeNySr7FPCD1ZtmbOPi91gms9MfD-_h-MLo7hFXbTnGYrAn17HVujoh9ZPo4d7oPuxzRjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Tracking+MPC+for+Nonlinear+Systems%E2%80%94Part+II%3A+The+Data-Driven+Case&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Berberich%2C+Julian&rft.au=Kohler%2C+Johannes&rft.au=Muller%2C+Matthias+A.&rft.au=Allgower%2C+Frank&rft.date=2022-09-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=9&rft.spage=4406&rft.epage=4421&rft_id=info:doi/10.1109%2FTAC.2022.3166851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3166851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |