Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case

In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 67; no. 9; pp. 4406 - 4421
Main Authors Berberich, Julian, Kohler, Johannes, Muller, Matthias A., Allgower, Frank
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2022.3166851

Cover

Loading…
Abstract In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of Willems et al. We use new input-output measurements online to update the data, exploiting local linear approximations of the underlying system. We prove that our MPC scheme, which only requires solving strictly convex quadratic programs online, ensures that the closed loop (practically) converges to the (unknown) optimal reachable equilibrium that tracks a desired output reference while satisfying polytopic input constraints. As intermediate results of independent interest, we extend the fundamental lemma to affine systems and we derive novel robustness bounds w.r.t. noisy data for the open-loop optimal control problem, which are directly transferable to other data-driven MPC schemes in the literature. The applicability of our approach is illustrated with a numerical application to a continuous stirred tank reactor.
AbstractList In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input–output data with closed-loop stability guarantees. Our scheme relies on the data-driven system parameterization provided by the fundamental lemma of Willems et al. We use new input–output measurements online to update the data, exploiting local linear approximations of the underlying system. We prove that our MPC scheme, which only requires solving strictly convex quadratic programs online, ensures that the closed loop (practically) converges to the (unknown) optimal reachable equilibrium that tracks a desired output reference while satisfying polytopic input constraints. As intermediate results of independent interest, we extend the fundamental lemma to affine systems and we derive novel robustness bounds w.r.t. noisy data for the open-loop optimal control problem, which are directly transferable to other data-driven MPC schemes in the literature. The applicability of our approach is illustrated with a numerical application to a continuous stirred tank reactor.
Author Berberich, Julian
Muller, Matthias A.
Allgower, Frank
Kohler, Johannes
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0001-6366-6238
  surname: Berberich
  fullname: Berberich, Julian
  email: julian.berberich@ist.uni-stuttgart.de
  organization: University of Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart, Germany
– sequence: 2
  givenname: Johannes
  orcidid: 0000-0002-5556-604X
  surname: Kohler
  fullname: Kohler, Johannes
  email: jkoehle@ethz.ch
  organization: University of Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart, Germany
– sequence: 3
  givenname: Matthias A.
  orcidid: 0000-0002-4911-9526
  surname: Muller
  fullname: Muller, Matthias A.
  email: mueller@irt.uni-hannover.de
  organization: Leibniz University Hannover, Institute of Automatic Control, Hannover, Germany
– sequence: 4
  givenname: Frank
  orcidid: 0000-0002-3702-3658
  surname: Allgower
  fullname: Allgower, Frank
  email: frank.allgower@ist.uni-stuttgart.de
  organization: University of Stuttgart, Institute for Systems Theory and Automatic Control, Stuttgart, Germany
BookMark eNp9kE1PAjEUABuDiYjeTbw08bzYj21pvZFFkQSVxPXclNJqEbrYFhP-vUsgHjx4al46814y56ATmmABuMKojzGSt_Ww6hNESJ9izgXDJ6CLGRMFYYR2QBchLApJBD8D5ykt25GXJe6C8dQHqyOsozafPrzDp1kFXRPhcxNWh6_XXcp2nYqZjhlOJnew_rBwpLMuRtF_2wArnewFOHV6lezl8e2Bt4f7unospi_jSTWcFoZInAtDNaWCsLnUcyaIE6XjVHBMSuc4l0gusCi1E8wOGDaIY4aZmRMttSELRDDtgZvD3k1svrY2ZbVstjG0JxUZIMFbXpYtxQ-UiU1K0TplfNbZNyFH7VcKI7WPptpoah9NHaO1IvojbqJf67j7T7k-KN5a-4vLAeOIUfoDutd12g
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_automatica_2023_111228
crossref_primary_10_1016_j_arcontrol_2023_100911
crossref_primary_10_1109_TAC_2022_3163110
crossref_primary_10_1016_j_conengprac_2024_105879
crossref_primary_10_1016_j_arcontrol_2023_03_005
crossref_primary_10_1109_OJCSYS_2023_3291596
crossref_primary_10_1016_j_isatra_2023_11_023
crossref_primary_10_1109_TAC_2023_3249289
crossref_primary_10_1007_s40313_024_01112_x
crossref_primary_10_1016_j_heliyon_2024_e40253
crossref_primary_10_1088_1402_4896_ad514e
crossref_primary_10_1109_TAC_2022_3232442
crossref_primary_10_1016_j_ifacol_2024_09_034
crossref_primary_10_1016_j_ifacol_2023_12_091
crossref_primary_10_1109_JIOT_2022_3194945
crossref_primary_10_1109_TAC_2022_3166851
crossref_primary_10_1002_oca_3207
crossref_primary_10_1007_s40313_024_01115_8
crossref_primary_10_3390_wevj14050118
crossref_primary_10_1109_TAC_2022_3180692
crossref_primary_10_1109_TSMC_2023_3291691
crossref_primary_10_1016_j_asoc_2025_112829
crossref_primary_10_1016_j_jfranklin_2025_107610
crossref_primary_10_1016_j_jprocont_2024_103252
crossref_primary_10_1016_j_sysconle_2024_105914
crossref_primary_10_1109_TAC_2023_3305191
crossref_primary_10_3390_math11081845
crossref_primary_10_1109_TCST_2023_3259641
crossref_primary_10_1109_TITS_2023_3329484
crossref_primary_10_1016_j_ifacol_2023_10_877
crossref_primary_10_1109_TSMC_2023_3331231
crossref_primary_10_1016_j_ifacol_2023_10_1806
crossref_primary_10_1080_00207721_2025_2455997
crossref_primary_10_1016_j_ifacol_2023_10_1640
crossref_primary_10_1016_j_arcontrol_2023_100929
crossref_primary_10_1002_rnc_6532
crossref_primary_10_1109_TCST_2023_3293790
crossref_primary_10_3390_aerospace11060486
crossref_primary_10_1007_s12555_024_0516_x
crossref_primary_10_3390_math12020199
crossref_primary_10_1109_TCST_2023_3288636
crossref_primary_10_1016_j_ifacol_2024_09_014
crossref_primary_10_1016_j_ast_2024_108915
crossref_primary_10_1016_j_ifacol_2023_10_1636
crossref_primary_10_1109_MCS_2023_3291638
crossref_primary_10_1109_TAC_2022_3166872
crossref_primary_10_1109_TITS_2024_3514117
crossref_primary_10_1073_pnas_2311893121
crossref_primary_10_1080_21642583_2025_2479526
crossref_primary_10_1109_LCSYS_2024_3403525
crossref_primary_10_1109_LCSYS_2024_3405823
crossref_primary_10_1109_LCSYS_2022_3180898
crossref_primary_10_1016_j_sysconle_2024_105892
crossref_primary_10_1109_LCSYS_2024_3359068
crossref_primary_10_1016_j_arcontrol_2023_100915
crossref_primary_10_1016_j_apenergy_2024_123965
crossref_primary_10_1109_LCSYS_2024_3522594
crossref_primary_10_1016_j_trc_2025_105087
crossref_primary_10_1016_j_aei_2024_102381
crossref_primary_10_1016_j_jprocont_2024_103230
crossref_primary_10_1016_j_jfranklin_2024_107335
Cites_doi 10.1109/TAC.2021.3115436
10.1109/LCSYS.2022.3180898
10.1109/TAC.2021.3137788
10.1109/TCST.2019.2949757
10.1109/CDC40024.2019.9029522
10.1109/TAC.2021.3097706
10.1016/j.ifacol.2020.12.389
10.1016/j.automatica.2018.03.046
10.23919/ECC.2019.8795956
10.1016/j.sysconle.2004.09.003
10.1002/rnc.5686
10.1109/CDC42340.2020.9303965
10.1080/00207170801942170
10.1016/S0005-1098(01)00174-1
10.1109/CDC45484.2021.9683151
10.1016/j.ins.2012.07.014
10.1109/CDC45484.2021.9682795
10.1109/TAC.2022.3166851
10.1109/CDC45484.2021.9683327
10.1002/rnc.1758
10.23919/ECC51009.2020.9143608
10.1109/CDC42340.2020.9304441
10.1016/j.automatica.2004.02.002
10.1109/TAC.2022.3180692
10.1109/TAC.2020.3000182
10.1109/TAC.2022.3166872
10.1109/TAC.2021.3116179
10.1016/j.automatica.2020.109030
10.1016/j.automatica.2012.06.038
10.1109/CDC.2018.8619781
10.1007/978-3-540-73451-2_63
10.1109/TAC.2022.3163110
10.1109/TNN.1998.712192
10.1049/PBCE083E
10.1109/TAC.2018.2798803
10.1109/CDC42340.2020.9304122
10.1002/rnc.5175
10.1515/auto-2021-0024
10.1109/ASCC.2015.7244723
10.1109/LCSYS.2020.3037842
10.1109/TAC.2022.3148374
10.1016/0005-1098(95)00120-8
10.1109/CDC45484.2021.9683211
10.23919/ECC.2019.8795639
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2022.3166851
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4421
ExternalDocumentID 10_1109_TAC_2022_3166851
9756053
Genre orig-research
GrantInformation_xml – fundername: Germany's Excellence Strategy - EXC 2075
  grantid: 390740016; 468094890
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
– fundername: European Research Council
  funderid: 10.13039/501100000781
– fundername: German Research Foundation
– fundername: European Union's Horizon 2020 research and innovation programme
  grantid: 948679
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-c3a33825b9ab582f84f6386124ff66909d184af85e751c061515cb2a9ac2d0213
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 10:16:21 EDT 2025
Thu Apr 24 22:51:27 EDT 2025
Tue Jul 01 03:36:41 EDT 2025
Wed Aug 27 02:29:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c3a33825b9ab582f84f6386124ff66909d184af85e751c061515cb2a9ac2d0213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4911-9526
0000-0001-6366-6238
0000-0002-5556-604X
0000-0002-3702-3658
PQID 2708651594
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_2708651594
ieee_primary_9756053
crossref_citationtrail_10_1109_TAC_2022_3166851
crossref_primary_10_1109_TAC_2022_3166851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Rawlings (ref42) 2020
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
Guay (ref35) 2015
ref49
ref8
ref7
ref9
ref4
ref3
Ljung (ref30) 1987
ref5
ref40
ref34
ref37
ref36
ref31
ref32
ref2
ref1
ref39
ref38
Calliess (ref33) 2014
Lian (ref26) 2021
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref29
Lian (ref27) 2021
Xue (ref6) 2021
References_xml – start-page: 189
  volume-title: Proc. 3rd Conf. Learn. Dyn. Control
  year: 2021
  ident: ref6
  article-title: Data-driven system level synthesis
– year: 2021
  ident: ref26
  article-title: Koopman based data-driven predictive control
– ident: ref16
  doi: 10.1109/TAC.2021.3115436
– ident: ref38
  doi: 10.1109/LCSYS.2022.3180898
– ident: ref7
  doi: 10.1109/TAC.2021.3137788
– ident: ref29
  doi: 10.1109/TCST.2019.2949757
– ident: ref12
  doi: 10.1109/CDC40024.2019.9029522
– ident: ref5
  doi: 10.1109/TAC.2021.3097706
– start-page: 523
  volume-title: Proc. 3rd Conf. Learn. Dyn. Control
  year: 2021
  ident: ref27
  article-title: Nonlinear data-enabled prediction and control
– ident: ref43
  doi: 10.1016/j.ifacol.2020.12.389
– ident: ref25
  doi: 10.1016/j.automatica.2018.03.046
– ident: ref40
  doi: 10.23919/ECC.2019.8795956
– ident: ref2
  doi: 10.1016/j.sysconle.2004.09.003
– ident: ref11
  doi: 10.1002/rnc.5686
– ident: ref47
  doi: 10.1109/CDC42340.2020.9303965
– ident: ref44
  doi: 10.1080/00207170801942170
– ident: ref45
  doi: 10.1016/S0005-1098(01)00174-1
– volume-title: System Identification: Theory for the User
  year: 1987
  ident: ref30
– ident: ref19
  doi: 10.1109/CDC45484.2021.9683151
– ident: ref1
  doi: 10.1016/j.ins.2012.07.014
– ident: ref41
  doi: 10.1109/CDC45484.2021.9682795
– ident: ref39
  doi: 10.1109/TAC.2022.3166851
– ident: ref18
  doi: 10.1109/CDC45484.2021.9683327
– ident: ref48
  doi: 10.1002/rnc.1758
– ident: ref13
  doi: 10.23919/ECC51009.2020.9143608
– ident: ref24
  doi: 10.1109/CDC42340.2020.9304441
– ident: ref32
  doi: 10.1016/j.automatica.2004.02.002
– ident: ref8
  doi: 10.1109/TAC.2022.3180692
– ident: ref9
  doi: 10.1109/TAC.2020.3000182
– ident: ref20
  doi: 10.1109/TAC.2022.3166872
– ident: ref49
  doi: 10.1109/TAC.2021.3116179
– ident: ref22
  doi: 10.1016/j.automatica.2020.109030
– ident: ref37
  doi: 10.1016/j.automatica.2012.06.038
– ident: ref50
  doi: 10.1109/CDC.2018.8619781
– ident: ref23
  doi: 10.1007/978-3-540-73451-2_63
– ident: ref10
  doi: 10.1109/TAC.2022.3163110
– ident: ref28
  doi: 10.1109/TNN.1998.712192
– volume-title: Robust and Adaptive Model Predictive Control of Non-Linear Systems (Control, Robotics, Sensors)
  year: 2015
  ident: ref35
  doi: 10.1049/PBCE083E
– ident: ref21
  doi: 10.1109/TAC.2018.2798803
– ident: ref14
  doi: 10.1109/CDC42340.2020.9304122
– ident: ref46
  doi: 10.1002/rnc.5175
– ident: ref36
  doi: 10.1515/auto-2021-0024
– ident: ref3
  doi: 10.1109/ASCC.2015.7244723
– year: 2014
  ident: ref33
  article-title: Conservative decision-making and inference in uncertain dynamical systems
– ident: ref15
  doi: 10.1109/LCSYS.2020.3037842
– ident: ref31
  doi: 10.1109/TAC.2022.3148374
– ident: ref34
  doi: 10.1016/0005-1098(95)00120-8
– volume-title: Model Predictive Control: Theory, Computation, and Design
  year: 2020
  ident: ref42
– ident: ref17
  doi: 10.1109/CDC45484.2021.9683211
– ident: ref4
  doi: 10.23919/ECC.2019.8795639
SSID ssj0016441
Score 2.6803887
Snippet In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input-output...
In this article, we present a novel data-driven model predictive control (MPC) approach to control unknown nonlinear systems using only measured input–output...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4406
SubjectTerms Closed loops
Continuously stirred tank reactors
Data-driven control
Linear systems
Noise measurement
Nonlinear control
Nonlinear dynamical systems
Nonlinear systems
Numerical stability
Optimal control
Parameterization
Predictive control
predictive control for linear systems
Predictive models
Robustness (mathematics)
Stability analysis
time varying systems
Trajectory
Title Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case
URI https://ieeexplore.ieee.org/document/9756053
https://www.proquest.com/docview/2708651594
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgjSgveWBBIm3q2InDVrWUh9SKoZW6RfbFWUAtgnTh13NO0oiXEFuk2JblO9_3fX6cAS50ZkQktPQIfdATSLZQErVnjTK-RgIldAv640l4NxMPczlvwFV9F8ZaWxw-sx33Wezlp0tcuaWybhwRPsugCU0SbuVdrXrHwOF6GXVpAnNVb0n6cXfaH5AQ5Jz0aRgq2fsCQcWbKj8CcYEuo20Yr_tVHip56qxy08H3bykb_9vxHdiqaCbrl36xCw272IPNT8kH9-GWZCi5OSO0QrdezsaPA0YUlk3K7Bn0q0pn7j2Sf7H7-2tGTsWGOtfe8NVFSTYgDDyA2ehmOrjzqmcVPORxL_cw0KRLuTSxNlLxTImMJiExHZFlIYnlOCXVpzMlbSR7WFIeNFzHGnlKlCA4hNZiubBHwFQodGr9yKIvBPYoYJGFMQ0Do9Mgi_w2dNcjnWCVc9w9ffGcFNrDjxOyTeJsk1S2acNlXeOlzLfxR9l9N9R1uWqU23C6NmZSTci3hEek3Rx3E8e_1zqBDdd2eXzsFFr568qeEd_IzXnhaB_KtM5F
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADb0ShgAcWJNKmjp0HGyqUFmjF0ErdIvviLKCCIF349ZyTNOIlxBYptmz5zvd9nx9ngFOVahEIJR1CH3QEki1CicoxOtSuQgIltAv6w5Hfn4jbqZzW4Ly6C2OMyQ-fmZb9zPfyk2ec26WydhQQPktvCZalvYxb3Naq9gwsshdxl6YwD6tNSTdqjy-7JAU5J4Xq-6HsfAGh_FWVH6E4x5feBgwXPSuOlTy25plu4fu3pI3_7fomrJdEk10WnrEFNTPbhrVP6Qd34IaEKDk6I7xCu2LOhg9dRiSWjYr8GfSrTGjuPJCHscHggpFbsSuVKefq1cZJ1iUU3IVJ73rc7TvlwwoO8qiTOegpUqZc6khpGfI0FClNQ-I6Ik19kstRQrpPpaE0gexgQXpQcxUp5AmRAm8P6rPnmdkHFvpCJcYNDLpCYIdCFtkYE9_TKvHSwG1AezHSMZZZx-3jF09xrj7cKCbbxNY2cWmbBpxVNV6KjBt_lN2xQ12VK0e5Ac2FMeNySr7FPCD1ZtmbOPi91gms9MfD-_h-MLo7hFXbTnGYrAn17HVujoh9ZPo4d7oPuxzRjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Tracking+MPC+for+Nonlinear+Systems%E2%80%94Part+II%3A+The+Data-Driven+Case&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Berberich%2C+Julian&rft.au=Kohler%2C+Johannes&rft.au=Muller%2C+Matthias+A.&rft.au=Allgower%2C+Frank&rft.date=2022-09-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=9&rft.spage=4406&rft.epage=4421&rft_id=info:doi/10.1109%2FTAC.2022.3166851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3166851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon