Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance

A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. P...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 3; no. 2; pp. 1112 - 1119
Main Authors Khalil, Islam S. M., Mahdy, Dalia, El Sharkawy, Ahmed, Moustafa, Ramez R., Tabak, Ahmet Fatih, Mitwally, Mohamed E., Hesham, Sarah, Hamdi, Nabila, Klingner, Anke, Mohamed, Abdelrahman, Sitti, Metin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of 0.84 ± 0.41 and 2.15 mm, respectively, and achieve removal rate of -0.614 ± 0.303 mm 3 /min at room temperature (25 °C) and -0.482 ± 0.23 mm 3 /min at body temperature (37 °C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of (46 ± 10.9) × 10 4 cell/ml, whereas the count in the absence of rubbing is (2 ± 1.41) × 10 4 cell/ml, after 40 min.
AbstractList A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of 0.84 ± 0.41 and 2.15 mm, respectively, and achieve removal rate of -0.614 ± 0.303 mm3/min at room temperature (25 °C) and -0.482 ± 0.23 mm3/min at body temperature (37 °C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of (46 ± 10.9) × 104 cell/ml, whereas the count in the absence of rubbing is (2 ± 1.41) × 104 cell/ml, after 40 min.
A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of 0.84 ± 0.41 and 2.15 mm, respectively, and achieve removal rate of -0.614 ± 0.303 mm 3 /min at room temperature (25 °C) and -0.482 ± 0.23 mm 3 /min at body temperature (37 °C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of (46 ± 10.9) × 10 4 cell/ml, whereas the count in the absence of rubbing is (2 ± 1.41) × 10 4 cell/ml, after 40 min.
Author Tabak, Ahmet Fatih
Hesham, Sarah
Mahdy, Dalia
Khalil, Islam S. M.
Mitwally, Mohamed E.
Hamdi, Nabila
El Sharkawy, Ahmed
Moustafa, Ramez R.
Klingner, Anke
Sitti, Metin
Mohamed, Abdelrahman
Author_xml – sequence: 1
  givenname: Islam S. M.
  surname: Khalil
  fullname: Khalil, Islam S. M.
  email: islam.shoukry@guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 2
  givenname: Dalia
  surname: Mahdy
  fullname: Mahdy, Dalia
  email: dalia.mahdy@guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 3
  givenname: Ahmed
  surname: El Sharkawy
  fullname: El Sharkawy, Ahmed
  email: ahmed.el-sharkawy@student.guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 4
  givenname: Ramez R.
  surname: Moustafa
  fullname: Moustafa, Ramez R.
  organization: Dept. of Neurology, Ain Shams Univ., Cairo, Egypt
– sequence: 5
  givenname: Ahmet Fatih
  surname: Tabak
  fullname: Tabak, Ahmet Fatih
  email: tabak@sabanciuniv.edu
  organization: Phys. Intell. Dept., Max Planck Inst. for Intell. Syst., Stuttgart, Germany
– sequence: 6
  givenname: Mohamed E.
  surname: Mitwally
  fullname: Mitwally, Mohamed E.
  email: mohamed.elwi@guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 7
  givenname: Sarah
  surname: Hesham
  fullname: Hesham, Sarah
  email: sarah.elsayed@student.guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 8
  givenname: Nabila
  surname: Hamdi
  fullname: Hamdi, Nabila
  email: nabila.hamdi@guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 9
  givenname: Anke
  surname: Klingner
  fullname: Klingner, Anke
  email: anke.klingner@guc.edu.eg
  organization: German Univ. in Cairo, Cairo, Egypt
– sequence: 10
  givenname: Abdelrahman
  surname: Mohamed
  fullname: Mohamed, Abdelrahman
  organization: Dept. of Neurology, Ain Shams Univ., Cairo, Egypt
– sequence: 11
  givenname: Metin
  surname: Sitti
  fullname: Sitti, Metin
  email: sitti@is.mpg.de
  organization: Phys. Intell. Dept., Max Planck Inst. for Intell. Syst., Stuttgart, Germany
BookMark eNpNkM1LAzEQxYNUsNbeBS8LnluTzGazOdairVBRij2HbD50y5rUZPfgf-_WLeJlZni8N8P8LtHIB28RuiZ4TggWd5vtYk4xKeeUC0pYcYbGFDifAS-K0b_5Ak1T2mOMCaMcBBuj12erP5SvtWqybVdVtX_PgsvumxBMtmxCm7JdOopr2wymUP2K3tiY7Zo2qhQ6b7JVVxvltb1C5041yU5PfYJ2jw9vy_Vs87J6Wi42M00FafuqFXFASgeOGaEhLyB3tnCszBVXhjFDclpRbktODbNQqJxgwwH3zyjGYIJuh72HGL46m1q5D130_UlJqRDACVDcu_Dg0jGkFK2Th1h_qvgtCZZHdLJHJ4_o5AldH7kZIrW19s9eUgYlofAD89tqMA
CODEN IRALC6
CitedBy_id crossref_primary_10_1002_adma_202002047
crossref_primary_10_1109_TMECH_2020_3023003
crossref_primary_10_1126_scirobotics_aav4494
crossref_primary_10_1109_LRA_2024_3391696
crossref_primary_10_1109_TMECH_2021_3054927
crossref_primary_10_1126_sciadv_abi8932
crossref_primary_10_1126_scirobotics_adh0298
crossref_primary_10_1063_5_0097145
crossref_primary_10_3390_mi13030481
crossref_primary_10_1109_TRO_2023_3249569
crossref_primary_10_1109_TIM_2021_3075776
crossref_primary_10_1038_s41467_020_17775_4
crossref_primary_10_1002_adts_201800130
crossref_primary_10_1039_D0CS01062F
crossref_primary_10_1039_D1LC00575H
crossref_primary_10_1109_TRO_2020_2988636
crossref_primary_10_1021_acsnano_1c07615
crossref_primary_10_1109_TMECH_2021_3103994
crossref_primary_10_1016_j_nantod_2019_100836
crossref_primary_10_1109_OJNANO_2020_2981824
crossref_primary_10_1002_aisy_202300052
crossref_primary_10_1038_s41467_022_32059_9
crossref_primary_10_1007_s00521_022_08140_1
crossref_primary_10_3390_mi12101249
crossref_primary_10_1021_acs_jpcb_1c04682
crossref_primary_10_1002_adma_202100170
crossref_primary_10_1109_LRA_2023_3243801
crossref_primary_10_1109_TMECH_2022_3151983
crossref_primary_10_1016_j_cmpb_2023_107605
crossref_primary_10_1109_LRA_2022_3184445
crossref_primary_10_1109_LRA_2023_3264746
crossref_primary_10_1088_1748_605X_ac8b4b
crossref_primary_10_1002_aisy_202000267
crossref_primary_10_1038_s41598_022_25572_w
crossref_primary_10_1109_TMECH_2021_3121267
crossref_primary_10_1109_TBME_2020_2987045
crossref_primary_10_1002_aisy_202000181
crossref_primary_10_1016_j_mtbio_2020_100085
crossref_primary_10_1002_aisy_202100279
crossref_primary_10_1088_2516_1091_ab22d5
crossref_primary_10_1109_LRA_2024_3392492
crossref_primary_10_1063_1_5090872
crossref_primary_10_1109_TBME_2019_2960530
crossref_primary_10_1021_acsnano_1c07830
crossref_primary_10_1109_TSMC_2024_3374071
crossref_primary_10_1109_TRO_2023_3271582
crossref_primary_10_1109_LRA_2020_3003868
crossref_primary_10_1109_LRA_2022_3146560
crossref_primary_10_1126_scirobotics_aav6180
crossref_primary_10_1109_TMRB_2023_3318642
crossref_primary_10_1002_mds3_10033
Cites_doi 10.1016/S1076-6332(05)80338-1
10.1039/c1an15599g
10.1109/TAC.2016.2604045
10.1016/j.ijsu.2005.10.007
10.1039/b9nr00162j
10.1038/nnano.2016.137
10.1007/978-3-662-04186-4
10.1039/b925568k
10.1021/ja047697z
10.1109/LRA.2017.2654546
10.1186/1477-9560-10-23
10.1002/adma.201404444
10.1039/c0nr00287a
10.1182/blood-2013-08-523860
10.1109/BIOROB.2016.7523637
10.1002/adma.201504327
10.1021/nl900186w
10.1021/nn301312z
10.1038/micronano.2015.20
10.1063/1.4958737
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2018.2792156
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1119
ExternalDocumentID 10_1109_LRA_2018_2792156
8253812
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Development Fund in Egypt
  grantid: 23016
– fundername: DAAD-BMBF
GroupedDBID 0R~
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
RIG
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-c2ca1f318f3f5d9c34634fe6f584a7ad55d142b27e872d5e36a410d730237a553
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Fri Sep 13 00:28:42 EDT 2024
Fri Aug 23 00:41:23 EDT 2024
Wed Jun 26 19:30:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-c2ca1f318f3f5d9c34634fe6f584a7ad55d142b27e872d5e36a410d730237a553
ORCID 0000-0001-8249-3854
0000-0003-3311-6942
0000-0002-2426-433X
0000-0003-0617-088X
0000-0002-0552-9996
PQID 2299371320
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2018_2792156
proquest_journals_2299371320
ieee_primary_8253812
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
fernández de ávila (ref6) 2017; 8
ref14
ref20
ref11
ref10
ref21
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref5
vonthron (ref2) 0
wu (ref22) 2014; 30
References_xml – start-page: 1285
  year: 0
  ident: ref2
  article-title: A MRI-based integrated platform for the navigation of microdevices and microrobots
  publication-title: Proc IEEE Int Conf Intell Robot Syst
  contributor:
    fullname: vonthron
– ident: ref23
  doi: 10.1016/S1076-6332(05)80338-1
– ident: ref14
  doi: 10.1039/c1an15599g
– ident: ref20
  doi: 10.1109/TAC.2016.2604045
– ident: ref1
  doi: 10.1016/j.ijsu.2005.10.007
– ident: ref13
  doi: 10.1039/b9nr00162j
– ident: ref4
  doi: 10.1038/nnano.2016.137
– ident: ref21
  doi: 10.1007/978-3-662-04186-4
– ident: ref11
  doi: 10.1039/b925568k
– ident: ref9
  doi: 10.1021/ja047697z
– ident: ref16
  doi: 10.1109/LRA.2017.2654546
– ident: ref17
  doi: 10.1186/1477-9560-10-23
– ident: ref3
  doi: 10.1002/adma.201404444
– volume: 30
  start-page: 169
  year: 2014
  ident: ref22
  publication-title: Ultrasound Part 2 An Issue of Critical Care Clinics
  contributor:
    fullname: wu
– ident: ref12
  doi: 10.1039/c0nr00287a
– ident: ref18
  doi: 10.1182/blood-2013-08-523860
– ident: ref19
  doi: 10.1109/BIOROB.2016.7523637
– ident: ref5
  doi: 10.1002/adma.201504327
– volume: 8
  year: 2017
  ident: ref6
  article-title: Micromotor-enabled active drug delivery for in vivo treatment of stomach infection
  publication-title: Nature Commun
  contributor:
    fullname: fernández de ávila
– ident: ref7
  doi: 10.1021/nl900186w
– ident: ref10
  doi: 10.1021/nn301312z
– ident: ref15
  doi: 10.1038/micronano.2015.20
– ident: ref8
  doi: 10.1063/1.4958737
SSID ssj0001527395
Score 2.3880575
Snippet A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1112
SubjectTerms Actuation
Blood clots
Body temperature
closed-loop control
Coagulation
Dipoles
Erythrocytes
Feedback
Fibrin
helical robot
magnetic
medical
Organic chemistry
Platelets
RFT
Robot kinematics
Robots
Rotating bodies
rotating dipole
Rubbing
Shear modulus
Shear strength
Temperature measurement
Ultrasonic imaging
Ultrasound
ultrasound imaging
Title Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance
URI https://ieeexplore.ieee.org/document/8253812
https://www.proquest.com/docview/2299371320/abstract/
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwRozHlAMXJLq1adM2R0ADhBhCiEm7VUnrIMS0oq29cOC3E7fdmIADl6qqkiqyndiOP9sAp2h06rkuOqmQMTko0tECpcO5ck0oM2sh09XA4CG8HQZ3IzFagfNFLgwiVuAz7NJrFcvP8rSkq7Ke9WasgrEH7mrs8jpX6_s-hSqJSTGPRLqyd_90QdCtuEs18jzqUL2keapWKr_O30qpXG_CYL6cGkvy1i0L3U0_flRq_O96t2CjsS7ZRS0O27CCkx1YX6o5uAuPA6RkX-INeyq1dYxfWG7YJQHY2dU4L2asghEwq5DqQbmuPlIWDBuOi6maUSsmdlO-ZiQyezC87j9f3TpNWwUn5dIr7DNVnrF72fhGZDL1g9APDIbG2iIqUpkQmRdwzSOMI54J9EMVeG4WUXuhSAnh70Nrkk_wAJjBOtDnco1BTO6RCVTqoxLamh6at-FsTvLkva6ekVRehysTy56E2JM07GnDLlFwMa4hXhuO5zxKmu01Szgns4qyvw__nnUEa_TvGmJzDK1iWuKJtR4K3YHVwWe_UwnPF6DzwpA
link.rule.ids 315,786,790,802,27957,27958,55109
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYmOAAHXgMxGJADFyQ62rRpl-OYgAEbQhOTuFVJ6yAEWhFrL_x64rYDBBy4VFWVqJHtxHb82QY4QqMTz3XRSYTskoMiHS1QOpwr14QytRYyXQ2MbsPBJLh-EA8NOPnMhUHEEnyGHXotY_lplhR0VXZqvRmrYOyBu2j1vCurbK2vGxWqJSbFPBbpytPhuEfgrW6HquR51KP6m-4pm6n8OoFLtXKxBqP5gio0yXOnyHUnef9Rq_G_K16H1dq-ZL1KIDaggdNNWPlWdbAJdyOkdF_iDhsX2rrGjywz7Iwg7Kz_kuUzVgIJmFVJ1aBMlx8pD4ZNXvI3NaNmTOyyeEpJaLZgcnF-3x84dWMFJ-HSy-0zUZ6xu9n4RqQy8YPQDwyGxlojKlKpEKkXcM0j7EY8FeiHKvDcNKIGQ5ESwt-GhWk2xR1gBqtQn8s1Bl1ykEygEh-V0Nb40LwFx3OSx69V_Yy49DtcGVv2xMSeuGZPC5pEwc9xNfFa0J7zKK432CzmnAwryv_e_XvWISwN7kfDeHh1e7MHy_SfCnDThoX8rcB9a0vk-qAUoQ92hsS1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Rubbing+of+Blood+Clots+Using+Helical+Robots+Under+Ultrasound+Guidance&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Khalil%2C+Islam+S+M&rft.au=Mahdy%2C+Dalia&rft.au=Ahmed+El+Sharkawy&rft.au=Moustafa%2C+Ramez+R&rft.date=2018-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=3&rft.issue=2&rft.spage=1112&rft_id=info:doi/10.1109%2FLRA.2018.2792156&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon