Employing multi-layer perceptron model via meta-heuristic algorithms for predicting California bearing capacity of stabilized soil
The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be harnessed to ascertain the subgrade's soil reaction through correlation. This parameter is paramount in soil engineering, particularly in formu...
Saved in:
Published in | Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 2; pp. 1375 - 1391 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be harnessed to ascertain the subgrade's soil reaction through correlation. This parameter is paramount in soil engineering, particularly in formulating the subgrade design for rural road networks. The CBR value of soil is subject to a multitude of influencing factors, including but not limited to maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plasticity index (PI), soil type, and soil permeability. Furthermore, whether the soil is soaked or unsoaked also impacts this value. The process of CBR determination is notably protracted and demands a considerable amount of time. Recognizing the significance of this determination, the study introduces an innovative machine-learning approach. This novel method employs a multi-layer perceptron as its foundational model, harnessing the formidable capabilities of this algorithm in addressing regression challenges. To elevate the performance of the MLP and attain optimal outcomes, a hybridization approach has been employed, integrating the Bonobo Optimizer (BO), Smell Agent Optimization (SAO), and Dynamic Control Cuckoo Search (DCCS). The hybrid models proposed in this study showcase encouraging outcomes in CBR value prediction. Notably, the MLAO3 hybrid model emerges as the most precise predictor among the various models, achieving an impressive
R
2
value of 0.994 and an RMSE value of 2.80. |
---|---|
AbstractList | The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be harnessed to ascertain the subgrade's soil reaction through correlation. This parameter is paramount in soil engineering, particularly in formulating the subgrade design for rural road networks. The CBR value of soil is subject to a multitude of influencing factors, including but not limited to maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plasticity index (PI), soil type, and soil permeability. Furthermore, whether the soil is soaked or unsoaked also impacts this value. The process of CBR determination is notably protracted and demands a considerable amount of time. Recognizing the significance of this determination, the study introduces an innovative machine-learning approach. This novel method employs a multi-layer perceptron as its foundational model, harnessing the formidable capabilities of this algorithm in addressing regression challenges. To elevate the performance of the MLP and attain optimal outcomes, a hybridization approach has been employed, integrating the Bonobo Optimizer (BO), Smell Agent Optimization (SAO), and Dynamic Control Cuckoo Search (DCCS). The hybrid models proposed in this study showcase encouraging outcomes in CBR value prediction. Notably, the MLAO3 hybrid model emerges as the most precise predictor among the various models, achieving an impressive
R
2
value of 0.994 and an RMSE value of 2.80. |
Author | Zhang, Lulu |
Author_xml | – sequence: 1 givenname: Lulu surname: Zhang fullname: Zhang, Lulu email: dxrx30jvai140@163.com organization: Department of Information Technology, Anhui Vocational College of Grain Engineering |
BookMark | eNp9kMtOwzAQRS1UJAr0B1j5Bwx-NMRZoqo8pEpsYG2NHad15cSR7SKFJV9OQhELFl3N6GrOaOZcolkXOovQDaO3jNLyLi1ZJSpCuSCU8rIk4gzNecEpkaysZn_9Pb1Ai5T2dJoSy1LSOfpat70Pg-u2uD347IiHwUbc22hsn2PocBtq6_GHA9zaDGRnD9Gl7AwGvw3R5V2bcBNGJNramTxtWoF3Y9SNjLYQp8hAD8blAYcGpwzaefdpa5yC89fovAGf7OK3XqH3x_Xb6plsXp9eVg8bYnjFMtENVJJpUemiKngtqzEuJJgGSlmIGoAaxpccSi61FMwIsax1oylwqgXVVlwhedxrYkgp2kaNB0F2ocsRnFeMqkmnOupUo071o1OJEeX_0D66FuJwGhJHKPWTAhvVPhxiN754ivoGuFqNsA |
CitedBy_id | crossref_primary_10_1007_s42107_024_01179_6 |
Cites_doi | 10.3390/buildings13010255 10.1016/j.advengsoft.2010.01.003 10.3390/app13084934 10.1016/j.aci.2017.09.001 10.1002/anie.200501726 10.1016/j.ijepes.2015.12.030 10.1007/s13369-022-06697-6 10.1016/j.jrmge.2022.12.034 10.1007/s12665-014-3800-x 10.1061/(ASCE)GM.1943-5622.0001125 10.1080/14680629.2012.757557 10.1007/s11069-021-05165-y 10.1016/j.amjoto.2020.102622 10.1016/j.asej.2022.101988 10.1007/s12046-021-01640-1 10.1016/j.apm.2011.11.039 10.1155/2023/8198648 10.1016/j.jclepro.2022.133587 10.1007/s12517-022-10534-3 10.1140/epjp/i2019-12692-0 10.7763/IJET.2014.V6.738 10.1007/s10661-021-09335-0 10.1007/s12594-022-2187-7 10.1007/s41939-022-00131-y 10.1016/j.eswa.2010.12.054 10.1007/978-981-19-6774-0_16 10.1109/NABIC.2009.5393690 10.1007/s40891-017-0115-5 10.1007/s41939-022-00137-6 10.1007/s42947-021-00105-2 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s41939-023-00277-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2520-8179 |
EndPage | 1391 |
ExternalDocumentID | 10_1007_s41939_023_00277_3 |
GrantInformation_xml | – fundername: the Key project of teaching and research planning of Anhui Vocational and Adult Education Association grantid: azcg44 – fundername: Anhui Provincial Department of Education University Quality Project grantid: 2022jpkc041 – fundername: key Research Project of Social Sciences in Anhui Universities grantid: 2022AH053106 |
GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c291t-bfa981b39b5952d89c2958acfa7853daa0c1242a728b831c334dbfb0a20b30be3 |
ISSN | 2520-8160 |
IngestDate | Thu Apr 24 22:55:21 EDT 2025 Tue Jul 01 02:07:03 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | California bearing ratio Bonobo optimizer Dynamic control cuckoo search Smell agent optimization Multi-layer perceptron |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-bfa981b39b5952d89c2958acfa7853daa0c1242a728b831c334dbfb0a20b30be3 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1007_s41939_023_00277_3 crossref_primary_10_1007_s41939_023_00277_3 springer_journals_10_1007_s41939_023_00277_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
PublicationYear | 2024 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Bhatt, Pradeep, Pradesh (CR5) 2014; 8 Ramasubbarao, Sankar (CR30) 2013; 7 Ghani, Kumari, Ahmad (CR13) 2022; 47 Ghani, Kumari (CR11) 2022; 98 Moayedi, Hayati (CR25) 2018; 18 Ho, Tran (CR15) 2022; 370 Khatti, Grover (CR20) 2023; 6 Nagaraju, Alireza Bahrami, Prasad, Mantena, Biswal, Islam (CR26) 2023; 13 Baghbani, Nguyen, Alnedawi, Milne, Baumgartl, Abuel-Naga (CR4) 2023; 13 CR17 Khatti, Grover (CR19) 2023 Khatti, Grover (CR18) 2023; 16 CR35 Axel (CR3) 2005; 44 Nguyen, Truong, Phung (CR27) 2016; 78 Yildirim, Gunaydin (CR36) 2011; 38 Kassa, Wubineh (CR16) 2023 Sakalli, Temirbekov, Bayri, Alis, Erdurak, Bayraktaroglu (CR31) 2020; 41 Zumrawi (CR38) 2014; 6 Kim, Ordu, Arslan, Ko (CR22) 2023; 33 Ghani, Kumari, Jaiswal, Sawant (CR14) 2022; 15 Ghanadzadeh, Ganji, Fallahi (CR9) 2012; 36 Varol, Ozel, Ertugrul, Emir, Tunay, Cetin, Sevik (CR34) 2021; 193 Buck (CR6) 2004; 2004 CR8 CR7 CR29 Taskiran (CR33) 2010; 41 Ghani, Kumari, Bardhan (CR12) 2021; 46 Ghani, Kumari (CR10) 2022; 111 Zumrawi (CR37) 2012; 2 Abdalla, Attom, Hawileh (CR1) 2015; 73 CR21 Mareli, Twala (CR24) 2018; 14 Alawi, Rajab (CR2) 2013; 14 Kurnaz, Kaya (CR23) 2019 Othman, Abdelwahab (CR28) 2023; 14 Suthar, Aggarwal (CR32) 2018; 4 TV Nagaraju (277_CR26) 2023; 13 cr-split#-277_CR8.2 277_CR17 G Ramasubbarao (277_CR30) 2013; 7 TJAIES Taskiran (277_CR33) 2010; 41 R Axel (277_CR3) 2005; 44 cr-split#-277_CR8.1 H Ghanadzadeh (277_CR9) 2012; 36 S Ghani (277_CR11) 2022; 98 T Varol (277_CR34) 2021; 193 S Ghani (277_CR10) 2022; 111 TF Kurnaz (277_CR23) 2019 JA Abdalla (277_CR1) 2015; 73 B Yildirim (277_CR36) 2011; 38 M Suthar (277_CR32) 2018; 4 MME Zumrawi (277_CR37) 2012; 2 SM Kassa (277_CR16) 2023 277_CR21 M Mareli (277_CR24) 2018; 14 S Ghani (277_CR14) 2022; 15 277_CR29 J Khatti (277_CR19) 2023 J Khatti (277_CR20) 2023; 6 S Bhatt (277_CR5) 2014; 8 LS Ho (277_CR15) 2022; 370 MME Zumrawi (277_CR38) 2014; 6 M Alawi (277_CR2) 2013; 14 J Khatti (277_CR18) 2023; 16 M Kim (277_CR22) 2023; 33 LB Buck (277_CR6) 2004; 2004 A Baghbani (277_CR4) 2023; 13 S Ghani (277_CR12) 2021; 46 K Othman (277_CR28) 2023; 14 E Sakalli (277_CR31) 2020; 41 277_CR35 S Ghani (277_CR13) 2022; 47 TT Nguyen (277_CR27) 2016; 78 277_CR7 H Moayedi (277_CR25) 2018; 18 |
References_xml | – volume: 13 start-page: 255 issue: 1 year: 2023 ident: CR26 article-title: Predicting California bearing ratio of lateritic soils using hybrid machine learning technique publication-title: Buildings doi: 10.3390/buildings13010255 – volume: 41 start-page: 886 issue: 6 year: 2010 end-page: 892 ident: CR33 article-title: Prediction of California bearing ratio (CBR) of Fine grained soils by AI methods publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2010.01.003 – volume: 13 start-page: 4934 issue: 8 year: 2023 ident: CR4 article-title: Improving soil stability with alum sludge: an AI-enabled approach for accurate prediction of California bearing ratio publication-title: Appl Sci doi: 10.3390/app13084934 – volume: 14 start-page: 107 issue: 2 year: 2018 end-page: 115 ident: CR24 article-title: An adaptive cuckoo search algorithm for optimisation publication-title: Appl Comput Inform doi: 10.1016/j.aci.2017.09.001 – volume: 2 start-page: 561 year: 2012 ident: CR37 article-title: Prediction of CBR value from index properties of cohesive soils publication-title: Univ Khartoum Eng J – volume: 44 start-page: 6110 issue: 38 year: 2005 end-page: 6127 ident: CR3 article-title: Scents and sensibility: a molecular logic of olfactory perception (nobel lecture) publication-title: Angew Chem Int Ed doi: 10.1002/anie.200501726 – volume: 78 start-page: 801 year: 2016 end-page: 815 ident: CR27 article-title: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.12.030 – volume: 47 start-page: 5411 issue: 4 year: 2022 end-page: 5441 ident: CR13 article-title: Prediction of the seismic effect on liquefaction behavior of fine-grained soils using artificial intelligence-based hybridized modeling publication-title: Arab J Sci Eng doi: 10.1007/s13369-022-06697-6 – year: 2023 ident: CR19 article-title: Prediction of compaction parameters for fine-grained soil: critical comparison of the deep learning and standalone models publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.12.034 – volume: 73 start-page: 5463 year: 2015 end-page: 5477 ident: CR1 article-title: Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3800-x – ident: CR35 – ident: CR29 – ident: CR8 – volume: 8 start-page: 156 issue: 2 year: 2014 end-page: 161 ident: CR5 article-title: Prediction of California bearing ratio of soils using artificial neural network publication-title: Am Int J Res Sci Technol Eng Math – volume: 16 start-page: 1 year: 2023 end-page: 37 ident: CR18 article-title: CBR prediction of pavement materials in unsoaked condition using LSSVM, LSTM-RNN, and ANN approaches publication-title: Int J Pavement Res Technol – volume: 18 start-page: 6018009 issue: 6 year: 2018 ident: CR25 article-title: Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001125 – volume: 14 start-page: 211 issue: 1 year: 2013 end-page: 219 ident: CR2 article-title: Prediction of California bearing ratio of subbase layer using multiple linear regression models publication-title: Road Mater Pavement Des doi: 10.1080/14680629.2012.757557 – volume: 111 start-page: 2995 issue: 3 year: 2022 end-page: 3029 ident: CR10 article-title: Liquefaction behavior of Indo-gangetic region using novel metaheuristic optimization algorithms coupled with artificial neural network publication-title: Nat Hazards doi: 10.1007/s11069-021-05165-y – volume: 41 issue: 6 year: 2020 ident: CR31 article-title: Ear nose throat-related symptoms with a focus on loss of smell and/or taste in COVID-19 patients publication-title: Am J Otolaryngol doi: 10.1016/j.amjoto.2020.102622 – ident: CR21 – volume: 14 issue: 7 year: 2023 ident: CR28 article-title: The application of deep neural networks for the prediction of California bearing ratio of road subgrade soil publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2022.101988 – volume: 46 start-page: 113 issue: 3 year: 2021 ident: CR12 article-title: A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models publication-title: Sādhanā doi: 10.1007/s12046-021-01640-1 – volume: 4 start-page: 1 year: 2018 end-page: 7 ident: CR32 article-title: Predicting CBR value of stabilized pond ash with lime and lime sludge using ANN and MR models publication-title: Int J Geosynth Gr Eng – volume: 36 start-page: 4096 issue: 9 year: 2012 end-page: 4105 ident: CR9 article-title: Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm publication-title: Appl Math Model doi: 10.1016/j.apm.2011.11.039 – year: 2023 ident: CR16 article-title: Use of machine learning to predict California bearing ratio of soils publication-title: Ad Civil Eng doi: 10.1155/2023/8198648 – volume: 370 year: 2022 ident: CR15 article-title: Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.133587 – volume: 7 start-page: 354 issue: 3 year: 2013 end-page: 360 ident: CR30 article-title: Predicting soaked CBR value of fine grained soils using index and compaction characteristics publication-title: Jordan J Civil Eng – volume: 15 start-page: 1262 issue: 14 year: 2022 ident: CR14 article-title: Comparative and parametric study of AI-based models for risk assessment against soil liquefaction for high-intensity earthquakes publication-title: Arab J Geosci doi: 10.1007/s12517-022-10534-3 – ident: CR17 – year: 2019 ident: CR23 article-title: Prediction of the California bearing ratio (CBR) of compacted soils by using GMDH-type neural network publication-title: Eur Phys J plus doi: 10.1140/epjp/i2019-12692-0 – volume: 2004 start-page: 267 year: 2004 end-page: 283 ident: CR6 article-title: Unraveling the Sense of Smell publication-title: Les Prix Nobel the Nobel Prizes – volume: 6 start-page: 439 issue: 5 year: 2014 ident: CR38 article-title: Prediction of in-situ CBR of subgrade cohesive soils from dynamic cone penetrometer and soil properties publication-title: Int J Eng Technol doi: 10.7763/IJET.2014.V6.738 – ident: CR7 – volume: 193 start-page: 527 issue: 8 year: 2021 ident: CR34 article-title: Prediction of soil-bearing capacity on forest roads by statistical approaches publication-title: Environ Monit Assess doi: 10.1007/s10661-021-09335-0 – volume: 98 start-page: 1395 issue: 10 year: 2022 end-page: 1406 ident: CR11 article-title: Reliability analysis for liquefaction risk assessment for the city of Patna, India using hybrid computational modeling publication-title: J Geol Soc India doi: 10.1007/s12594-022-2187-7 – volume: 33 start-page: 183 issue: 2 year: 2023 ident: CR22 article-title: Prediction of California bearing ratio (CBR) for coarse-and fine-grained soils using the GMDH-model publication-title: Geomech Eng – volume: 6 start-page: 97 issue: 1 year: 2023 end-page: 121 ident: CR20 article-title: Prediction of soaked CBR of fine-grained soils using soft computing techniques publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-022-00131-y – volume: 38 start-page: 6381 issue: 5 year: 2011 end-page: 6391 ident: CR36 article-title: Estimation of California bearing ratio by using soft computing systems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.12.054 – ident: 277_CR29 – volume: 193 start-page: 527 issue: 8 year: 2021 ident: 277_CR34 publication-title: Environ Monit Assess doi: 10.1007/s10661-021-09335-0 – ident: #cr-split#-277_CR8.1 – volume: 36 start-page: 4096 issue: 9 year: 2012 ident: 277_CR9 publication-title: Appl Math Model doi: 10.1016/j.apm.2011.11.039 – volume: 8 start-page: 156 issue: 2 year: 2014 ident: 277_CR5 publication-title: Am Int J Res Sci Technol Eng Math – ident: 277_CR17 doi: 10.1007/978-981-19-6774-0_16 – volume: 6 start-page: 97 issue: 1 year: 2023 ident: 277_CR20 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-022-00131-y – volume: 41 issue: 6 year: 2020 ident: 277_CR31 publication-title: Am J Otolaryngol doi: 10.1016/j.amjoto.2020.102622 – volume: 78 start-page: 801 year: 2016 ident: 277_CR27 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.12.030 – year: 2023 ident: 277_CR16 publication-title: Ad Civil Eng doi: 10.1155/2023/8198648 – volume: 44 start-page: 6110 issue: 38 year: 2005 ident: 277_CR3 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200501726 – ident: 277_CR35 doi: 10.1109/NABIC.2009.5393690 – volume: 111 start-page: 2995 issue: 3 year: 2022 ident: 277_CR10 publication-title: Nat Hazards doi: 10.1007/s11069-021-05165-y – year: 2023 ident: 277_CR19 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.12.034 – volume: 6 start-page: 439 issue: 5 year: 2014 ident: 277_CR38 publication-title: Int J Eng Technol doi: 10.7763/IJET.2014.V6.738 – ident: #cr-split#-277_CR8.2 – volume: 46 start-page: 113 issue: 3 year: 2021 ident: 277_CR12 publication-title: Sādhanā doi: 10.1007/s12046-021-01640-1 – volume: 370 year: 2022 ident: 277_CR15 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.133587 – volume: 13 start-page: 255 issue: 1 year: 2023 ident: 277_CR26 publication-title: Buildings doi: 10.3390/buildings13010255 – volume: 2004 start-page: 267 year: 2004 ident: 277_CR6 publication-title: Les Prix Nobel the Nobel Prizes – volume: 14 start-page: 211 issue: 1 year: 2013 ident: 277_CR2 publication-title: Road Mater Pavement Des doi: 10.1080/14680629.2012.757557 – ident: 277_CR7 – volume: 41 start-page: 886 issue: 6 year: 2010 ident: 277_CR33 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2010.01.003 – volume: 14 start-page: 107 issue: 2 year: 2018 ident: 277_CR24 publication-title: Appl Comput Inform doi: 10.1016/j.aci.2017.09.001 – volume: 18 start-page: 6018009 issue: 6 year: 2018 ident: 277_CR25 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001125 – volume: 2 start-page: 561 year: 2012 ident: 277_CR37 publication-title: Univ Khartoum Eng J – volume: 73 start-page: 5463 year: 2015 ident: 277_CR1 publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3800-x – volume: 4 start-page: 1 year: 2018 ident: 277_CR32 publication-title: Int J Geosynth Gr Eng doi: 10.1007/s40891-017-0115-5 – volume: 15 start-page: 1262 issue: 14 year: 2022 ident: 277_CR14 publication-title: Arab J Geosci doi: 10.1007/s12517-022-10534-3 – volume: 7 start-page: 354 issue: 3 year: 2013 ident: 277_CR30 publication-title: Jordan J Civil Eng – volume: 98 start-page: 1395 issue: 10 year: 2022 ident: 277_CR11 publication-title: J Geol Soc India doi: 10.1007/s12594-022-2187-7 – ident: 277_CR21 doi: 10.1007/s41939-022-00137-6 – year: 2019 ident: 277_CR23 publication-title: Eur Phys J plus doi: 10.1140/epjp/i2019-12692-0 – volume: 33 start-page: 183 issue: 2 year: 2023 ident: 277_CR22 publication-title: Geomech Eng – volume: 38 start-page: 6381 issue: 5 year: 2011 ident: 277_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.12.054 – volume: 47 start-page: 5411 issue: 4 year: 2022 ident: 277_CR13 publication-title: Arab J Sci Eng doi: 10.1007/s13369-022-06697-6 – volume: 14 issue: 7 year: 2023 ident: 277_CR28 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2022.101988 – volume: 13 start-page: 4934 issue: 8 year: 2023 ident: 277_CR4 publication-title: Appl Sci doi: 10.3390/app13084934 – volume: 16 start-page: 1 year: 2023 ident: 277_CR18 publication-title: Int J Pavement Res Technol doi: 10.1007/s42947-021-00105-2 |
SSID | ssj0002734780 ssib042110740 |
Score | 2.2649672 |
Snippet | The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1375 |
SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
Title | Employing multi-layer perceptron model via meta-heuristic algorithms for predicting California bearing capacity of stabilized soil |
URI | https://link.springer.com/article/10.1007/s41939-023-00277-3 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECVcZ2mHop9o-gUO3VwGFClZ4pgUCYKizZQA2QSSIpsUgl3YUoeM-Tv5kz1SlCi1adB0kW2CFmTfE3l3encPoQ_C0swZmlgIeUgquCVyyXMiDFOUVTql1iX0v54sj8_Sz-fZ-Wx2M2IttY3a01e31pX8j1VhDOzqqmTvYdnhpDAA78G-cAQLw_GfbNzJ9bpg3_MCSS3BgXadiB1XZQN29To3i5-XXilakgvTdo2ZF7L-tt5cNhddOwbXKaBytSGOAxCLtRTcBb4mFzZUHagb4Ew6Ou2Vcen2QM_oBaHcNWzB5oG94T5Oin6d7lodNFQOB2WBbWBDj5kkQxr7S1u348QESyOBapKY_C21GbNrcaVjGcSwRdIJC-yZ8VinNNMv1fkIkWy07Ca8k18JWzh4tcmt20PHCNmm4LUKAt4Kof4RNo-b4UBRHNo5-8klTC795JI_QDvwytgc7ewfHRyc9MtX6mPp0Drne-gclHvtvuEHhrItX7z5x1VMXaPpc3nv7pw-QY9DnIL3O9A9RTOzeoYejbpXPkfXA_zwCH44wg97-GGAH57CD0f4YcAajvDDEX44wA_38MNriyP8sIPfC3R2dHj66ZgESQ-imUgaoqwUEChxoTKRsaoQMJwVUluZg99YSUk1OJxM5qxQBU8052mlrKKSUcWpMvwlmq_WK_MKYcorlmnLdJFBlMtYUS0LC9tVpYWBIKDYRUn_b5Y69Lt3sit1-XfT7qLF8J0fXbeXO2d_7I1UhlVhe8f01_eb_gY9jHfVWzRvNq15Bw5wo94H4P0CwPixSA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+multi-layer+perceptron+model+via+meta-heuristic+algorithms+for+predicting+California+bearing+capacity+of+stabilized+soil&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Zhang%2C+Lulu&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=2&rft.spage=1375&rft.epage=1391&rft_id=info:doi/10.1007%2Fs41939-023-00277-3&rft.externalDocID=10_1007_s41939_023_00277_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |