Employing multi-layer perceptron model via meta-heuristic algorithms for predicting California bearing capacity of stabilized soil

The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be harnessed to ascertain the subgrade's soil reaction through correlation. This parameter is paramount in soil engineering, particularly in formu...

Full description

Saved in:
Bibliographic Details
Published inMultiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 2; pp. 1375 - 1391
Main Author Zhang, Lulu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be harnessed to ascertain the subgrade's soil reaction through correlation. This parameter is paramount in soil engineering, particularly in formulating the subgrade design for rural road networks. The CBR value of soil is subject to a multitude of influencing factors, including but not limited to maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plasticity index (PI), soil type, and soil permeability. Furthermore, whether the soil is soaked or unsoaked also impacts this value. The process of CBR determination is notably protracted and demands a considerable amount of time. Recognizing the significance of this determination, the study introduces an innovative machine-learning approach. This novel method employs a multi-layer perceptron as its foundational model, harnessing the formidable capabilities of this algorithm in addressing regression challenges. To elevate the performance of the MLP and attain optimal outcomes, a hybridization approach has been employed, integrating the Bonobo Optimizer (BO), Smell Agent Optimization (SAO), and Dynamic Control Cuckoo Search (DCCS). The hybrid models proposed in this study showcase encouraging outcomes in CBR value prediction. Notably, the MLAO3 hybrid model emerges as the most precise predictor among the various models, achieving an impressive R 2 value of 0.994 and an RMSE value of 2.80.
AbstractList The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be harnessed to ascertain the subgrade's soil reaction through correlation. This parameter is paramount in soil engineering, particularly in formulating the subgrade design for rural road networks. The CBR value of soil is subject to a multitude of influencing factors, including but not limited to maximum dry density (MDD), optimum moisture content (OMC), liquid limit (LL), plastic limit (PL), plasticity index (PI), soil type, and soil permeability. Furthermore, whether the soil is soaked or unsoaked also impacts this value. The process of CBR determination is notably protracted and demands a considerable amount of time. Recognizing the significance of this determination, the study introduces an innovative machine-learning approach. This novel method employs a multi-layer perceptron as its foundational model, harnessing the formidable capabilities of this algorithm in addressing regression challenges. To elevate the performance of the MLP and attain optimal outcomes, a hybridization approach has been employed, integrating the Bonobo Optimizer (BO), Smell Agent Optimization (SAO), and Dynamic Control Cuckoo Search (DCCS). The hybrid models proposed in this study showcase encouraging outcomes in CBR value prediction. Notably, the MLAO3 hybrid model emerges as the most precise predictor among the various models, achieving an impressive R 2 value of 0.994 and an RMSE value of 2.80.
Author Zhang, Lulu
Author_xml – sequence: 1
  givenname: Lulu
  surname: Zhang
  fullname: Zhang, Lulu
  email: dxrx30jvai140@163.com
  organization: Department of Information Technology, Anhui Vocational College of Grain Engineering
BookMark eNp9kMtOwzAQRS1UJAr0B1j5Bwx-NMRZoqo8pEpsYG2NHad15cSR7SKFJV9OQhELFl3N6GrOaOZcolkXOovQDaO3jNLyLi1ZJSpCuSCU8rIk4gzNecEpkaysZn_9Pb1Ai5T2dJoSy1LSOfpat70Pg-u2uD347IiHwUbc22hsn2PocBtq6_GHA9zaDGRnD9Gl7AwGvw3R5V2bcBNGJNramTxtWoF3Y9SNjLYQp8hAD8blAYcGpwzaefdpa5yC89fovAGf7OK3XqH3x_Xb6plsXp9eVg8bYnjFMtENVJJpUemiKngtqzEuJJgGSlmIGoAaxpccSi61FMwIsax1oylwqgXVVlwhedxrYkgp2kaNB0F2ocsRnFeMqkmnOupUo071o1OJEeX_0D66FuJwGhJHKPWTAhvVPhxiN754ivoGuFqNsA
CitedBy_id crossref_primary_10_1007_s42107_024_01179_6
Cites_doi 10.3390/buildings13010255
10.1016/j.advengsoft.2010.01.003
10.3390/app13084934
10.1016/j.aci.2017.09.001
10.1002/anie.200501726
10.1016/j.ijepes.2015.12.030
10.1007/s13369-022-06697-6
10.1016/j.jrmge.2022.12.034
10.1007/s12665-014-3800-x
10.1061/(ASCE)GM.1943-5622.0001125
10.1080/14680629.2012.757557
10.1007/s11069-021-05165-y
10.1016/j.amjoto.2020.102622
10.1016/j.asej.2022.101988
10.1007/s12046-021-01640-1
10.1016/j.apm.2011.11.039
10.1155/2023/8198648
10.1016/j.jclepro.2022.133587
10.1007/s12517-022-10534-3
10.1140/epjp/i2019-12692-0
10.7763/IJET.2014.V6.738
10.1007/s10661-021-09335-0
10.1007/s12594-022-2187-7
10.1007/s41939-022-00131-y
10.1016/j.eswa.2010.12.054
10.1007/978-981-19-6774-0_16
10.1109/NABIC.2009.5393690
10.1007/s40891-017-0115-5
10.1007/s41939-022-00137-6
10.1007/s42947-021-00105-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-023-00277-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 1391
ExternalDocumentID 10_1007_s41939_023_00277_3
GrantInformation_xml – fundername: the Key project of teaching and research planning of Anhui Vocational and Adult Education Association
  grantid: azcg44
– fundername: Anhui Provincial Department of Education University Quality Project
  grantid: 2022jpkc041
– fundername: key Research Project of Social Sciences in Anhui Universities
  grantid: 2022AH053106
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-bfa981b39b5952d89c2958acfa7853daa0c1242a728b831c334dbfb0a20b30be3
ISSN 2520-8160
IngestDate Thu Apr 24 22:55:21 EDT 2025
Tue Jul 01 02:07:03 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords California bearing ratio
Bonobo optimizer
Dynamic control cuckoo search
Smell agent optimization
Multi-layer perceptron
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-bfa981b39b5952d89c2958acfa7853daa0c1242a728b831c334dbfb0a20b30be3
PageCount 17
ParticipantIDs crossref_citationtrail_10_1007_s41939_023_00277_3
crossref_primary_10_1007_s41939_023_00277_3
springer_journals_10_1007_s41939_023_00277_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Bhatt, Pradeep, Pradesh (CR5) 2014; 8
Ramasubbarao, Sankar (CR30) 2013; 7
Ghani, Kumari, Ahmad (CR13) 2022; 47
Ghani, Kumari (CR11) 2022; 98
Moayedi, Hayati (CR25) 2018; 18
Ho, Tran (CR15) 2022; 370
Khatti, Grover (CR20) 2023; 6
Nagaraju, Alireza Bahrami, Prasad, Mantena, Biswal, Islam (CR26) 2023; 13
Baghbani, Nguyen, Alnedawi, Milne, Baumgartl, Abuel-Naga (CR4) 2023; 13
CR17
Khatti, Grover (CR19) 2023
Khatti, Grover (CR18) 2023; 16
CR35
Axel (CR3) 2005; 44
Nguyen, Truong, Phung (CR27) 2016; 78
Yildirim, Gunaydin (CR36) 2011; 38
Kassa, Wubineh (CR16) 2023
Sakalli, Temirbekov, Bayri, Alis, Erdurak, Bayraktaroglu (CR31) 2020; 41
Zumrawi (CR38) 2014; 6
Kim, Ordu, Arslan, Ko (CR22) 2023; 33
Ghani, Kumari, Jaiswal, Sawant (CR14) 2022; 15
Ghanadzadeh, Ganji, Fallahi (CR9) 2012; 36
Varol, Ozel, Ertugrul, Emir, Tunay, Cetin, Sevik (CR34) 2021; 193
Buck (CR6) 2004; 2004
CR8
CR7
CR29
Taskiran (CR33) 2010; 41
Ghani, Kumari, Bardhan (CR12) 2021; 46
Ghani, Kumari (CR10) 2022; 111
Zumrawi (CR37) 2012; 2
Abdalla, Attom, Hawileh (CR1) 2015; 73
CR21
Mareli, Twala (CR24) 2018; 14
Alawi, Rajab (CR2) 2013; 14
Kurnaz, Kaya (CR23) 2019
Othman, Abdelwahab (CR28) 2023; 14
Suthar, Aggarwal (CR32) 2018; 4
TV Nagaraju (277_CR26) 2023; 13
cr-split#-277_CR8.2
277_CR17
G Ramasubbarao (277_CR30) 2013; 7
TJAIES Taskiran (277_CR33) 2010; 41
R Axel (277_CR3) 2005; 44
cr-split#-277_CR8.1
H Ghanadzadeh (277_CR9) 2012; 36
S Ghani (277_CR11) 2022; 98
T Varol (277_CR34) 2021; 193
S Ghani (277_CR10) 2022; 111
TF Kurnaz (277_CR23) 2019
JA Abdalla (277_CR1) 2015; 73
B Yildirim (277_CR36) 2011; 38
M Suthar (277_CR32) 2018; 4
MME Zumrawi (277_CR37) 2012; 2
SM Kassa (277_CR16) 2023
277_CR21
M Mareli (277_CR24) 2018; 14
S Ghani (277_CR14) 2022; 15
277_CR29
J Khatti (277_CR19) 2023
J Khatti (277_CR20) 2023; 6
S Bhatt (277_CR5) 2014; 8
LS Ho (277_CR15) 2022; 370
MME Zumrawi (277_CR38) 2014; 6
M Alawi (277_CR2) 2013; 14
J Khatti (277_CR18) 2023; 16
M Kim (277_CR22) 2023; 33
LB Buck (277_CR6) 2004; 2004
A Baghbani (277_CR4) 2023; 13
S Ghani (277_CR12) 2021; 46
K Othman (277_CR28) 2023; 14
E Sakalli (277_CR31) 2020; 41
277_CR35
S Ghani (277_CR13) 2022; 47
TT Nguyen (277_CR27) 2016; 78
277_CR7
H Moayedi (277_CR25) 2018; 18
References_xml – volume: 13
  start-page: 255
  issue: 1
  year: 2023
  ident: CR26
  article-title: Predicting California bearing ratio of lateritic soils using hybrid machine learning technique
  publication-title: Buildings
  doi: 10.3390/buildings13010255
– volume: 41
  start-page: 886
  issue: 6
  year: 2010
  end-page: 892
  ident: CR33
  article-title: Prediction of California bearing ratio (CBR) of Fine grained soils by AI methods
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.01.003
– volume: 13
  start-page: 4934
  issue: 8
  year: 2023
  ident: CR4
  article-title: Improving soil stability with alum sludge: an AI-enabled approach for accurate prediction of California bearing ratio
  publication-title: Appl Sci
  doi: 10.3390/app13084934
– volume: 14
  start-page: 107
  issue: 2
  year: 2018
  end-page: 115
  ident: CR24
  article-title: An adaptive cuckoo search algorithm for optimisation
  publication-title: Appl Comput Inform
  doi: 10.1016/j.aci.2017.09.001
– volume: 2
  start-page: 561
  year: 2012
  ident: CR37
  article-title: Prediction of CBR value from index properties of cohesive soils
  publication-title: Univ Khartoum Eng J
– volume: 44
  start-page: 6110
  issue: 38
  year: 2005
  end-page: 6127
  ident: CR3
  article-title: Scents and sensibility: a molecular logic of olfactory perception (nobel lecture)
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200501726
– volume: 78
  start-page: 801
  year: 2016
  end-page: 815
  ident: CR27
  article-title: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.12.030
– volume: 47
  start-page: 5411
  issue: 4
  year: 2022
  end-page: 5441
  ident: CR13
  article-title: Prediction of the seismic effect on liquefaction behavior of fine-grained soils using artificial intelligence-based hybridized modeling
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06697-6
– year: 2023
  ident: CR19
  article-title: Prediction of compaction parameters for fine-grained soil: critical comparison of the deep learning and standalone models
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.12.034
– volume: 73
  start-page: 5463
  year: 2015
  end-page: 5477
  ident: CR1
  article-title: Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3800-x
– ident: CR35
– ident: CR29
– ident: CR8
– volume: 8
  start-page: 156
  issue: 2
  year: 2014
  end-page: 161
  ident: CR5
  article-title: Prediction of California bearing ratio of soils using artificial neural network
  publication-title: Am Int J Res Sci Technol Eng Math
– volume: 16
  start-page: 1
  year: 2023
  end-page: 37
  ident: CR18
  article-title: CBR prediction of pavement materials in unsoaked condition using LSSVM, LSTM-RNN, and ANN approaches
  publication-title: Int J Pavement Res Technol
– volume: 18
  start-page: 6018009
  issue: 6
  year: 2018
  ident: CR25
  article-title: Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001125
– volume: 14
  start-page: 211
  issue: 1
  year: 2013
  end-page: 219
  ident: CR2
  article-title: Prediction of California bearing ratio of subbase layer using multiple linear regression models
  publication-title: Road Mater Pavement Des
  doi: 10.1080/14680629.2012.757557
– volume: 111
  start-page: 2995
  issue: 3
  year: 2022
  end-page: 3029
  ident: CR10
  article-title: Liquefaction behavior of Indo-gangetic region using novel metaheuristic optimization algorithms coupled with artificial neural network
  publication-title: Nat Hazards
  doi: 10.1007/s11069-021-05165-y
– volume: 41
  issue: 6
  year: 2020
  ident: CR31
  article-title: Ear nose throat-related symptoms with a focus on loss of smell and/or taste in COVID-19 patients
  publication-title: Am J Otolaryngol
  doi: 10.1016/j.amjoto.2020.102622
– ident: CR21
– volume: 14
  issue: 7
  year: 2023
  ident: CR28
  article-title: The application of deep neural networks for the prediction of California bearing ratio of road subgrade soil
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.101988
– volume: 46
  start-page: 113
  issue: 3
  year: 2021
  ident: CR12
  article-title: A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models
  publication-title: Sādhanā
  doi: 10.1007/s12046-021-01640-1
– volume: 4
  start-page: 1
  year: 2018
  end-page: 7
  ident: CR32
  article-title: Predicting CBR value of stabilized pond ash with lime and lime sludge using ANN and MR models
  publication-title: Int J Geosynth Gr Eng
– volume: 36
  start-page: 4096
  issue: 9
  year: 2012
  end-page: 4105
  ident: CR9
  article-title: Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.11.039
– year: 2023
  ident: CR16
  article-title: Use of machine learning to predict California bearing ratio of soils
  publication-title: Ad Civil Eng
  doi: 10.1155/2023/8198648
– volume: 370
  year: 2022
  ident: CR15
  article-title: Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.133587
– volume: 7
  start-page: 354
  issue: 3
  year: 2013
  end-page: 360
  ident: CR30
  article-title: Predicting soaked CBR value of fine grained soils using index and compaction characteristics
  publication-title: Jordan J Civil Eng
– volume: 15
  start-page: 1262
  issue: 14
  year: 2022
  ident: CR14
  article-title: Comparative and parametric study of AI-based models for risk assessment against soil liquefaction for high-intensity earthquakes
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10534-3
– ident: CR17
– year: 2019
  ident: CR23
  article-title: Prediction of the California bearing ratio (CBR) of compacted soils by using GMDH-type neural network
  publication-title: Eur Phys J plus
  doi: 10.1140/epjp/i2019-12692-0
– volume: 2004
  start-page: 267
  year: 2004
  end-page: 283
  ident: CR6
  article-title: Unraveling the Sense of Smell
  publication-title: Les Prix Nobel the Nobel Prizes
– volume: 6
  start-page: 439
  issue: 5
  year: 2014
  ident: CR38
  article-title: Prediction of in-situ CBR of subgrade cohesive soils from dynamic cone penetrometer and soil properties
  publication-title: Int J Eng Technol
  doi: 10.7763/IJET.2014.V6.738
– ident: CR7
– volume: 193
  start-page: 527
  issue: 8
  year: 2021
  ident: CR34
  article-title: Prediction of soil-bearing capacity on forest roads by statistical approaches
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-021-09335-0
– volume: 98
  start-page: 1395
  issue: 10
  year: 2022
  end-page: 1406
  ident: CR11
  article-title: Reliability analysis for liquefaction risk assessment for the city of Patna, India using hybrid computational modeling
  publication-title: J Geol Soc India
  doi: 10.1007/s12594-022-2187-7
– volume: 33
  start-page: 183
  issue: 2
  year: 2023
  ident: CR22
  article-title: Prediction of California bearing ratio (CBR) for coarse-and fine-grained soils using the GMDH-model
  publication-title: Geomech Eng
– volume: 6
  start-page: 97
  issue: 1
  year: 2023
  end-page: 121
  ident: CR20
  article-title: Prediction of soaked CBR of fine-grained soils using soft computing techniques
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00131-y
– volume: 38
  start-page: 6381
  issue: 5
  year: 2011
  end-page: 6391
  ident: CR36
  article-title: Estimation of California bearing ratio by using soft computing systems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.054
– ident: 277_CR29
– volume: 193
  start-page: 527
  issue: 8
  year: 2021
  ident: 277_CR34
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-021-09335-0
– ident: #cr-split#-277_CR8.1
– volume: 36
  start-page: 4096
  issue: 9
  year: 2012
  ident: 277_CR9
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.11.039
– volume: 8
  start-page: 156
  issue: 2
  year: 2014
  ident: 277_CR5
  publication-title: Am Int J Res Sci Technol Eng Math
– ident: 277_CR17
  doi: 10.1007/978-981-19-6774-0_16
– volume: 6
  start-page: 97
  issue: 1
  year: 2023
  ident: 277_CR20
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00131-y
– volume: 41
  issue: 6
  year: 2020
  ident: 277_CR31
  publication-title: Am J Otolaryngol
  doi: 10.1016/j.amjoto.2020.102622
– volume: 78
  start-page: 801
  year: 2016
  ident: 277_CR27
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.12.030
– year: 2023
  ident: 277_CR16
  publication-title: Ad Civil Eng
  doi: 10.1155/2023/8198648
– volume: 44
  start-page: 6110
  issue: 38
  year: 2005
  ident: 277_CR3
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200501726
– ident: 277_CR35
  doi: 10.1109/NABIC.2009.5393690
– volume: 111
  start-page: 2995
  issue: 3
  year: 2022
  ident: 277_CR10
  publication-title: Nat Hazards
  doi: 10.1007/s11069-021-05165-y
– year: 2023
  ident: 277_CR19
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.12.034
– volume: 6
  start-page: 439
  issue: 5
  year: 2014
  ident: 277_CR38
  publication-title: Int J Eng Technol
  doi: 10.7763/IJET.2014.V6.738
– ident: #cr-split#-277_CR8.2
– volume: 46
  start-page: 113
  issue: 3
  year: 2021
  ident: 277_CR12
  publication-title: Sādhanā
  doi: 10.1007/s12046-021-01640-1
– volume: 370
  year: 2022
  ident: 277_CR15
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.133587
– volume: 13
  start-page: 255
  issue: 1
  year: 2023
  ident: 277_CR26
  publication-title: Buildings
  doi: 10.3390/buildings13010255
– volume: 2004
  start-page: 267
  year: 2004
  ident: 277_CR6
  publication-title: Les Prix Nobel the Nobel Prizes
– volume: 14
  start-page: 211
  issue: 1
  year: 2013
  ident: 277_CR2
  publication-title: Road Mater Pavement Des
  doi: 10.1080/14680629.2012.757557
– ident: 277_CR7
– volume: 41
  start-page: 886
  issue: 6
  year: 2010
  ident: 277_CR33
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.01.003
– volume: 14
  start-page: 107
  issue: 2
  year: 2018
  ident: 277_CR24
  publication-title: Appl Comput Inform
  doi: 10.1016/j.aci.2017.09.001
– volume: 18
  start-page: 6018009
  issue: 6
  year: 2018
  ident: 277_CR25
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001125
– volume: 2
  start-page: 561
  year: 2012
  ident: 277_CR37
  publication-title: Univ Khartoum Eng J
– volume: 73
  start-page: 5463
  year: 2015
  ident: 277_CR1
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3800-x
– volume: 4
  start-page: 1
  year: 2018
  ident: 277_CR32
  publication-title: Int J Geosynth Gr Eng
  doi: 10.1007/s40891-017-0115-5
– volume: 15
  start-page: 1262
  issue: 14
  year: 2022
  ident: 277_CR14
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10534-3
– volume: 7
  start-page: 354
  issue: 3
  year: 2013
  ident: 277_CR30
  publication-title: Jordan J Civil Eng
– volume: 98
  start-page: 1395
  issue: 10
  year: 2022
  ident: 277_CR11
  publication-title: J Geol Soc India
  doi: 10.1007/s12594-022-2187-7
– ident: 277_CR21
  doi: 10.1007/s41939-022-00137-6
– year: 2019
  ident: 277_CR23
  publication-title: Eur Phys J plus
  doi: 10.1140/epjp/i2019-12692-0
– volume: 33
  start-page: 183
  issue: 2
  year: 2023
  ident: 277_CR22
  publication-title: Geomech Eng
– volume: 38
  start-page: 6381
  issue: 5
  year: 2011
  ident: 277_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.054
– volume: 47
  start-page: 5411
  issue: 4
  year: 2022
  ident: 277_CR13
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06697-6
– volume: 14
  issue: 7
  year: 2023
  ident: 277_CR28
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.101988
– volume: 13
  start-page: 4934
  issue: 8
  year: 2023
  ident: 277_CR4
  publication-title: Appl Sci
  doi: 10.3390/app13084934
– volume: 16
  start-page: 1
  year: 2023
  ident: 277_CR18
  publication-title: Int J Pavement Res Technol
  doi: 10.1007/s42947-021-00105-2
SSID ssj0002734780
ssib042110740
Score 2.2649672
Snippet The California bearing ratio (CBR) value is a pivotal soil characteristic for designing flexible pavements and airport runways. Additionally, it can be...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1375
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Employing multi-layer perceptron model via meta-heuristic algorithms for predicting California bearing capacity of stabilized soil
URI https://link.springer.com/article/10.1007/s41939-023-00277-3
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECVcZ2mHop9o-gUO3VwGFClZ4pgUCYKizZQA2QSSIpsUgl3YUoeM-Tv5kz1SlCi1adB0kW2CFmTfE3l3encPoQ_C0swZmlgIeUgquCVyyXMiDFOUVTql1iX0v54sj8_Sz-fZ-Wx2M2IttY3a01e31pX8j1VhDOzqqmTvYdnhpDAA78G-cAQLw_GfbNzJ9bpg3_MCSS3BgXadiB1XZQN29To3i5-XXilakgvTdo2ZF7L-tt5cNhddOwbXKaBytSGOAxCLtRTcBb4mFzZUHagb4Ew6Ou2Vcen2QM_oBaHcNWzB5oG94T5Oin6d7lodNFQOB2WBbWBDj5kkQxr7S1u348QESyOBapKY_C21GbNrcaVjGcSwRdIJC-yZ8VinNNMv1fkIkWy07Ca8k18JWzh4tcmt20PHCNmm4LUKAt4Kof4RNo-b4UBRHNo5-8klTC795JI_QDvwytgc7ewfHRyc9MtX6mPp0Drne-gclHvtvuEHhrItX7z5x1VMXaPpc3nv7pw-QY9DnIL3O9A9RTOzeoYejbpXPkfXA_zwCH44wg97-GGAH57CD0f4YcAajvDDEX44wA_38MNriyP8sIPfC3R2dHj66ZgESQ-imUgaoqwUEChxoTKRsaoQMJwVUluZg99YSUk1OJxM5qxQBU8052mlrKKSUcWpMvwlmq_WK_MKYcorlmnLdJFBlMtYUS0LC9tVpYWBIKDYRUn_b5Y69Lt3sit1-XfT7qLF8J0fXbeXO2d_7I1UhlVhe8f01_eb_gY9jHfVWzRvNq15Bw5wo94H4P0CwPixSA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+multi-layer+perceptron+model+via+meta-heuristic+algorithms+for+predicting+California+bearing+capacity+of+stabilized+soil&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Zhang%2C+Lulu&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=2&rft.spage=1375&rft.epage=1391&rft_id=info:doi/10.1007%2Fs41939-023-00277-3&rft.externalDocID=10_1007_s41939_023_00277_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon