An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance

Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects fl...

Full description

Saved in:
Bibliographic Details
Published inIntegrated computer-aided engineering Vol. 28; no. 3; pp. 221 - 235
Main Authors Ga̧sienica-Józkowy, Jan, Knapik, Mateusz, Cyganek, Bogusław
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2021
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1069-2509
1875-8835
DOI10.3233/ICA-210649

Cover

Abstract Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects floating in the water, many of small size, which makes them difficult to detect. The second contribution is our proposed object detection method. It is an ensemble composed of a number of the deep convolutional neural networks, orchestrated by the fusion module with the nonlinearly optimized voting weights. The method achieves over 82% of average precision on the new aerial-drone floating objects dataset and outperforms each of the state-of-the-art deep neural networks, such as YOLOv3, -v4, Faster R-CNN, RetinaNet, and SSD300. The dataset is publicly available from the Internet.
AbstractList Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects floating in the water, many of small size, which makes them difficult to detect. The second contribution is our proposed object detection method. It is an ensemble composed of a number of the deep convolutional neural networks, orchestrated by the fusion module with the nonlinearly optimized voting weights. The method achieves over 82% of average precision on the new aerial-drone floating objects dataset and outperforms each of the state-of-the-art deep neural networks, such as YOLOv3, -v4, Faster R-CNN, RetinaNet, and SSD300. The dataset is publicly available from the Internet.
Author Knapik, Mateusz
Cyganek, Bogusław
Ga̧sienica-Józkowy, Jan
Author_xml – sequence: 1
  givenname: Jan
  surname: Ga̧sienica-Józkowy
  fullname: Ga̧sienica-Józkowy, Jan
  organization: Department of Electronics
– sequence: 2
  givenname: Mateusz
  surname: Knapik
  fullname: Knapik, Mateusz
  organization: Department of Electronics
– sequence: 3
  givenname: Bogusław
  surname: Cyganek
  fullname: Cyganek, Bogusław
  organization: Department of Electronics
BookMark eNptkE1LxDAQhoOs4O7qxV8Q8CAI1SRt-nFcFr9gwYueS5pMdrO0aU1SRX-9WSoIsqeZd3jemZdZoJntLSB0ScltytL07nm9ShgleVadoDktC56UZcpnsSd5lTBOqjO08H5PCOGEFXMEK4vBeuiaFrACGHALwlljt7iDsOsV_jRhh_shmM58Q5Rgtrvgse4dVi5eTxrhD3MRwGEHXo6AhVXYj-4DTNsKK-EcnWrRerj4rUv09nD_un5KNi-PMfImkayiIWkUY4RJDhUvOaSZzDLSaAkpFU1BdSMrzYTSnIIoiJCKZIU6aMG0lFDl6RJdTXsH17-P4EO970dn48ma8SznnOUlixSZKOl67x3oWpoggultcMK0NSX14Zl1TFZPz4yWm3-WwZlOuK_j8PUEe7GFvwRHyB_5BoTz
CitedBy_id crossref_primary_10_1155_2022_4162007
crossref_primary_10_1080_19479832_2024_2382737
crossref_primary_10_3389_fnbot_2023_1210470
crossref_primary_10_1111_mice_12832
crossref_primary_10_1016_j_engappai_2023_107513
crossref_primary_10_3233_ICA_220683
crossref_primary_10_3233_ICA_230707
crossref_primary_10_3233_ICA_220684
crossref_primary_10_1111_mice_12970
crossref_primary_10_1007_s12524_024_01869_3
crossref_primary_10_1111_mice_12993
crossref_primary_10_1142_S0129065723500260
crossref_primary_10_1016_j_asr_2023_06_055
crossref_primary_10_3233_ICA_230704
crossref_primary_10_3390_jmse13010006
crossref_primary_10_3233_ICA_230706
crossref_primary_10_3390_drones9020100
crossref_primary_10_3390_rs15133365
crossref_primary_10_1142_S0129065722500071
crossref_primary_10_3233_ICA_230701
crossref_primary_10_3233_ICA_230724
crossref_primary_10_1007_s11042_023_15785_0
crossref_primary_10_1142_S0129065723500119
crossref_primary_10_3390_math9091002
crossref_primary_10_3390_rs15112928
crossref_primary_10_3390_rs15194740
crossref_primary_10_1007_s10916_023_02032_0
crossref_primary_10_3390_jmse12112038
crossref_primary_10_1016_j_cosrev_2025_100736
crossref_primary_10_3390_rs17050783
crossref_primary_10_1088_1361_6501_adbccb
crossref_primary_10_1111_mice_12984
crossref_primary_10_1016_j_eswa_2022_116793
crossref_primary_10_3233_ICA_220693
crossref_primary_10_3390_rs15204938
crossref_primary_10_3233_ICA_230717
crossref_primary_10_1016_j_autcon_2023_104779
crossref_primary_10_3233_ICA_230711
crossref_primary_10_3390_info15080474
Cites_doi 10.1023/A:1008202821328
10.3233/ICA-200617
10.1109/IJCNN.2018.8489465
10.1007/s11263-013-0620-5
10.34911/rdnt.d2ce8i
10.1109/CEC48606.2020.9185838
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2018.00377
10.1109/IGARSS.2019.8898776
10.1111/mice.12519
10.1109/ICCV.2015.169
10.1109/ICCV.2017.324
10.1007/s10044-015-0505-z
10.1109/ACCESS.2019.2949366
10.3233/ICA-190616
10.1109/CVPR.2017.211
10.3390/rs11040433
10.1111/mice.12530
10.1111/mice.12501
10.1007/s00500-014-1323-8
10.1109/CVPR.2017.690
10.3233/ICA-190601
10.3233/ICA-200620
10.3390/ijgi9060370
10.1109/IGARSS.2019.8900532
10.1109/SA47457.2019.8938092
10.3390/s19153371
10.3233/ICA-2010-0345
10.1016/j.ins.2017.09.053
10.1109/TNNLS.2017.2682102
10.3390/s19163542
10.1109/MMSP.2018.8547095
10.1007/978-3-662-45523-4_50
10.1109/ACCESS.2019.2939201
ContentType Journal Article
Copyright 2021 – IOS Press. All rights reserved.
Copyright IOS Press BV 2021
Copyright_xml – notice: 2021 – IOS Press. All rights reserved.
– notice: Copyright IOS Press BV 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.3233/ICA-210649
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8835
EndPage 235
ExternalDocumentID 10_3233_ICA_210649
10.3233_ICA-210649
GroupedDBID .4S
.DC
0R~
29J
4.4
5GY
AAGLT
AAOTM
AAQXI
ABDBF
ABJNI
ABUBZ
ABUJY
ACGFS
ACIWK
ACPQW
ACUHS
ADMLS
ADZMO
AEJQA
AENEX
AFRHK
AFYTF
AHDMH
AJNRN
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARCSS
ASPBG
AVWKF
CAG
COF
DU5
EAD
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
FEDTE
HZ~
I-F
IL9
IOS
J8X
MET
MIO
MK~
ML~
MV1
NGNOM
O9-
P2P
PQQKQ
Q1R
RIG
SAUOL
SCNPE
SFC
TUS
AAYXX
AJGYC
CITATION
7SC
7TB
8FD
AAPII
FR3
H13
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-bd2202c5e9585e34c440bfce31ab71fbc9f2adf51ea70acd047dadf5a2fcce963
ISSN 1069-2509
IngestDate Fri Jul 25 10:08:26 EDT 2025
Tue Jul 01 05:19:22 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Tue Jun 17 22:29:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
YOLO
water rescue
SSD
UAV
ensemble of classifiers
Faster R-CNN
RetinaNet
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c291t-bd2202c5e9585e34c440bfce31ab71fbc9f2adf51ea70acd047dadf5a2fcce963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2546552682
PQPubID 2046400
PageCount 15
ParticipantIDs proquest_journals_2546552682
crossref_citationtrail_10_3233_ICA_210649
crossref_primary_10_3233_ICA_210649
sage_journals_10_3233_ICA_210649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Integrated computer-aided engineering
PublicationYear 2021
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Storn, Price 1997; 11
Thurnhofer-Hemsi, López-Rubio, Roé-Vellvé, Molina-Cabello 2020; 27
Hossain, Lee 2019; 19
Ahmadlou, Adeli 2010; 17
Ai, Li, Gao, Xu, Shang 2019; 7
Jiang, Zhang 2020; 35
Pérez-Hurtado, Martínez-del Amor, Zhang, Neri, Pérez-Jiménez 2020; 27
Krawczyk, Cyganek 2017; 20
Al-Kaff, Armingol, de La Escalera 2019; 26
Lara-Benítez, Carranza-García, García-Gutiérrez, Riquelme 2020; 27
Baetens, Desjardins, Hagolle 2019; 11
Redmon, Farhadi 2017
Jiao, Zhang, Liu, Yang, Li, Feng 2019; 7
Lygouras, Santavas, Taitzoglou, Tarchanidis, Mitropoulos, Gasteratos 2019; 19
Arabi, Haghighat, Sharma 2020; 35
Cyganek 2015; 19
Liu, Nie, Fan, Liu 2020; 35
Uijlings, Sande, Gevers, Smeulders 2013; 104
Körez, Barışşı, Çetin, Ergün 2020; 9
Wu, Shen, Li, Chen, Lin, Suganthan 2018; 423
Rafiei, Adeli 2017; 28
10.3233/ICA-210649_ref20
Arabi (10.3233/ICA-210649_ref34) 2020; 35
10.3233/ICA-210649_ref42
10.3233/ICA-210649_ref41
10.3233/ICA-210649_ref40
Liu (10.3233/ICA-210649_ref28) 2020; 35
10.3233/ICA-210649_ref48
10.3233/ICA-210649_ref25
10.3233/ICA-210649_ref47
Pérez-Hurtado (10.3233/ICA-210649_ref33) 2020; 27
Wu (10.3233/ICA-210649_ref59) 2018; 423
Baetens (10.3233/ICA-210649_ref22) 2019; 11
Thurnhofer-Hemsi (10.3233/ICA-210649_ref32) 2020; 27
Ahmadlou (10.3233/ICA-210649_ref65) 2010; 17
Storn (10.3233/ICA-210649_ref58) 1997; 11
10.3233/ICA-210649_ref50
Hossain (10.3233/ICA-210649_ref64) 2019; 19
Körez (10.3233/ICA-210649_ref57) 2020; 9
10.3233/ICA-210649_ref11
10.3233/ICA-210649_ref55
Jiang (10.3233/ICA-210649_ref27) 2020; 35
Krawczyk (10.3233/ICA-210649_ref56) 2017; 20
10.3233/ICA-210649_ref17
10.3233/ICA-210649_ref16
10.3233/ICA-210649_ref38
Al-Kaff (10.3233/ICA-210649_ref3) 2019; 26
10.3233/ICA-210649_ref19
Ai (10.3233/ICA-210649_ref6) 2019; 7
10.3233/ICA-210649_ref9
10.3233/ICA-210649_ref60
Lygouras (10.3233/ICA-210649_ref8) 2019; 19
Jiao (10.3233/ICA-210649_ref54) 2019; 7
Rafiei (10.3233/ICA-210649_ref66) 2017; 28
Lara-Benítez (10.3233/ICA-210649_ref29) 2020; 27
Uijlings (10.3233/ICA-210649_ref37) 2013; 104
References_xml – volume: 35
  start-page: 753
  issue: 7
  year: 2020
  end-page: 767
  article-title: A deep-learning-based computer vision solution for construction vehicle detection
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 9
  start-page: 370
  issue: 6
  year: 2020
  article-title: Weighted ensemble object detection with optimized coefficients for remote sensing images
  publication-title: ISPRS International Journal of Geo-Information
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  end-page: 210
  article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier
  publication-title: Integr Comput-Aided Eng
– volume: 7
  start-page: 128837
  year: 2019
  end-page: 128868
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
– volume: 35
  start-page: 549
  issue: 6
  year: 2020
  end-page: 564
  article-title: Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 19
  issue: 12
  year: 2015
  article-title: Hybrid ensemble of classifiers for logo and trademark symbols recognition
  publication-title: Soft Computing
– volume: 27
  start-page: 1
  year: 2020
  end-page: 18
  article-title: A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning
  publication-title: Integrated Computer-Aided Engineering
– volume: 11
  start-page: 433
  issue: 4
  year: 2019
  article-title: Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure
  publication-title: Remote Sensing
– volume: 19
  start-page: 3542
  year: 2019
  article-title: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations
  publication-title: Sensors
– volume: 104
  start-page: 154
  year: 2013
  end-page: 171
  article-title: Selective search for object recognition
  publication-title: International Journal of Computer Vision
– volume: 7
  start-page: 155835
  year: 2019
  end-page: 155850
  article-title: An intelligent decision algorithm for the generation of maritime search and rescue emergency response plans
  publication-title: IEEE Access
– volume: 27
  start-page: 1
  year: 2020
  end-page: 19
  article-title: Asynchronous dual-pipeline deep learning framework for online data stream classification
  publication-title: Integrated Computer-Aided Engineering
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 6517
  year: 2017
  end-page: 6525
  article-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 20
  start-page: 427
  issue: 2
  year: 2017
  end-page: 439
  article-title: Selecting locally specialised classifiers for one-class classification ensembles
  publication-title: Pattern Analysis and Applications
– volume: 19
  start-page: 3371
  year: 2019
  article-title: Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices
  publication-title: Sensors
– volume: 26
  start-page: 297
  year: 2019
  end-page: 310
  article-title: A vision-based navigation system for Unmanned Aerial Vehicles (UAVs)
  publication-title: Integrated Computer-Aided Engineering
– volume: 27
  start-page: 1
  year: 2020
  end-page: 19
  article-title: Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution
  publication-title: Integrated Computer-Aided Engineering
– volume: 35
  start-page: 511
  issue: 5
  year: 2020
  end-page: 529
  article-title: Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 423
  start-page: 172
  year: 2018
  end-page: 186
  article-title: Ensemble of differential evolution variants
  publication-title: Information Sciences
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.3233/ICA-210649_ref58
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 27
  start-page: 1
  year: 2020
  ident: 10.3233/ICA-210649_ref29
  article-title: Asynchronous dual-pipeline deep learning framework for online data stream classification
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-200617
– ident: 10.3233/ICA-210649_ref9
  doi: 10.1109/IJCNN.2018.8489465
– volume: 104
  start-page: 154
  year: 2013
  ident: 10.3233/ICA-210649_ref37
  article-title: Selective search for object recognition
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-013-0620-5
– ident: 10.3233/ICA-210649_ref17
  doi: 10.34911/rdnt.d2ce8i
– ident: 10.3233/ICA-210649_ref25
  doi: 10.1109/CEC48606.2020.9185838
– ident: 10.3233/ICA-210649_ref41
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.3233/ICA-210649_ref47
  doi: 10.1109/CVPR.2018.00377
– ident: 10.3233/ICA-210649_ref19
  doi: 10.1109/IGARSS.2019.8898776
– volume: 35
  start-page: 549
  issue: 6
  year: 2020
  ident: 10.3233/ICA-210649_ref27
  article-title: Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12519
– ident: 10.3233/ICA-210649_ref38
  doi: 10.1109/ICCV.2015.169
– ident: 10.3233/ICA-210649_ref48
– ident: 10.3233/ICA-210649_ref42
  doi: 10.1109/ICCV.2017.324
– volume: 20
  start-page: 427
  issue: 2
  year: 2017
  ident: 10.3233/ICA-210649_ref56
  article-title: Selecting locally specialised classifiers for one-class classification ensembles
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-015-0505-z
– volume: 7
  start-page: 155835
  year: 2019
  ident: 10.3233/ICA-210649_ref6
  article-title: An intelligent decision algorithm for the generation of maritime search and rescue emergency response plans
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949366
– volume: 27
  start-page: 1
  year: 2020
  ident: 10.3233/ICA-210649_ref33
  article-title: A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-190616
– ident: 10.3233/ICA-210649_ref50
  doi: 10.1109/CVPR.2017.211
– volume: 11
  start-page: 433
  issue: 4
  year: 2019
  ident: 10.3233/ICA-210649_ref22
  article-title: Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure
  publication-title: Remote Sensing
  doi: 10.3390/rs11040433
– volume: 35
  start-page: 753
  issue: 7
  year: 2020
  ident: 10.3233/ICA-210649_ref34
  article-title: A deep-learning-based computer vision solution for construction vehicle detection
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12530
– volume: 35
  start-page: 511
  issue: 5
  year: 2020
  ident: 10.3233/ICA-210649_ref28
  article-title: Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12501
– ident: 10.3233/ICA-210649_ref55
  doi: 10.1007/s00500-014-1323-8
– ident: 10.3233/ICA-210649_ref40
  doi: 10.1109/CVPR.2017.690
– volume: 26
  start-page: 297
  year: 2019
  ident: 10.3233/ICA-210649_ref3
  article-title: A vision-based navigation system for Unmanned Aerial Vehicles (UAVs)
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-190601
– volume: 27
  start-page: 1
  year: 2020
  ident: 10.3233/ICA-210649_ref32
  article-title: Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution
  publication-title: Integrated Computer-Aided Engineering
  doi: 10.3233/ICA-200620
– volume: 9
  start-page: 370
  issue: 6
  year: 2020
  ident: 10.3233/ICA-210649_ref57
  article-title: Weighted ensemble object detection with optimized coefficients for remote sensing images
  publication-title: ISPRS International Journal of Geo-Information
  doi: 10.3390/ijgi9060370
– ident: 10.3233/ICA-210649_ref11
  doi: 10.1109/IGARSS.2019.8900532
– ident: 10.3233/ICA-210649_ref16
  doi: 10.1109/SA47457.2019.8938092
– volume: 19
  start-page: 3371
  year: 2019
  ident: 10.3233/ICA-210649_ref64
  article-title: Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices
  publication-title: Sensors
  doi: 10.3390/s19153371
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  ident: 10.3233/ICA-210649_ref65
  article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier
  publication-title: Integr Comput-Aided Eng
  doi: 10.3233/ICA-2010-0345
– volume: 423
  start-page: 172
  year: 2018
  ident: 10.3233/ICA-210649_ref59
  article-title: Ensemble of differential evolution variants
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.09.053
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017
  ident: 10.3233/ICA-210649_ref66
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2682102
– volume: 19
  start-page: 3542
  year: 2019
  ident: 10.3233/ICA-210649_ref8
  article-title: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations
  publication-title: Sensors
  doi: 10.3390/s19163542
– ident: 10.3233/ICA-210649_ref20
  doi: 10.1109/MMSP.2018.8547095
– ident: 10.3233/ICA-210649_ref60
  doi: 10.1007/978-3-662-45523-4_50
– volume: 7
  start-page: 128837
  year: 2019
  ident: 10.3233/ICA-210649_ref54
  article-title: A survey of deep learning-based object detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939201
SSID ssj0005027
Score 2.4568202
Snippet Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 221
SubjectTerms Artificial neural networks
Datasets
Deep learning
Drone aircraft
Evacuations & rescues
Machine learning
Neural networks
Object recognition
Rescue operations
Search and rescue missions
Title An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance
URI https://journals.sagepub.com/doi/full/10.3233/ICA-210649
https://www.proquest.com/docview/2546552682
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPAwZoHQNZgj6gyZA6cT4e07IyxhgvrdS3yHacaoylVdOA6J_AX805dj4YEwJeosSJLMv3y9l3vvsdQi8Vy0LJREZo6gviSRYQwWhKHB44ivqp8iKdKPzxwj-deWdzNu_1fnSilsqNeC23t-aV_I9UoQ3kqrNk_0GyTafQAPcgX7iChOH6VzKO82OwQtW1yX5Sq7oGxMIWhjZe1iVohevLrY4zr_ygFQPDcbpe5oroRQzauaZKBMNbluY0oSjXX5WuR1RD4nMb8F6RS1S5cFU5CKI5JlMYR8Nr2ATlgOp4xwfj8SAOCtAgAAdypg_mR-72avmt8eV_yPnq8sokDm1UWWybc5HvC56r6s1ouSiLwZgNQmq97tZTQYc3PBXdICQT5dcGLmnV6_gRgQ2ZUaDKtIE1RcLQEJrU-pqGHVy6XeVrcq1vLgou1U7ryftxTMC-9b2oXfrq4_6LT8lkdn6eTE_m0ztolwaBPvLfjUdvR5M2YMipCgA34zRkt7r3N23fv25vWpulEyZY7VymD9CeNTlwbPDzEPVUvo_uW_MDW-Ve7KN7HW7KR0jFOa7BhTW4cA0ubMCFNbhwAy5swYUBXLgDLlyBCxtwYQAX7oLrMZpNTqbjU2JrchBJo-GGiJSCaCVTEdiZyvWk5zkik8odchEMMyGjjPI0Y0MFPzuXqeMFqX7mNJNSgbZ_gnZyGMIBwpwJFQlfqpRFnsvdMAuDwJe-UIGfiZD10at6KhNpCet13ZQvCRiuetoTGFdipr2PXjTfrgxNy61fHdUSSexvXCS6IATTpEe0j7CWUvvq9x4O_9zDU3S3Bf4R2tmsS_UMNq0b8dyi6SeUtJyw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+deep+learning+method+with+optimized+weights+for+drone-based+water+rescue+and+surveillance&rft.jtitle=Integrated+computer-aided+engineering&rft.au=Jan+Ga%CC%A7sienica-J%C3%B3zkowy&rft.au=Knapik%2C+Mateusz&rft.au=Cyganek%2C+Bogus%C5%82aw&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1069-2509&rft.eissn=1875-8835&rft.volume=28&rft.issue=3&rft.spage=221&rft_id=info:doi/10.3233%2FICA-210649&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-2509&client=summon