An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance
Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects fl...
Saved in:
Published in | Integrated computer-aided engineering Vol. 28; no. 3; pp. 221 - 235 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2021
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1069-2509 1875-8835 |
DOI | 10.3233/ICA-210649 |
Cover
Abstract | Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects floating in the water, many of small size, which makes them difficult to detect. The second contribution is our proposed object detection method. It is an ensemble composed of a number of the deep convolutional neural networks, orchestrated by the fusion module with the nonlinearly optimized voting weights. The method achieves over 82% of average precision on the new aerial-drone floating objects dataset and outperforms each of the state-of-the-art deep neural networks, such as YOLOv3, -v4, Faster R-CNN, RetinaNet, and SSD300. The dataset is publicly available from the Internet. |
---|---|
AbstractList | Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a dataset for maritime search and rescue purposes is proposed. It contains aerial-drone videos with 40,000 hand-annotated persons and objects floating in the water, many of small size, which makes them difficult to detect. The second contribution is our proposed object detection method. It is an ensemble composed of a number of the deep convolutional neural networks, orchestrated by the fusion module with the nonlinearly optimized voting weights. The method achieves over 82% of average precision on the new aerial-drone floating objects dataset and outperforms each of the state-of-the-art deep neural networks, such as YOLOv3, -v4, Faster R-CNN, RetinaNet, and SSD300. The dataset is publicly available from the Internet. |
Author | Knapik, Mateusz Cyganek, Bogusław Ga̧sienica-Józkowy, Jan |
Author_xml | – sequence: 1 givenname: Jan surname: Ga̧sienica-Józkowy fullname: Ga̧sienica-Józkowy, Jan organization: Department of Electronics – sequence: 2 givenname: Mateusz surname: Knapik fullname: Knapik, Mateusz organization: Department of Electronics – sequence: 3 givenname: Bogusław surname: Cyganek fullname: Cyganek, Bogusław organization: Department of Electronics |
BookMark | eNptkE1LxDAQhoOs4O7qxV8Q8CAI1SRt-nFcFr9gwYueS5pMdrO0aU1SRX-9WSoIsqeZd3jemZdZoJntLSB0ScltytL07nm9ShgleVadoDktC56UZcpnsSd5lTBOqjO08H5PCOGEFXMEK4vBeuiaFrACGHALwlljt7iDsOsV_jRhh_shmM58Q5Rgtrvgse4dVi5eTxrhD3MRwGEHXo6AhVXYj-4DTNsKK-EcnWrRerj4rUv09nD_un5KNi-PMfImkayiIWkUY4RJDhUvOaSZzDLSaAkpFU1BdSMrzYTSnIIoiJCKZIU6aMG0lFDl6RJdTXsH17-P4EO970dn48ma8SznnOUlixSZKOl67x3oWpoggultcMK0NSX14Zl1TFZPz4yWm3-WwZlOuK_j8PUEe7GFvwRHyB_5BoTz |
CitedBy_id | crossref_primary_10_1155_2022_4162007 crossref_primary_10_1080_19479832_2024_2382737 crossref_primary_10_3389_fnbot_2023_1210470 crossref_primary_10_1111_mice_12832 crossref_primary_10_1016_j_engappai_2023_107513 crossref_primary_10_3233_ICA_220683 crossref_primary_10_3233_ICA_230707 crossref_primary_10_3233_ICA_220684 crossref_primary_10_1111_mice_12970 crossref_primary_10_1007_s12524_024_01869_3 crossref_primary_10_1111_mice_12993 crossref_primary_10_1142_S0129065723500260 crossref_primary_10_1016_j_asr_2023_06_055 crossref_primary_10_3233_ICA_230704 crossref_primary_10_3390_jmse13010006 crossref_primary_10_3233_ICA_230706 crossref_primary_10_3390_drones9020100 crossref_primary_10_3390_rs15133365 crossref_primary_10_1142_S0129065722500071 crossref_primary_10_3233_ICA_230701 crossref_primary_10_3233_ICA_230724 crossref_primary_10_1007_s11042_023_15785_0 crossref_primary_10_1142_S0129065723500119 crossref_primary_10_3390_math9091002 crossref_primary_10_3390_rs15112928 crossref_primary_10_3390_rs15194740 crossref_primary_10_1007_s10916_023_02032_0 crossref_primary_10_3390_jmse12112038 crossref_primary_10_1016_j_cosrev_2025_100736 crossref_primary_10_3390_rs17050783 crossref_primary_10_1088_1361_6501_adbccb crossref_primary_10_1111_mice_12984 crossref_primary_10_1016_j_eswa_2022_116793 crossref_primary_10_3233_ICA_220693 crossref_primary_10_3390_rs15204938 crossref_primary_10_3233_ICA_230717 crossref_primary_10_1016_j_autcon_2023_104779 crossref_primary_10_3233_ICA_230711 crossref_primary_10_3390_info15080474 |
Cites_doi | 10.1023/A:1008202821328 10.3233/ICA-200617 10.1109/IJCNN.2018.8489465 10.1007/s11263-013-0620-5 10.34911/rdnt.d2ce8i 10.1109/CEC48606.2020.9185838 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2018.00377 10.1109/IGARSS.2019.8898776 10.1111/mice.12519 10.1109/ICCV.2015.169 10.1109/ICCV.2017.324 10.1007/s10044-015-0505-z 10.1109/ACCESS.2019.2949366 10.3233/ICA-190616 10.1109/CVPR.2017.211 10.3390/rs11040433 10.1111/mice.12530 10.1111/mice.12501 10.1007/s00500-014-1323-8 10.1109/CVPR.2017.690 10.3233/ICA-190601 10.3233/ICA-200620 10.3390/ijgi9060370 10.1109/IGARSS.2019.8900532 10.1109/SA47457.2019.8938092 10.3390/s19153371 10.3233/ICA-2010-0345 10.1016/j.ins.2017.09.053 10.1109/TNNLS.2017.2682102 10.3390/s19163542 10.1109/MMSP.2018.8547095 10.1007/978-3-662-45523-4_50 10.1109/ACCESS.2019.2939201 |
ContentType | Journal Article |
Copyright | 2021 – IOS Press. All rights reserved. Copyright IOS Press BV 2021 |
Copyright_xml | – notice: 2021 – IOS Press. All rights reserved. – notice: Copyright IOS Press BV 2021 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.3233/ICA-210649 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1875-8835 |
EndPage | 235 |
ExternalDocumentID | 10_3233_ICA_210649 10.3233_ICA-210649 |
GroupedDBID | .4S .DC 0R~ 29J 4.4 5GY AAGLT AAOTM AAQXI ABDBF ABJNI ABUBZ ABUJY ACGFS ACIWK ACPQW ACUHS ADMLS ADZMO AEJQA AENEX AFRHK AFYTF AHDMH AJNRN ALMA_UNASSIGNED_HOLDINGS APPIZ ARCSS ASPBG AVWKF CAG COF DU5 EAD EAP EBS EDO EJD EMK EPL EST ESX FEDTE HZ~ I-F IL9 IOS J8X MET MIO MK~ ML~ MV1 NGNOM O9- P2P PQQKQ Q1R RIG SAUOL SCNPE SFC TUS AAYXX AJGYC CITATION 7SC 7TB 8FD AAPII FR3 H13 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-bd2202c5e9585e34c440bfce31ab71fbc9f2adf51ea70acd047dadf5a2fcce963 |
ISSN | 1069-2509 |
IngestDate | Fri Jul 25 10:08:26 EDT 2025 Tue Jul 01 05:19:22 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jun 17 22:29:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning YOLO water rescue SSD UAV ensemble of classifiers Faster R-CNN RetinaNet |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c291t-bd2202c5e9585e34c440bfce31ab71fbc9f2adf51ea70acd047dadf5a2fcce963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2546552682 |
PQPubID | 2046400 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2546552682 crossref_citationtrail_10_3233_ICA_210649 crossref_primary_10_3233_ICA_210649 sage_journals_10_3233_ICA_210649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: London |
PublicationTitle | Integrated computer-aided engineering |
PublicationYear | 2021 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Storn, Price 1997; 11 Thurnhofer-Hemsi, López-Rubio, Roé-Vellvé, Molina-Cabello 2020; 27 Hossain, Lee 2019; 19 Ahmadlou, Adeli 2010; 17 Ai, Li, Gao, Xu, Shang 2019; 7 Jiang, Zhang 2020; 35 Pérez-Hurtado, Martínez-del Amor, Zhang, Neri, Pérez-Jiménez 2020; 27 Krawczyk, Cyganek 2017; 20 Al-Kaff, Armingol, de La Escalera 2019; 26 Lara-Benítez, Carranza-García, García-Gutiérrez, Riquelme 2020; 27 Baetens, Desjardins, Hagolle 2019; 11 Redmon, Farhadi 2017 Jiao, Zhang, Liu, Yang, Li, Feng 2019; 7 Lygouras, Santavas, Taitzoglou, Tarchanidis, Mitropoulos, Gasteratos 2019; 19 Arabi, Haghighat, Sharma 2020; 35 Cyganek 2015; 19 Liu, Nie, Fan, Liu 2020; 35 Uijlings, Sande, Gevers, Smeulders 2013; 104 Körez, Barışşı, Çetin, Ergün 2020; 9 Wu, Shen, Li, Chen, Lin, Suganthan 2018; 423 Rafiei, Adeli 2017; 28 10.3233/ICA-210649_ref20 Arabi (10.3233/ICA-210649_ref34) 2020; 35 10.3233/ICA-210649_ref42 10.3233/ICA-210649_ref41 10.3233/ICA-210649_ref40 Liu (10.3233/ICA-210649_ref28) 2020; 35 10.3233/ICA-210649_ref48 10.3233/ICA-210649_ref25 10.3233/ICA-210649_ref47 Pérez-Hurtado (10.3233/ICA-210649_ref33) 2020; 27 Wu (10.3233/ICA-210649_ref59) 2018; 423 Baetens (10.3233/ICA-210649_ref22) 2019; 11 Thurnhofer-Hemsi (10.3233/ICA-210649_ref32) 2020; 27 Ahmadlou (10.3233/ICA-210649_ref65) 2010; 17 Storn (10.3233/ICA-210649_ref58) 1997; 11 10.3233/ICA-210649_ref50 Hossain (10.3233/ICA-210649_ref64) 2019; 19 Körez (10.3233/ICA-210649_ref57) 2020; 9 10.3233/ICA-210649_ref11 10.3233/ICA-210649_ref55 Jiang (10.3233/ICA-210649_ref27) 2020; 35 Krawczyk (10.3233/ICA-210649_ref56) 2017; 20 10.3233/ICA-210649_ref17 10.3233/ICA-210649_ref16 10.3233/ICA-210649_ref38 Al-Kaff (10.3233/ICA-210649_ref3) 2019; 26 10.3233/ICA-210649_ref19 Ai (10.3233/ICA-210649_ref6) 2019; 7 10.3233/ICA-210649_ref9 10.3233/ICA-210649_ref60 Lygouras (10.3233/ICA-210649_ref8) 2019; 19 Jiao (10.3233/ICA-210649_ref54) 2019; 7 Rafiei (10.3233/ICA-210649_ref66) 2017; 28 Lara-Benítez (10.3233/ICA-210649_ref29) 2020; 27 Uijlings (10.3233/ICA-210649_ref37) 2013; 104 |
References_xml | – volume: 35 start-page: 753 issue: 7 year: 2020 end-page: 767 article-title: A deep-learning-based computer vision solution for construction vehicle detection publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 9 start-page: 370 issue: 6 year: 2020 article-title: Weighted ensemble object detection with optimized coefficients for remote sensing images publication-title: ISPRS International Journal of Geo-Information – volume: 17 start-page: 197 issue: 3 year: 2010 end-page: 210 article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier publication-title: Integr Comput-Aided Eng – volume: 7 start-page: 128837 year: 2019 end-page: 128868 article-title: A survey of deep learning-based object detection publication-title: IEEE Access – volume: 35 start-page: 549 issue: 6 year: 2020 end-page: 564 article-title: Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 19 issue: 12 year: 2015 article-title: Hybrid ensemble of classifiers for logo and trademark symbols recognition publication-title: Soft Computing – volume: 27 start-page: 1 year: 2020 end-page: 18 article-title: A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning publication-title: Integrated Computer-Aided Engineering – volume: 11 start-page: 433 issue: 4 year: 2019 article-title: Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure publication-title: Remote Sensing – volume: 19 start-page: 3542 year: 2019 article-title: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations publication-title: Sensors – volume: 104 start-page: 154 year: 2013 end-page: 171 article-title: Selective search for object recognition publication-title: International Journal of Computer Vision – volume: 7 start-page: 155835 year: 2019 end-page: 155850 article-title: An intelligent decision algorithm for the generation of maritime search and rescue emergency response plans publication-title: IEEE Access – volume: 27 start-page: 1 year: 2020 end-page: 19 article-title: Asynchronous dual-pipeline deep learning framework for online data stream classification publication-title: Integrated Computer-Aided Engineering – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 28 start-page: 3074 issue: 12 year: 2017 end-page: 3083 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems – start-page: 6517 year: 2017 end-page: 6525 article-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 20 start-page: 427 issue: 2 year: 2017 end-page: 439 article-title: Selecting locally specialised classifiers for one-class classification ensembles publication-title: Pattern Analysis and Applications – volume: 19 start-page: 3371 year: 2019 article-title: Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices publication-title: Sensors – volume: 26 start-page: 297 year: 2019 end-page: 310 article-title: A vision-based navigation system for Unmanned Aerial Vehicles (UAVs) publication-title: Integrated Computer-Aided Engineering – volume: 27 start-page: 1 year: 2020 end-page: 19 article-title: Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution publication-title: Integrated Computer-Aided Engineering – volume: 35 start-page: 511 issue: 5 year: 2020 end-page: 529 article-title: Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 423 start-page: 172 year: 2018 end-page: 186 article-title: Ensemble of differential evolution variants publication-title: Information Sciences – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.3233/ICA-210649_ref58 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 27 start-page: 1 year: 2020 ident: 10.3233/ICA-210649_ref29 article-title: Asynchronous dual-pipeline deep learning framework for online data stream classification publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-200617 – ident: 10.3233/ICA-210649_ref9 doi: 10.1109/IJCNN.2018.8489465 – volume: 104 start-page: 154 year: 2013 ident: 10.3233/ICA-210649_ref37 article-title: Selective search for object recognition publication-title: International Journal of Computer Vision doi: 10.1007/s11263-013-0620-5 – ident: 10.3233/ICA-210649_ref17 doi: 10.34911/rdnt.d2ce8i – ident: 10.3233/ICA-210649_ref25 doi: 10.1109/CEC48606.2020.9185838 – ident: 10.3233/ICA-210649_ref41 doi: 10.1007/978-3-319-46448-0_2 – ident: 10.3233/ICA-210649_ref47 doi: 10.1109/CVPR.2018.00377 – ident: 10.3233/ICA-210649_ref19 doi: 10.1109/IGARSS.2019.8898776 – volume: 35 start-page: 549 issue: 6 year: 2020 ident: 10.3233/ICA-210649_ref27 article-title: Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12519 – ident: 10.3233/ICA-210649_ref38 doi: 10.1109/ICCV.2015.169 – ident: 10.3233/ICA-210649_ref48 – ident: 10.3233/ICA-210649_ref42 doi: 10.1109/ICCV.2017.324 – volume: 20 start-page: 427 issue: 2 year: 2017 ident: 10.3233/ICA-210649_ref56 article-title: Selecting locally specialised classifiers for one-class classification ensembles publication-title: Pattern Analysis and Applications doi: 10.1007/s10044-015-0505-z – volume: 7 start-page: 155835 year: 2019 ident: 10.3233/ICA-210649_ref6 article-title: An intelligent decision algorithm for the generation of maritime search and rescue emergency response plans publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949366 – volume: 27 start-page: 1 year: 2020 ident: 10.3233/ICA-210649_ref33 article-title: A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-190616 – ident: 10.3233/ICA-210649_ref50 doi: 10.1109/CVPR.2017.211 – volume: 11 start-page: 433 issue: 4 year: 2019 ident: 10.3233/ICA-210649_ref22 article-title: Validation of copernicus sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure publication-title: Remote Sensing doi: 10.3390/rs11040433 – volume: 35 start-page: 753 issue: 7 year: 2020 ident: 10.3233/ICA-210649_ref34 article-title: A deep-learning-based computer vision solution for construction vehicle detection publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12530 – volume: 35 start-page: 511 issue: 5 year: 2020 ident: 10.3233/ICA-210649_ref28 article-title: Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12501 – ident: 10.3233/ICA-210649_ref55 doi: 10.1007/s00500-014-1323-8 – ident: 10.3233/ICA-210649_ref40 doi: 10.1109/CVPR.2017.690 – volume: 26 start-page: 297 year: 2019 ident: 10.3233/ICA-210649_ref3 article-title: A vision-based navigation system for Unmanned Aerial Vehicles (UAVs) publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-190601 – volume: 27 start-page: 1 year: 2020 ident: 10.3233/ICA-210649_ref32 article-title: Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution publication-title: Integrated Computer-Aided Engineering doi: 10.3233/ICA-200620 – volume: 9 start-page: 370 issue: 6 year: 2020 ident: 10.3233/ICA-210649_ref57 article-title: Weighted ensemble object detection with optimized coefficients for remote sensing images publication-title: ISPRS International Journal of Geo-Information doi: 10.3390/ijgi9060370 – ident: 10.3233/ICA-210649_ref11 doi: 10.1109/IGARSS.2019.8900532 – ident: 10.3233/ICA-210649_ref16 doi: 10.1109/SA47457.2019.8938092 – volume: 19 start-page: 3371 year: 2019 ident: 10.3233/ICA-210649_ref64 article-title: Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices publication-title: Sensors doi: 10.3390/s19153371 – volume: 17 start-page: 197 issue: 3 year: 2010 ident: 10.3233/ICA-210649_ref65 article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier publication-title: Integr Comput-Aided Eng doi: 10.3233/ICA-2010-0345 – volume: 423 start-page: 172 year: 2018 ident: 10.3233/ICA-210649_ref59 article-title: Ensemble of differential evolution variants publication-title: Information Sciences doi: 10.1016/j.ins.2017.09.053 – volume: 28 start-page: 3074 issue: 12 year: 2017 ident: 10.3233/ICA-210649_ref66 article-title: A new neural dynamic classification algorithm publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2017.2682102 – volume: 19 start-page: 3542 year: 2019 ident: 10.3233/ICA-210649_ref8 article-title: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations publication-title: Sensors doi: 10.3390/s19163542 – ident: 10.3233/ICA-210649_ref20 doi: 10.1109/MMSP.2018.8547095 – ident: 10.3233/ICA-210649_ref60 doi: 10.1007/978-3-662-45523-4_50 – volume: 7 start-page: 128837 year: 2019 ident: 10.3233/ICA-210649_ref54 article-title: A survey of deep learning-based object detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939201 |
SSID | ssj0005027 |
Score | 2.4568202 |
Snippet | Today’s deep learning architectures, if trained with proper dataset, can be used for object detection in marine search and rescue operations. In this paper a... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 221 |
SubjectTerms | Artificial neural networks Datasets Deep learning Drone aircraft Evacuations & rescues Machine learning Neural networks Object recognition Rescue operations Search and rescue missions |
Title | An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance |
URI | https://journals.sagepub.com/doi/full/10.3233/ICA-210649 https://www.proquest.com/docview/2546552682 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPAwZoHQNZgj6gyZA6cT4e07IyxhgvrdS3yHacaoylVdOA6J_AX805dj4YEwJeosSJLMv3y9l3vvsdQi8Vy0LJREZo6gviSRYQwWhKHB44ivqp8iKdKPzxwj-deWdzNu_1fnSilsqNeC23t-aV_I9UoQ3kqrNk_0GyTafQAPcgX7iChOH6VzKO82OwQtW1yX5Sq7oGxMIWhjZe1iVohevLrY4zr_ygFQPDcbpe5oroRQzauaZKBMNbluY0oSjXX5WuR1RD4nMb8F6RS1S5cFU5CKI5JlMYR8Nr2ATlgOp4xwfj8SAOCtAgAAdypg_mR-72avmt8eV_yPnq8sokDm1UWWybc5HvC56r6s1ouSiLwZgNQmq97tZTQYc3PBXdICQT5dcGLmnV6_gRgQ2ZUaDKtIE1RcLQEJrU-pqGHVy6XeVrcq1vLgou1U7ryftxTMC-9b2oXfrq4_6LT8lkdn6eTE_m0ztolwaBPvLfjUdvR5M2YMipCgA34zRkt7r3N23fv25vWpulEyZY7VymD9CeNTlwbPDzEPVUvo_uW_MDW-Ve7KN7HW7KR0jFOa7BhTW4cA0ubMCFNbhwAy5swYUBXLgDLlyBCxtwYQAX7oLrMZpNTqbjU2JrchBJo-GGiJSCaCVTEdiZyvWk5zkik8odchEMMyGjjPI0Y0MFPzuXqeMFqX7mNJNSgbZ_gnZyGMIBwpwJFQlfqpRFnsvdMAuDwJe-UIGfiZD10at6KhNpCet13ZQvCRiuetoTGFdipr2PXjTfrgxNy61fHdUSSexvXCS6IATTpEe0j7CWUvvq9x4O_9zDU3S3Bf4R2tmsS_UMNq0b8dyi6SeUtJyw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+deep+learning+method+with+optimized+weights+for+drone-based+water+rescue+and+surveillance&rft.jtitle=Integrated+computer-aided+engineering&rft.au=Jan+Ga%CC%A7sienica-J%C3%B3zkowy&rft.au=Knapik%2C+Mateusz&rft.au=Cyganek%2C+Bogus%C5%82aw&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1069-2509&rft.eissn=1875-8835&rft.volume=28&rft.issue=3&rft.spage=221&rft_id=info:doi/10.3233%2FICA-210649&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-2509&client=summon |