Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain
As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image f...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 68; no. 1; pp. 49 - 64 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2018.2838778 |
Cover
Abstract | As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image fusion method in nonsubsampled shearlet transform (NSST) domain is proposed. In the proposed method, the NSST decomposition is first performed on the source images to obtain their multiscale and multidirection representations. The high-frequency bands are fused by a parameter-adaptive pulse-coupled neural network (PA-PCNN) model, in which all the PCNN parameters can be adaptively estimated by the input band. The low-frequency bands are merged by a novel strategy that simultaneously addresses two crucial issues in medical image fusion, namely, energy preservation and detail extraction. Finally, the fused image is reconstructed by performing inverse NSST on the fused high-frequency and low-frequency bands. The effectiveness of the proposed method is verified by four different categories of medical image fusion problems [computed tomography (CT) and magnetic resonance (MR), MR-T1 and MR-T2, MR and positron emission tomography, and MR and single-photon emission CT] with more than 80 pairs of source images in total. Experimental results demonstrate that the proposed method can obtain more competitive performance in comparison to nine representative medical image fusion methods, leading to state-of-the-art results on both visual quality and objective assessment. |
---|---|
AbstractList | As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image fusion method in nonsubsampled shearlet transform (NSST) domain is proposed. In the proposed method, the NSST decomposition is first performed on the source images to obtain their multiscale and multidirection representations. The high-frequency bands are fused by a parameter-adaptive pulse-coupled neural network (PA-PCNN) model, in which all the PCNN parameters can be adaptively estimated by the input band. The low-frequency bands are merged by a novel strategy that simultaneously addresses two crucial issues in medical image fusion, namely, energy preservation and detail extraction. Finally, the fused image is reconstructed by performing inverse NSST on the fused high-frequency and low-frequency bands. The effectiveness of the proposed method is verified by four different categories of medical image fusion problems [computed tomography (CT) and magnetic resonance (MR), MR-T1 and MR-T2, MR and positron emission tomography, and MR and single-photon emission CT] with more than 80 pairs of source images in total. Experimental results demonstrate that the proposed method can obtain more competitive performance in comparison to nine representative medical image fusion methods, leading to state-of-the-art results on both visual quality and objective assessment. |
Author | Liu, Yu Chen, Xun Liu, Xiaoning Yin, Ming |
Author_xml | – sequence: 1 givenname: Ming surname: Yin fullname: Yin, Ming organization: School of Mathematics, Hefei University of Technology, Hefei, China – sequence: 2 givenname: Xiaoning surname: Liu fullname: Liu, Xiaoning organization: School of Mathematics, Hefei University of Technology, Hefei, China – sequence: 3 givenname: Yu orcidid: 0000-0003-2211-3535 surname: Liu fullname: Liu, Yu email: yuliu@hfut.edu.cn organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China – sequence: 4 givenname: Xun surname: Chen fullname: Chen, Xun organization: Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China |
BookMark | eNp9kE1L7DAUhoMoOH7sBTcB152bZJo0Xcr4NaCj4IjLcpqearRtxiRV7r-_0REXLu7qLN7zvC88e2R7cAMScsTZlHNW_lktbqaCcT0VeqaLQm-RCZeyyEqlxDaZsBRlZS7VLtkL4YUxVqi8mJB4g4010NFFD09IL8Zg3UAfbXymd-Chx4g-O21gHe070ruxC0jnblx32NAljj6RS4wfzr9SO9ClG8JYB-i_8vtnBN9hpCsPQ2id7-mZ68EOB2SnhdR0-H33ycPF-Wp-lV3fXi7mp9eZESWPWW00SgGqVE3T5to0CmtpWC1ahEbKXJlcooGZqlWOTBvUjQQmuYa8aIURs31ysulde_c2YojVixv9kCYrwWXOeKFYkb7Y5st4F4LHtlp724P_W3FWfbqtktvq02317TYh6hdibISY1EUPtvsfeLwBLSL-7KRQClbO_gFQLoqL |
CODEN | IEIMAO |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106571 crossref_primary_10_1093_bioinformatics_btab721 crossref_primary_10_3389_fnins_2020_615435 crossref_primary_10_1016_j_bspc_2024_106694 crossref_primary_10_1109_TIP_2022_3193288 crossref_primary_10_1007_s40815_022_01379_9 crossref_primary_10_1016_j_bspc_2022_104030 crossref_primary_10_1109_TPAMI_2020_2984244 crossref_primary_10_3389_fmed_2022_792390 crossref_primary_10_1109_TNNLS_2023_3293274 crossref_primary_10_1145_3574136 crossref_primary_10_1016_j_bspc_2023_104794 crossref_primary_10_1016_j_cmpb_2022_107304 crossref_primary_10_1109_TCSVT_2021_3053405 crossref_primary_10_1016_j_dsp_2023_103910 crossref_primary_10_1016_j_bspc_2023_105518 crossref_primary_10_1016_j_ijleo_2022_169102 crossref_primary_10_1016_j_bspc_2021_102488 crossref_primary_10_1109_JBHI_2019_2930978 crossref_primary_10_1016_j_compbiomed_2020_104179 crossref_primary_10_1109_JSEN_2020_2969490 crossref_primary_10_1016_j_infrared_2023_104659 crossref_primary_10_1016_j_engappai_2023_107101 crossref_primary_10_3788_LOP212866 crossref_primary_10_1016_j_compbiomed_2020_104050 crossref_primary_10_1016_j_micpro_2021_104079 crossref_primary_10_1049_iet_ipr_2020_0219 crossref_primary_10_1007_s00521_020_05173_2 crossref_primary_10_1109_TGRS_2024_3470325 crossref_primary_10_1080_13682199_2023_2241793 crossref_primary_10_1109_TMM_2022_3185887 crossref_primary_10_1155_2020_8279342 crossref_primary_10_1109_TIP_2020_3043125 crossref_primary_10_3389_fnins_2022_1000587 crossref_primary_10_1007_s10278_021_00554_y crossref_primary_10_1007_s12652_020_02154_0 crossref_primary_10_1109_TIM_2023_3326255 crossref_primary_10_3390_s23062888 crossref_primary_10_1016_j_measurement_2022_112038 crossref_primary_10_1016_j_image_2021_116521 crossref_primary_10_1002_ima_22523 crossref_primary_10_1016_j_inffus_2024_102481 crossref_primary_10_1016_j_inffus_2025_103031 crossref_primary_10_1155_2020_3290136 crossref_primary_10_1002_ima_22649 crossref_primary_10_1142_S0129065720500501 crossref_primary_10_7717_peerj_cs_364 crossref_primary_10_1016_j_compbiomed_2020_104048 crossref_primary_10_1016_j_compbiomed_2022_105253 crossref_primary_10_1109_ACCESS_2019_2908076 crossref_primary_10_1007_s12652_022_03822_z crossref_primary_10_1016_j_neucom_2020_04_002 crossref_primary_10_1109_LSP_2020_2989054 crossref_primary_10_1109_TCYB_2020_3043233 crossref_primary_10_1007_s10278_024_01078_x crossref_primary_10_1109_TIM_2022_3200426 crossref_primary_10_3390_diagnostics10110904 crossref_primary_10_1016_j_dcan_2023_06_010 crossref_primary_10_1016_j_bspc_2023_104654 crossref_primary_10_1016_j_engappai_2023_107679 crossref_primary_10_1007_s11042_023_16334_5 crossref_primary_10_1016_j_bspc_2021_103357 crossref_primary_10_1016_j_neucom_2022_10_047 crossref_primary_10_3934_mbe_2023687 crossref_primary_10_1109_TPAMI_2024_3382308 crossref_primary_10_1007_s40747_022_00792_9 crossref_primary_10_3390_math12091296 crossref_primary_10_1109_ACCESS_2019_2925424 crossref_primary_10_1016_j_asoc_2022_108542 crossref_primary_10_1016_j_engappai_2024_108959 crossref_primary_10_1016_j_bspc_2024_106561 crossref_primary_10_3389_fnbot_2022_1050981 crossref_primary_10_1109_ACCESS_2019_2953786 crossref_primary_10_1109_TMI_2023_3283517 crossref_primary_10_1109_TGRS_2025_3527515 crossref_primary_10_1109_JBHI_2023_3264819 crossref_primary_10_1007_s11042_020_09017_y crossref_primary_10_1016_j_bspc_2024_107407 crossref_primary_10_1007_s11042_023_16515_2 crossref_primary_10_3389_fnins_2022_986153 crossref_primary_10_1007_s00371_022_02633_9 crossref_primary_10_1007_s10489_022_03819_3 crossref_primary_10_1016_j_micpro_2022_104665 crossref_primary_10_1109_TPAMI_2020_3012548 crossref_primary_10_3390_app112210975 crossref_primary_10_1002_ima_23144 crossref_primary_10_1016_j_bspc_2022_104353 crossref_primary_10_1109_JSEN_2024_3393619 crossref_primary_10_1016_j_bspc_2020_101996 crossref_primary_10_3390_e23050591 crossref_primary_10_1109_TIM_2020_3038603 crossref_primary_10_1007_s00521_022_07635_1 crossref_primary_10_1088_1361_6501_adba7a crossref_primary_10_1109_TIM_2019_2933341 crossref_primary_10_1109_TGRS_2024_3500036 crossref_primary_10_3390_electronics13173491 crossref_primary_10_1007_s11760_022_02220_4 crossref_primary_10_1016_j_dsp_2024_104806 crossref_primary_10_1016_j_eswa_2023_120301 crossref_primary_10_3233_JIFS_210041 crossref_primary_10_3390_electronics12010097 crossref_primary_10_2139_ssrn_3994150 crossref_primary_10_1007_s10462_024_10712_7 crossref_primary_10_1109_TIM_2020_3046911 crossref_primary_10_1016_j_infrared_2024_105548 crossref_primary_10_3390_computers9040098 crossref_primary_10_1007_s11760_024_03761_6 crossref_primary_10_1109_ACCESS_2019_2930225 crossref_primary_10_1016_j_sigpro_2021_108036 crossref_primary_10_1016_j_bspc_2023_105671 crossref_primary_10_1016_j_ins_2021_11_033 crossref_primary_10_1016_j_dsp_2022_103387 crossref_primary_10_1098_rsos_231762 crossref_primary_10_1016_j_compbiomed_2023_107531 crossref_primary_10_1109_TITS_2022_3210693 crossref_primary_10_1016_j_ins_2021_06_083 crossref_primary_10_1038_s41598_023_43873_6 crossref_primary_10_1109_TIM_2020_3024335 crossref_primary_10_1109_JSTSP_2022_3181717 crossref_primary_10_1016_j_jfranklin_2023_12_054 crossref_primary_10_1109_OJEMB_2022_3217186 crossref_primary_10_1109_TIM_2024_3460942 crossref_primary_10_1109_LSP_2022_3198594 crossref_primary_10_3390_e24020294 crossref_primary_10_1002_ima_22395 crossref_primary_10_1007_s13721_021_00342_2 crossref_primary_10_1016_j_bspc_2024_106358 crossref_primary_10_1016_j_compbiomed_2021_104239 crossref_primary_10_1016_j_eswa_2022_118283 crossref_primary_10_1007_s10489_021_02834_0 crossref_primary_10_1016_j_bspc_2024_107322 crossref_primary_10_1016_j_infrared_2024_105410 crossref_primary_10_1002_ima_22714 crossref_primary_10_1155_2020_9821715 crossref_primary_10_1007_s10462_023_10529_w crossref_primary_10_1007_s11042_023_16071_9 crossref_primary_10_1109_ACCESS_2019_2910656 crossref_primary_10_1007_s00530_025_01686_9 crossref_primary_10_1049_ipr2_12549 crossref_primary_10_1016_j_sigpro_2019_107252 crossref_primary_10_1186_s12880_024_01418_x crossref_primary_10_1109_TBIOM_2023_3280961 crossref_primary_10_1007_s42835_023_01460_9 crossref_primary_10_1002_mp_15390 crossref_primary_10_1109_ACCESS_2019_2943660 crossref_primary_10_1016_j_ipm_2024_103687 crossref_primary_10_1109_TBME_2024_3391314 crossref_primary_10_1109_MIM_2021_9400960 crossref_primary_10_3390_rs15020344 crossref_primary_10_1016_j_compbiomed_2025_109889 crossref_primary_10_1016_j_bspc_2022_104265 crossref_primary_10_1016_j_compbiomed_2024_108258 crossref_primary_10_1016_j_eswa_2020_113592 crossref_primary_10_1016_j_bspc_2022_104387 crossref_primary_10_1109_ACCESS_2019_2898111 crossref_primary_10_3233_JIFS_213416 crossref_primary_10_1016_j_bspc_2021_102696 crossref_primary_10_1007_s11042_020_10462_y crossref_primary_10_1016_j_bspc_2022_104259 crossref_primary_10_1109_ACCESS_2021_3094972 crossref_primary_10_1007_s00500_023_08672_1 crossref_primary_10_1016_j_bspc_2020_102280 crossref_primary_10_1051_jnwpu_20224061414 crossref_primary_10_3390_en13061487 crossref_primary_10_1016_j_procs_2021_12_243 crossref_primary_10_3390_diagnostics13081395 crossref_primary_10_1109_JBHI_2023_3312292 crossref_primary_10_1088_1757_899X_563_4_042023 crossref_primary_10_1109_TIM_2022_3170983 crossref_primary_10_1016_j_infrared_2023_104701 crossref_primary_10_1016_j_eswa_2021_114576 crossref_primary_10_3390_e24060843 crossref_primary_10_3390_e21121135 crossref_primary_10_1080_13682199_2023_2175426 crossref_primary_10_3389_fnins_2022_1055451 crossref_primary_10_1016_j_bspc_2022_104545 crossref_primary_10_1016_j_tice_2023_102169 crossref_primary_10_3390_math11183803 crossref_primary_10_32604_iasc_2021_016201 crossref_primary_10_1080_01431161_2023_2235642 crossref_primary_10_1109_TII_2022_3185050 crossref_primary_10_1109_JSEN_2019_2944249 crossref_primary_10_1016_j_inffus_2019_06_025 crossref_primary_10_1109_ACCESS_2022_3163260 crossref_primary_10_1109_TIM_2021_3066467 crossref_primary_10_1109_ACCESS_2023_3263183 crossref_primary_10_1109_TIM_2020_3038013 crossref_primary_10_1109_TIP_2024_3374072 crossref_primary_10_1016_j_bspc_2019_101810 crossref_primary_10_1016_j_infrared_2023_105009 crossref_primary_10_1016_j_optcom_2024_131026 crossref_primary_10_1109_ACCESS_2020_2982016 crossref_primary_10_1109_TIM_2022_3165263 crossref_primary_10_1016_j_bspc_2025_107653 crossref_primary_10_1109_TIM_2022_3184360 crossref_primary_10_3389_fncom_2021_803724 crossref_primary_10_1007_s11042_024_18682_2 crossref_primary_10_1088_1361_6560_ad2636 crossref_primary_10_1109_TMM_2020_3016123 crossref_primary_10_1016_j_ins_2021_04_052 crossref_primary_10_1049_iet_ipr_2020_0040 crossref_primary_10_1007_s11042_024_19592_z crossref_primary_10_1016_j_infrared_2021_103975 crossref_primary_10_3390_jimaging9010010 crossref_primary_10_3390_s23073490 crossref_primary_10_1016_j_bspc_2024_106859 crossref_primary_10_1007_s12652_022_04323_9 crossref_primary_10_1109_MIM_2021_9448255 crossref_primary_10_2174_1574362417666220405151738 crossref_primary_10_1007_s11045_024_00889_z crossref_primary_10_1109_ACCESS_2021_3139670 crossref_primary_10_1155_2022_5691099 crossref_primary_10_1016_j_sigpro_2020_107793 crossref_primary_10_3390_app13063512 crossref_primary_10_3390_s23146616 crossref_primary_10_1142_S0219467822400101 crossref_primary_10_3390_electronics12143058 crossref_primary_10_1007_s11517_022_02690_1 crossref_primary_10_1155_2019_3503267 crossref_primary_10_1002_ima_23208 crossref_primary_10_1007_s00371_024_03737_0 crossref_primary_10_1016_j_bspc_2023_104921 crossref_primary_10_1016_j_compbiomed_2021_105005 crossref_primary_10_1007_s42235_021_00100_0 crossref_primary_10_1016_j_bspc_2021_102788 crossref_primary_10_1109_TCSS_2022_3165559 crossref_primary_10_1016_j_infrared_2023_104715 crossref_primary_10_3390_e25060951 crossref_primary_10_2174_1573405616999200817103920 crossref_primary_10_1109_ACCESS_2020_3013027 crossref_primary_10_1016_j_bspc_2024_107011 crossref_primary_10_1109_TCSVT_2021_3056725 crossref_primary_10_1002_ima_22460 crossref_primary_10_1007_s11042_022_12225_3 crossref_primary_10_32604_cmc_2024_047256 crossref_primary_10_3724_SP_J_1089_2022_19137 crossref_primary_10_1007_s41965_021_00087_x crossref_primary_10_1016_j_bspc_2023_105699 crossref_primary_10_1109_TIM_2022_3206810 crossref_primary_10_1016_j_image_2019_115758 crossref_primary_10_1016_j_jksuci_2023_101733 crossref_primary_10_1016_j_bspc_2021_102535 crossref_primary_10_1016_j_bspc_2021_102536 crossref_primary_10_1016_j_optlaseng_2023_107925 crossref_primary_10_1109_JBHI_2022_3196710 crossref_primary_10_1109_TCSVT_2023_3342808 crossref_primary_10_1109_TIM_2019_2962849 crossref_primary_10_1109_ACCESS_2023_3246481 crossref_primary_10_1007_s00500_020_05448_9 crossref_primary_10_1109_TIP_2024_3512365 crossref_primary_10_1111_coin_12384 crossref_primary_10_1109_JSEN_2024_3371056 crossref_primary_10_3390_s24113545 crossref_primary_10_1109_ACCESS_2019_2908378 crossref_primary_10_3390_s21051756 crossref_primary_10_1016_j_sigpro_2020_107850 crossref_primary_10_1109_MCI_2022_3223487 crossref_primary_10_1002_cpe_6610 crossref_primary_10_1016_j_cmpb_2020_105603 crossref_primary_10_1002_acm2_12882 crossref_primary_10_1109_TIM_2023_3317470 crossref_primary_10_1002_ima_22575 crossref_primary_10_1109_TIM_2020_3011766 crossref_primary_10_1109_TIM_2023_3280499 crossref_primary_10_1016_j_neucom_2022_01_059 crossref_primary_10_1109_TGRS_2024_3353868 crossref_primary_10_1016_j_bspc_2022_103535 crossref_primary_10_1007_s11042_021_11753_8 crossref_primary_10_1016_j_bspc_2023_104746 crossref_primary_10_1007_s12559_021_09958_y crossref_primary_10_1109_TCSS_2021_3126628 crossref_primary_10_2139_ssrn_4087606 crossref_primary_10_1016_j_bspc_2022_103534 crossref_primary_10_3390_electronics12122659 crossref_primary_10_1109_TIM_2020_2975405 crossref_primary_10_1051_itmconf_20224702049 crossref_primary_10_32604_iasc_2022_020918 crossref_primary_10_1016_j_bspc_2024_107060 crossref_primary_10_3390_s20082169 crossref_primary_10_1007_s11042_022_13507_6 crossref_primary_10_3390_fractalfract9030157 crossref_primary_10_1016_j_inffus_2021_06_001 crossref_primary_10_1109_JSTARS_2023_3296505 crossref_primary_10_1109_ACCESS_2023_3298628 crossref_primary_10_1016_j_bspc_2025_107572 crossref_primary_10_1002_cpe_5632 crossref_primary_10_1109_TIM_2022_3169546 crossref_primary_10_1109_TGRS_2024_3519955 crossref_primary_10_3390_electronics13122337 crossref_primary_10_1016_j_bspc_2024_106787 crossref_primary_10_1016_j_image_2020_115852 crossref_primary_10_1109_JBHI_2021_3083752 crossref_primary_10_1007_s11042_022_13560_1 crossref_primary_10_1007_s11517_023_02902_2 crossref_primary_10_1109_TNNLS_2023_3238511 crossref_primary_10_1016_j_dsp_2024_104519 crossref_primary_10_1109_TIM_2020_3022438 crossref_primary_10_1016_j_eswa_2023_121363 crossref_primary_10_1049_ipr2_12137 crossref_primary_10_1016_j_micpro_2023_104781 crossref_primary_10_1109_ACCESS_2022_3206543 crossref_primary_10_1109_ACCESS_2021_3090436 crossref_primary_10_1016_j_inffus_2022_09_030 crossref_primary_10_1109_TCI_2021_3083965 crossref_primary_10_1016_j_ssci_2024_106690 crossref_primary_10_1109_ACCESS_2021_3102707 crossref_primary_10_1142_S0218001422540039 crossref_primary_10_1016_j_jag_2023_103468 crossref_primary_10_1109_ACCESS_2019_2926833 crossref_primary_10_1109_JBHI_2021_3097374 crossref_primary_10_1016_j_amc_2024_128888 crossref_primary_10_1109_TMM_2021_3096088 crossref_primary_10_1115_1_4056150 crossref_primary_10_1002_ima_22310 crossref_primary_10_1016_j_cmpb_2023_107445 crossref_primary_10_1088_1757_899X_1070_1_012080 crossref_primary_10_1016_j_compbiomed_2022_106339 crossref_primary_10_3390_rs16203804 crossref_primary_10_1109_TIM_2022_3169571 crossref_primary_10_1109_TMM_2020_3020695 crossref_primary_10_1109_ACCESS_2021_3103111 crossref_primary_10_1109_TIM_2021_3072124 crossref_primary_10_1016_j_neucom_2022_09_157 crossref_primary_10_3390_rs15112784 crossref_primary_10_1016_j_bspc_2022_104402 crossref_primary_10_1016_j_patrec_2020_11_014 crossref_primary_10_1007_s11042_020_08834_5 crossref_primary_10_1109_ACCESS_2019_2929303 crossref_primary_10_1002_ett_3985 crossref_primary_10_2174_1573405617666211004114726 crossref_primary_10_1021_acsami_1c01179 crossref_primary_10_1038_s41598_024_58665_9 crossref_primary_10_1007_s11042_023_15913_w crossref_primary_10_1016_j_bspc_2023_105819 crossref_primary_10_1002_ima_23091 crossref_primary_10_1155_2021_1544955 crossref_primary_10_2139_ssrn_4130858 crossref_primary_10_1016_j_bspc_2023_105370 crossref_primary_10_1109_ACCESS_2020_2993607 crossref_primary_10_1007_s12652_020_02820_3 crossref_primary_10_1016_j_sigpro_2022_108637 crossref_primary_10_1109_TIM_2020_3041823 crossref_primary_10_1142_S0219691319500528 crossref_primary_10_1142_S0219467822400137 crossref_primary_10_1007_s12652_022_03749_5 crossref_primary_10_2139_ssrn_4003392 crossref_primary_10_1109_TIM_2023_3282300 crossref_primary_10_1109_TPAMI_2024_3523364 crossref_primary_10_1016_j_bspc_2021_102852 crossref_primary_10_1016_j_bspc_2023_105008 crossref_primary_10_1155_2020_6265708 crossref_primary_10_2174_1573405616666201118123220 crossref_primary_10_1007_s11517_022_02697_8 crossref_primary_10_1016_j_compbiomed_2023_106620 crossref_primary_10_1109_TIM_2023_3312475 crossref_primary_10_1007_s10489_023_05097_z crossref_primary_10_1109_JAS_2022_105770 crossref_primary_10_2174_1573405618666220606161137 crossref_primary_10_3390_e23101362 crossref_primary_10_1007_s11042_020_09154_4 crossref_primary_10_1007_s00521_022_07242_0 |
Cites_doi | 10.1016/j.inffus.2011.08.002 10.1049/iet-ipr.2012.0558 10.1016/j.neucom.2015.07.160 10.1016/j.patrec.2006.09.005 10.1162/neco.1990.2.3.293 10.1109/TIP.2013.2244222 10.1109/TBME.2013.2282461 10.1364/AO.33.006239 10.1016/j.ins.2017.09.010 10.1016/j.acha.2007.09.003 10.1016/0167-8655(89)90004-4 10.1016/j.inffus.2007.04.003 10.1016/j.eswa.2012.09.011 10.1016/j.inffus.2010.04.001 10.1016/j.neucom.2015.01.025 10.1109/TCOM.1983.1095851 10.1016/j.inffus.2014.09.004 10.1109/LSP.2016.2618776 10.1016/S1874-1029(08)60174-3 10.1016/j.inffus.2013.12.002 10.1109/TIM.2017.2658098 10.1016/j.infrared.2015.02.008 10.1016/j.inffus.2016.12.001 10.1016/j.inffus.2005.09.006 10.1016/j.inffus.2012.09.005 10.1006/gmip.1995.1022 10.1109/TIM.2017.2700198 10.1007/s11831-016-9182-3 10.1016/j.sigpro.2009.01.012 10.1109/ICIP.2003.1247209 10.1016/j.ijleo.2013.10.064 10.1016/j.bspc.2014.11.009 10.1016/S1566-2535(03)00046-0 10.1109/JSEN.2016.2533864 10.1109/TMM.2013.2244870 10.1016/j.inffus.2015.01.001 10.1049/el.2010.1778 10.1109/TNN.2011.2128880 10.1109/TIP.2017.2745202 10.1016/j.eswa.2014.05.043 10.1109/TIM.2009.2026612 10.1109/TBME.2013.2279301 10.1016/j.neucom.2016.02.047 10.1016/j.inffus.2009.05.003 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2018.2838778 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 64 |
ExternalDocumentID | 10_1109_TIM_2018_2838778 8385209 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: JZ2018HGTB0228; JZ2016HGBZ1025 – fundername: Natural Science Foundation of Anhui Province grantid: 1808085QF186 funderid: 10.13039/501100003995 – fundername: National Natural Science Foundation of China grantid: 61701160; 11601115; 81571760; 61501164 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c291t-bc8e52a696ddf48cd6eb5c0b2fead5546c45eca36b64e08ce8d5a0518a47f2c23 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:14:40 EDT 2025 Tue Jul 01 02:02:33 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Aug 27 02:49:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-bc8e52a696ddf48cd6eb5c0b2fead5546c45eca36b64e08ce8d5a0518a47f2c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2211-3535 |
PQID | 2154017607 |
PQPubID | 85462 |
PageCount | 16 |
ParticipantIDs | ieee_primary_8385209 crossref_primary_10_1109_TIM_2018_2838778 proquest_journals_2154017607 crossref_citationtrail_10_1109_TIM_2018_2838778 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Jan. 2019-1-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 (ref49) 2017 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 (ref46) 2017 guorong (ref20) 2013; 7 ref42 ref41 (ref48) 2017 (ref45) 2013 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 (ref44) 2015 ref24 (ref43) 2015 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 (ref47) 2017 liu (ref30) 2017 |
References_xml | – ident: ref52 doi: 10.1016/j.inffus.2011.08.002 – year: 2013 ident: ref45 publication-title: The Source Code of the GF Method From Xudong Kang's Website – volume: 7 start-page: 633 year: 2013 ident: ref20 article-title: Multi-focus image fusion based on non-subsampled shearlet transform publication-title: IET Image Process doi: 10.1049/iet-ipr.2012.0558 – start-page: 1 year: 2017 ident: ref30 article-title: A medical image fusion method based on convolutional neural networks publication-title: Proc 20th Int Conf Inf Fusion – ident: ref2 doi: 10.1016/j.neucom.2015.07.160 – ident: ref41 doi: 10.1016/j.patrec.2006.09.005 – ident: ref34 doi: 10.1162/neco.1990.2.3.293 – year: 2017 ident: ref49 publication-title: The Source Code of the LLF-IOI Method From Jiao Du's Website – ident: ref11 doi: 10.1109/TIP.2013.2244222 – ident: ref23 doi: 10.1109/TBME.2013.2282461 – ident: ref33 doi: 10.1364/AO.33.006239 – ident: ref28 doi: 10.1016/j.ins.2017.09.010 – ident: ref36 doi: 10.1016/j.acha.2007.09.003 – ident: ref16 doi: 10.1016/0167-8655(89)90004-4 – year: 2017 ident: ref48 publication-title: The Source Code of the LP-SR Method From Yu Liu's Website – ident: ref3 doi: 10.1016/j.inffus.2007.04.003 – ident: ref42 doi: 10.1016/j.eswa.2012.09.011 – ident: ref4 doi: 10.1016/j.inffus.2010.04.001 – ident: ref10 doi: 10.1016/j.neucom.2015.01.025 – ident: ref15 doi: 10.1109/TCOM.1983.1095851 – ident: ref8 doi: 10.1016/j.inffus.2014.09.004 – ident: ref13 doi: 10.1109/LSP.2016.2618776 – ident: ref21 doi: 10.1016/S1874-1029(08)60174-3 – ident: ref1 doi: 10.1016/j.inffus.2013.12.002 – ident: ref5 doi: 10.1109/TIM.2017.2658098 – ident: ref38 doi: 10.1016/j.infrared.2015.02.008 – ident: ref32 doi: 10.1016/j.inffus.2016.12.001 – ident: ref18 doi: 10.1016/j.inffus.2005.09.006 – ident: ref7 doi: 10.1016/j.inffus.2012.09.005 – ident: ref17 doi: 10.1006/gmip.1995.1022 – year: 2015 ident: ref43 publication-title: The Whole Brain Atlas- Harvard Medical School – ident: ref9 doi: 10.1109/TIM.2017.2700198 – ident: ref40 doi: 10.1007/s11831-016-9182-3 – ident: ref19 doi: 10.1016/j.sigpro.2009.01.012 – ident: ref51 doi: 10.1109/ICIP.2003.1247209 – ident: ref39 doi: 10.1016/j.ijleo.2013.10.064 – ident: ref37 doi: 10.1016/j.bspc.2014.11.009 – year: 2017 ident: ref47 publication-title: The Source Code of the NSCT-RPCNN Method From Dudeb Das's Website – ident: ref14 doi: 10.1016/S1566-2535(03)00046-0 – year: 2015 ident: ref44 publication-title: The Source Code of the NSCT-SF-PCNN Method From Xiaobo Qu's Website – ident: ref27 doi: 10.1109/JSEN.2016.2533864 – ident: ref22 doi: 10.1109/TMM.2013.2244870 – ident: ref12 doi: 10.1016/j.inffus.2015.01.001 – ident: ref50 doi: 10.1049/el.2010.1778 – ident: ref35 doi: 10.1109/TNN.2011.2128880 – ident: ref29 doi: 10.1109/TIP.2017.2745202 – ident: ref24 doi: 10.1016/j.eswa.2014.05.043 – year: 2017 ident: ref46 publication-title: The Source Code of the NSCT-PCDC Method From Gaurav Bhatnagar's Website – ident: ref31 doi: 10.1109/TIM.2009.2026612 – ident: ref25 doi: 10.1109/TBME.2013.2279301 – ident: ref26 doi: 10.1016/j.neucom.2016.02.047 – ident: ref6 doi: 10.1016/j.inffus.2009.05.003 |
SSID | ssj0007647 |
Score | 2.6681983 |
Snippet | As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 49 |
SubjectTerms | Activity level measure Adaptation models Computed tomography Computer vision Defense industry Frequencies Image fusion Image processing Image reconstruction Magnetic resonance Market shares Medical diagnostic imaging Medical imaging Neural networks Neurons nonsubsampled shearlet transform (NSST) Parameter estimation Photon emission Positron emission pulse coupled neural network (PCNN) Quality assessment State of the art Tomography Transforms |
Title | Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain |
URI | https://ieeexplore.ieee.org/document/8385209 https://www.proquest.com/docview/2154017607 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB6SQCE9NK-WOI-yh14Kkb16rLR7DGlNErDJwaG5iX1Sk1g2sXTpr8_sSjIhKaU3gXbFonnPfDsD8M0wZqhObSSM01GWahEJZk3EqHJZEqtUOB8oTqb59X12-8AetuBicxfGWhvAZ3boH0Mt3yx141NlI55yj9rYhm1ks_au1kbrFnnW9seMUYDRK-hLklSMZjcTj-HiQzSlvPAD1V6ZoDBT5Z0iDtZlvAeT_lwtqORx2NRqqP-8adn4vwffh0-dm0kuW744gC1bHcLHV80HD-FDAH_q9RHUXbWG3CxQu5Bx4zNo5Ne8_k3upAdv4b-PLo1cedVI7hq0puRq2ayerCG-uQfunLZocjKvyNRf6lRruQjvw8Rs5A0y6z1k8mO5kPPqM9yPf86urqNuGkOkExHXkdLcskTmIjfGZVyb3CqmqUocMqPHuumMWS3TXOWZpVxbbphEkecyK1yik_QL7FTLyh4D8TEkk8oHR7jWpYLaODYpVUJpwZwbwKgnUKm7VuV-YsZTGUIWKkokaelJWnYkHcD3zY5V26bjH2uPPIU26zriDOCs54Gyk-N1iQ4RBqBFTouTv-86hV38tmiTMmewUz839hzdlFp9Dfz5Arf35Yk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9ioGlwGBsMUb7mwy6TltZJ7MQ-Iraq3WjFoWjcIn9qFTStaHLhr8d2kgpt07RbpNiKlff93s_vAXzSlGqsUhNxbVVEUsUjTo2OKJaWJLFMufWB4mSajW7J9zt6twVfNndhjDEBfGb6_jHU8vVS1T5VNmAp86iNV7Dj7D6hzW2tjd7NM9J0yIydCDu_oCtKYj6YjScexcX6zpiy3I9Ue2GEwlSVP1RxsC_DfZh0J2tgJff9upJ99fRb08b_Pfo7eNs6muiy4Yz3sGXKA9h70X7wAF4H-KdaH0LV1mvQeOH0CxrWPoeGfs6rX-hGePiW-_vRpRYrrxzRTe3sKbpa1qsHo5Fv7-F2Ths8OZqXaOqvdcq1WIT3YWa24w4063xk9HW5EPPyA9wOv82uRlE7jyFSCY-rSCpmaCIynmltCVM6M5IqLBPr2NGj3RShRok0kxkxmCnDNBVO6JkguU1Ukh7BdrkszTEgH0VSIX145NbalGMTxzrFkkvFqbU9GHQEKlTbrNzPzHgoQtCCeeFIWniSFi1Je_B5s2PVNOr4x9pDT6HNupY4PTjreKBoJXldOJfIhaB5hvOTv-_6CG9Gs8l1cT2e_jiFXfcd3qRozmC7eqzNuXNaKnkRePUZ4Wzo1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Fusion+With+Parameter-Adaptive+Pulse+Coupled+Neural+Network+in+Nonsubsampled+Shearlet+Transform+Domain&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Yin%2C+Ming&rft.au=Liu%2C+Xiaoning&rft.au=Liu%2C+Yu&rft.au=Chen%2C+Xun&rft.date=2019-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=68&rft.issue=1&rft.spage=49&rft_id=info:doi/10.1109%2FTIM.2018.2838778&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |