Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain

As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 68; no. 1; pp. 49 - 64
Main Authors Yin, Ming, Liu, Xiaoning, Liu, Yu, Chen, Xun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2018.2838778

Cover

Abstract As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image fusion method in nonsubsampled shearlet transform (NSST) domain is proposed. In the proposed method, the NSST decomposition is first performed on the source images to obtain their multiscale and multidirection representations. The high-frequency bands are fused by a parameter-adaptive pulse-coupled neural network (PA-PCNN) model, in which all the PCNN parameters can be adaptively estimated by the input band. The low-frequency bands are merged by a novel strategy that simultaneously addresses two crucial issues in medical image fusion, namely, energy preservation and detail extraction. Finally, the fused image is reconstructed by performing inverse NSST on the fused high-frequency and low-frequency bands. The effectiveness of the proposed method is verified by four different categories of medical image fusion problems [computed tomography (CT) and magnetic resonance (MR), MR-T1 and MR-T2, MR and positron emission tomography, and MR and single-photon emission CT] with more than 80 pairs of source images in total. Experimental results demonstrate that the proposed method can obtain more competitive performance in comparison to nine representative medical image fusion methods, leading to state-of-the-art results on both visual quality and objective assessment.
AbstractList As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful technique in various clinical applications such as disease diagnosis and treatment planning. In this paper, a new multimodal medical image fusion method in nonsubsampled shearlet transform (NSST) domain is proposed. In the proposed method, the NSST decomposition is first performed on the source images to obtain their multiscale and multidirection representations. The high-frequency bands are fused by a parameter-adaptive pulse-coupled neural network (PA-PCNN) model, in which all the PCNN parameters can be adaptively estimated by the input band. The low-frequency bands are merged by a novel strategy that simultaneously addresses two crucial issues in medical image fusion, namely, energy preservation and detail extraction. Finally, the fused image is reconstructed by performing inverse NSST on the fused high-frequency and low-frequency bands. The effectiveness of the proposed method is verified by four different categories of medical image fusion problems [computed tomography (CT) and magnetic resonance (MR), MR-T1 and MR-T2, MR and positron emission tomography, and MR and single-photon emission CT] with more than 80 pairs of source images in total. Experimental results demonstrate that the proposed method can obtain more competitive performance in comparison to nine representative medical image fusion methods, leading to state-of-the-art results on both visual quality and objective assessment.
Author Liu, Yu
Chen, Xun
Liu, Xiaoning
Yin, Ming
Author_xml – sequence: 1
  givenname: Ming
  surname: Yin
  fullname: Yin, Ming
  organization: School of Mathematics, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Xiaoning
  surname: Liu
  fullname: Liu, Xiaoning
  organization: School of Mathematics, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Yu
  orcidid: 0000-0003-2211-3535
  surname: Liu
  fullname: Liu, Yu
  email: yuliu@hfut.edu.cn
  organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Xun
  surname: Chen
  fullname: Chen, Xun
  organization: Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
BookMark eNp9kE1L7DAUhoMoOH7sBTcB152bZJo0Xcr4NaCj4IjLcpqearRtxiRV7r-_0REXLu7qLN7zvC88e2R7cAMScsTZlHNW_lktbqaCcT0VeqaLQm-RCZeyyEqlxDaZsBRlZS7VLtkL4YUxVqi8mJB4g4010NFFD09IL8Zg3UAfbXymd-Chx4g-O21gHe070ruxC0jnblx32NAljj6RS4wfzr9SO9ClG8JYB-i_8vtnBN9hpCsPQ2id7-mZ68EOB2SnhdR0-H33ycPF-Wp-lV3fXi7mp9eZESWPWW00SgGqVE3T5to0CmtpWC1ahEbKXJlcooGZqlWOTBvUjQQmuYa8aIURs31ysulde_c2YojVixv9kCYrwWXOeKFYkb7Y5st4F4LHtlp724P_W3FWfbqtktvq02317TYh6hdibISY1EUPtvsfeLwBLSL-7KRQClbO_gFQLoqL
CODEN IEIMAO
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106571
crossref_primary_10_1093_bioinformatics_btab721
crossref_primary_10_3389_fnins_2020_615435
crossref_primary_10_1016_j_bspc_2024_106694
crossref_primary_10_1109_TIP_2022_3193288
crossref_primary_10_1007_s40815_022_01379_9
crossref_primary_10_1016_j_bspc_2022_104030
crossref_primary_10_1109_TPAMI_2020_2984244
crossref_primary_10_3389_fmed_2022_792390
crossref_primary_10_1109_TNNLS_2023_3293274
crossref_primary_10_1145_3574136
crossref_primary_10_1016_j_bspc_2023_104794
crossref_primary_10_1016_j_cmpb_2022_107304
crossref_primary_10_1109_TCSVT_2021_3053405
crossref_primary_10_1016_j_dsp_2023_103910
crossref_primary_10_1016_j_bspc_2023_105518
crossref_primary_10_1016_j_ijleo_2022_169102
crossref_primary_10_1016_j_bspc_2021_102488
crossref_primary_10_1109_JBHI_2019_2930978
crossref_primary_10_1016_j_compbiomed_2020_104179
crossref_primary_10_1109_JSEN_2020_2969490
crossref_primary_10_1016_j_infrared_2023_104659
crossref_primary_10_1016_j_engappai_2023_107101
crossref_primary_10_3788_LOP212866
crossref_primary_10_1016_j_compbiomed_2020_104050
crossref_primary_10_1016_j_micpro_2021_104079
crossref_primary_10_1049_iet_ipr_2020_0219
crossref_primary_10_1007_s00521_020_05173_2
crossref_primary_10_1109_TGRS_2024_3470325
crossref_primary_10_1080_13682199_2023_2241793
crossref_primary_10_1109_TMM_2022_3185887
crossref_primary_10_1155_2020_8279342
crossref_primary_10_1109_TIP_2020_3043125
crossref_primary_10_3389_fnins_2022_1000587
crossref_primary_10_1007_s10278_021_00554_y
crossref_primary_10_1007_s12652_020_02154_0
crossref_primary_10_1109_TIM_2023_3326255
crossref_primary_10_3390_s23062888
crossref_primary_10_1016_j_measurement_2022_112038
crossref_primary_10_1016_j_image_2021_116521
crossref_primary_10_1002_ima_22523
crossref_primary_10_1016_j_inffus_2024_102481
crossref_primary_10_1016_j_inffus_2025_103031
crossref_primary_10_1155_2020_3290136
crossref_primary_10_1002_ima_22649
crossref_primary_10_1142_S0129065720500501
crossref_primary_10_7717_peerj_cs_364
crossref_primary_10_1016_j_compbiomed_2020_104048
crossref_primary_10_1016_j_compbiomed_2022_105253
crossref_primary_10_1109_ACCESS_2019_2908076
crossref_primary_10_1007_s12652_022_03822_z
crossref_primary_10_1016_j_neucom_2020_04_002
crossref_primary_10_1109_LSP_2020_2989054
crossref_primary_10_1109_TCYB_2020_3043233
crossref_primary_10_1007_s10278_024_01078_x
crossref_primary_10_1109_TIM_2022_3200426
crossref_primary_10_3390_diagnostics10110904
crossref_primary_10_1016_j_dcan_2023_06_010
crossref_primary_10_1016_j_bspc_2023_104654
crossref_primary_10_1016_j_engappai_2023_107679
crossref_primary_10_1007_s11042_023_16334_5
crossref_primary_10_1016_j_bspc_2021_103357
crossref_primary_10_1016_j_neucom_2022_10_047
crossref_primary_10_3934_mbe_2023687
crossref_primary_10_1109_TPAMI_2024_3382308
crossref_primary_10_1007_s40747_022_00792_9
crossref_primary_10_3390_math12091296
crossref_primary_10_1109_ACCESS_2019_2925424
crossref_primary_10_1016_j_asoc_2022_108542
crossref_primary_10_1016_j_engappai_2024_108959
crossref_primary_10_1016_j_bspc_2024_106561
crossref_primary_10_3389_fnbot_2022_1050981
crossref_primary_10_1109_ACCESS_2019_2953786
crossref_primary_10_1109_TMI_2023_3283517
crossref_primary_10_1109_TGRS_2025_3527515
crossref_primary_10_1109_JBHI_2023_3264819
crossref_primary_10_1007_s11042_020_09017_y
crossref_primary_10_1016_j_bspc_2024_107407
crossref_primary_10_1007_s11042_023_16515_2
crossref_primary_10_3389_fnins_2022_986153
crossref_primary_10_1007_s00371_022_02633_9
crossref_primary_10_1007_s10489_022_03819_3
crossref_primary_10_1016_j_micpro_2022_104665
crossref_primary_10_1109_TPAMI_2020_3012548
crossref_primary_10_3390_app112210975
crossref_primary_10_1002_ima_23144
crossref_primary_10_1016_j_bspc_2022_104353
crossref_primary_10_1109_JSEN_2024_3393619
crossref_primary_10_1016_j_bspc_2020_101996
crossref_primary_10_3390_e23050591
crossref_primary_10_1109_TIM_2020_3038603
crossref_primary_10_1007_s00521_022_07635_1
crossref_primary_10_1088_1361_6501_adba7a
crossref_primary_10_1109_TIM_2019_2933341
crossref_primary_10_1109_TGRS_2024_3500036
crossref_primary_10_3390_electronics13173491
crossref_primary_10_1007_s11760_022_02220_4
crossref_primary_10_1016_j_dsp_2024_104806
crossref_primary_10_1016_j_eswa_2023_120301
crossref_primary_10_3233_JIFS_210041
crossref_primary_10_3390_electronics12010097
crossref_primary_10_2139_ssrn_3994150
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_1109_TIM_2020_3046911
crossref_primary_10_1016_j_infrared_2024_105548
crossref_primary_10_3390_computers9040098
crossref_primary_10_1007_s11760_024_03761_6
crossref_primary_10_1109_ACCESS_2019_2930225
crossref_primary_10_1016_j_sigpro_2021_108036
crossref_primary_10_1016_j_bspc_2023_105671
crossref_primary_10_1016_j_ins_2021_11_033
crossref_primary_10_1016_j_dsp_2022_103387
crossref_primary_10_1098_rsos_231762
crossref_primary_10_1016_j_compbiomed_2023_107531
crossref_primary_10_1109_TITS_2022_3210693
crossref_primary_10_1016_j_ins_2021_06_083
crossref_primary_10_1038_s41598_023_43873_6
crossref_primary_10_1109_TIM_2020_3024335
crossref_primary_10_1109_JSTSP_2022_3181717
crossref_primary_10_1016_j_jfranklin_2023_12_054
crossref_primary_10_1109_OJEMB_2022_3217186
crossref_primary_10_1109_TIM_2024_3460942
crossref_primary_10_1109_LSP_2022_3198594
crossref_primary_10_3390_e24020294
crossref_primary_10_1002_ima_22395
crossref_primary_10_1007_s13721_021_00342_2
crossref_primary_10_1016_j_bspc_2024_106358
crossref_primary_10_1016_j_compbiomed_2021_104239
crossref_primary_10_1016_j_eswa_2022_118283
crossref_primary_10_1007_s10489_021_02834_0
crossref_primary_10_1016_j_bspc_2024_107322
crossref_primary_10_1016_j_infrared_2024_105410
crossref_primary_10_1002_ima_22714
crossref_primary_10_1155_2020_9821715
crossref_primary_10_1007_s10462_023_10529_w
crossref_primary_10_1007_s11042_023_16071_9
crossref_primary_10_1109_ACCESS_2019_2910656
crossref_primary_10_1007_s00530_025_01686_9
crossref_primary_10_1049_ipr2_12549
crossref_primary_10_1016_j_sigpro_2019_107252
crossref_primary_10_1186_s12880_024_01418_x
crossref_primary_10_1109_TBIOM_2023_3280961
crossref_primary_10_1007_s42835_023_01460_9
crossref_primary_10_1002_mp_15390
crossref_primary_10_1109_ACCESS_2019_2943660
crossref_primary_10_1016_j_ipm_2024_103687
crossref_primary_10_1109_TBME_2024_3391314
crossref_primary_10_1109_MIM_2021_9400960
crossref_primary_10_3390_rs15020344
crossref_primary_10_1016_j_compbiomed_2025_109889
crossref_primary_10_1016_j_bspc_2022_104265
crossref_primary_10_1016_j_compbiomed_2024_108258
crossref_primary_10_1016_j_eswa_2020_113592
crossref_primary_10_1016_j_bspc_2022_104387
crossref_primary_10_1109_ACCESS_2019_2898111
crossref_primary_10_3233_JIFS_213416
crossref_primary_10_1016_j_bspc_2021_102696
crossref_primary_10_1007_s11042_020_10462_y
crossref_primary_10_1016_j_bspc_2022_104259
crossref_primary_10_1109_ACCESS_2021_3094972
crossref_primary_10_1007_s00500_023_08672_1
crossref_primary_10_1016_j_bspc_2020_102280
crossref_primary_10_1051_jnwpu_20224061414
crossref_primary_10_3390_en13061487
crossref_primary_10_1016_j_procs_2021_12_243
crossref_primary_10_3390_diagnostics13081395
crossref_primary_10_1109_JBHI_2023_3312292
crossref_primary_10_1088_1757_899X_563_4_042023
crossref_primary_10_1109_TIM_2022_3170983
crossref_primary_10_1016_j_infrared_2023_104701
crossref_primary_10_1016_j_eswa_2021_114576
crossref_primary_10_3390_e24060843
crossref_primary_10_3390_e21121135
crossref_primary_10_1080_13682199_2023_2175426
crossref_primary_10_3389_fnins_2022_1055451
crossref_primary_10_1016_j_bspc_2022_104545
crossref_primary_10_1016_j_tice_2023_102169
crossref_primary_10_3390_math11183803
crossref_primary_10_32604_iasc_2021_016201
crossref_primary_10_1080_01431161_2023_2235642
crossref_primary_10_1109_TII_2022_3185050
crossref_primary_10_1109_JSEN_2019_2944249
crossref_primary_10_1016_j_inffus_2019_06_025
crossref_primary_10_1109_ACCESS_2022_3163260
crossref_primary_10_1109_TIM_2021_3066467
crossref_primary_10_1109_ACCESS_2023_3263183
crossref_primary_10_1109_TIM_2020_3038013
crossref_primary_10_1109_TIP_2024_3374072
crossref_primary_10_1016_j_bspc_2019_101810
crossref_primary_10_1016_j_infrared_2023_105009
crossref_primary_10_1016_j_optcom_2024_131026
crossref_primary_10_1109_ACCESS_2020_2982016
crossref_primary_10_1109_TIM_2022_3165263
crossref_primary_10_1016_j_bspc_2025_107653
crossref_primary_10_1109_TIM_2022_3184360
crossref_primary_10_3389_fncom_2021_803724
crossref_primary_10_1007_s11042_024_18682_2
crossref_primary_10_1088_1361_6560_ad2636
crossref_primary_10_1109_TMM_2020_3016123
crossref_primary_10_1016_j_ins_2021_04_052
crossref_primary_10_1049_iet_ipr_2020_0040
crossref_primary_10_1007_s11042_024_19592_z
crossref_primary_10_1016_j_infrared_2021_103975
crossref_primary_10_3390_jimaging9010010
crossref_primary_10_3390_s23073490
crossref_primary_10_1016_j_bspc_2024_106859
crossref_primary_10_1007_s12652_022_04323_9
crossref_primary_10_1109_MIM_2021_9448255
crossref_primary_10_2174_1574362417666220405151738
crossref_primary_10_1007_s11045_024_00889_z
crossref_primary_10_1109_ACCESS_2021_3139670
crossref_primary_10_1155_2022_5691099
crossref_primary_10_1016_j_sigpro_2020_107793
crossref_primary_10_3390_app13063512
crossref_primary_10_3390_s23146616
crossref_primary_10_1142_S0219467822400101
crossref_primary_10_3390_electronics12143058
crossref_primary_10_1007_s11517_022_02690_1
crossref_primary_10_1155_2019_3503267
crossref_primary_10_1002_ima_23208
crossref_primary_10_1007_s00371_024_03737_0
crossref_primary_10_1016_j_bspc_2023_104921
crossref_primary_10_1016_j_compbiomed_2021_105005
crossref_primary_10_1007_s42235_021_00100_0
crossref_primary_10_1016_j_bspc_2021_102788
crossref_primary_10_1109_TCSS_2022_3165559
crossref_primary_10_1016_j_infrared_2023_104715
crossref_primary_10_3390_e25060951
crossref_primary_10_2174_1573405616999200817103920
crossref_primary_10_1109_ACCESS_2020_3013027
crossref_primary_10_1016_j_bspc_2024_107011
crossref_primary_10_1109_TCSVT_2021_3056725
crossref_primary_10_1002_ima_22460
crossref_primary_10_1007_s11042_022_12225_3
crossref_primary_10_32604_cmc_2024_047256
crossref_primary_10_3724_SP_J_1089_2022_19137
crossref_primary_10_1007_s41965_021_00087_x
crossref_primary_10_1016_j_bspc_2023_105699
crossref_primary_10_1109_TIM_2022_3206810
crossref_primary_10_1016_j_image_2019_115758
crossref_primary_10_1016_j_jksuci_2023_101733
crossref_primary_10_1016_j_bspc_2021_102535
crossref_primary_10_1016_j_bspc_2021_102536
crossref_primary_10_1016_j_optlaseng_2023_107925
crossref_primary_10_1109_JBHI_2022_3196710
crossref_primary_10_1109_TCSVT_2023_3342808
crossref_primary_10_1109_TIM_2019_2962849
crossref_primary_10_1109_ACCESS_2023_3246481
crossref_primary_10_1007_s00500_020_05448_9
crossref_primary_10_1109_TIP_2024_3512365
crossref_primary_10_1111_coin_12384
crossref_primary_10_1109_JSEN_2024_3371056
crossref_primary_10_3390_s24113545
crossref_primary_10_1109_ACCESS_2019_2908378
crossref_primary_10_3390_s21051756
crossref_primary_10_1016_j_sigpro_2020_107850
crossref_primary_10_1109_MCI_2022_3223487
crossref_primary_10_1002_cpe_6610
crossref_primary_10_1016_j_cmpb_2020_105603
crossref_primary_10_1002_acm2_12882
crossref_primary_10_1109_TIM_2023_3317470
crossref_primary_10_1002_ima_22575
crossref_primary_10_1109_TIM_2020_3011766
crossref_primary_10_1109_TIM_2023_3280499
crossref_primary_10_1016_j_neucom_2022_01_059
crossref_primary_10_1109_TGRS_2024_3353868
crossref_primary_10_1016_j_bspc_2022_103535
crossref_primary_10_1007_s11042_021_11753_8
crossref_primary_10_1016_j_bspc_2023_104746
crossref_primary_10_1007_s12559_021_09958_y
crossref_primary_10_1109_TCSS_2021_3126628
crossref_primary_10_2139_ssrn_4087606
crossref_primary_10_1016_j_bspc_2022_103534
crossref_primary_10_3390_electronics12122659
crossref_primary_10_1109_TIM_2020_2975405
crossref_primary_10_1051_itmconf_20224702049
crossref_primary_10_32604_iasc_2022_020918
crossref_primary_10_1016_j_bspc_2024_107060
crossref_primary_10_3390_s20082169
crossref_primary_10_1007_s11042_022_13507_6
crossref_primary_10_3390_fractalfract9030157
crossref_primary_10_1016_j_inffus_2021_06_001
crossref_primary_10_1109_JSTARS_2023_3296505
crossref_primary_10_1109_ACCESS_2023_3298628
crossref_primary_10_1016_j_bspc_2025_107572
crossref_primary_10_1002_cpe_5632
crossref_primary_10_1109_TIM_2022_3169546
crossref_primary_10_1109_TGRS_2024_3519955
crossref_primary_10_3390_electronics13122337
crossref_primary_10_1016_j_bspc_2024_106787
crossref_primary_10_1016_j_image_2020_115852
crossref_primary_10_1109_JBHI_2021_3083752
crossref_primary_10_1007_s11042_022_13560_1
crossref_primary_10_1007_s11517_023_02902_2
crossref_primary_10_1109_TNNLS_2023_3238511
crossref_primary_10_1016_j_dsp_2024_104519
crossref_primary_10_1109_TIM_2020_3022438
crossref_primary_10_1016_j_eswa_2023_121363
crossref_primary_10_1049_ipr2_12137
crossref_primary_10_1016_j_micpro_2023_104781
crossref_primary_10_1109_ACCESS_2022_3206543
crossref_primary_10_1109_ACCESS_2021_3090436
crossref_primary_10_1016_j_inffus_2022_09_030
crossref_primary_10_1109_TCI_2021_3083965
crossref_primary_10_1016_j_ssci_2024_106690
crossref_primary_10_1109_ACCESS_2021_3102707
crossref_primary_10_1142_S0218001422540039
crossref_primary_10_1016_j_jag_2023_103468
crossref_primary_10_1109_ACCESS_2019_2926833
crossref_primary_10_1109_JBHI_2021_3097374
crossref_primary_10_1016_j_amc_2024_128888
crossref_primary_10_1109_TMM_2021_3096088
crossref_primary_10_1115_1_4056150
crossref_primary_10_1002_ima_22310
crossref_primary_10_1016_j_cmpb_2023_107445
crossref_primary_10_1088_1757_899X_1070_1_012080
crossref_primary_10_1016_j_compbiomed_2022_106339
crossref_primary_10_3390_rs16203804
crossref_primary_10_1109_TIM_2022_3169571
crossref_primary_10_1109_TMM_2020_3020695
crossref_primary_10_1109_ACCESS_2021_3103111
crossref_primary_10_1109_TIM_2021_3072124
crossref_primary_10_1016_j_neucom_2022_09_157
crossref_primary_10_3390_rs15112784
crossref_primary_10_1016_j_bspc_2022_104402
crossref_primary_10_1016_j_patrec_2020_11_014
crossref_primary_10_1007_s11042_020_08834_5
crossref_primary_10_1109_ACCESS_2019_2929303
crossref_primary_10_1002_ett_3985
crossref_primary_10_2174_1573405617666211004114726
crossref_primary_10_1021_acsami_1c01179
crossref_primary_10_1038_s41598_024_58665_9
crossref_primary_10_1007_s11042_023_15913_w
crossref_primary_10_1016_j_bspc_2023_105819
crossref_primary_10_1002_ima_23091
crossref_primary_10_1155_2021_1544955
crossref_primary_10_2139_ssrn_4130858
crossref_primary_10_1016_j_bspc_2023_105370
crossref_primary_10_1109_ACCESS_2020_2993607
crossref_primary_10_1007_s12652_020_02820_3
crossref_primary_10_1016_j_sigpro_2022_108637
crossref_primary_10_1109_TIM_2020_3041823
crossref_primary_10_1142_S0219691319500528
crossref_primary_10_1142_S0219467822400137
crossref_primary_10_1007_s12652_022_03749_5
crossref_primary_10_2139_ssrn_4003392
crossref_primary_10_1109_TIM_2023_3282300
crossref_primary_10_1109_TPAMI_2024_3523364
crossref_primary_10_1016_j_bspc_2021_102852
crossref_primary_10_1016_j_bspc_2023_105008
crossref_primary_10_1155_2020_6265708
crossref_primary_10_2174_1573405616666201118123220
crossref_primary_10_1007_s11517_022_02697_8
crossref_primary_10_1016_j_compbiomed_2023_106620
crossref_primary_10_1109_TIM_2023_3312475
crossref_primary_10_1007_s10489_023_05097_z
crossref_primary_10_1109_JAS_2022_105770
crossref_primary_10_2174_1573405618666220606161137
crossref_primary_10_3390_e23101362
crossref_primary_10_1007_s11042_020_09154_4
crossref_primary_10_1007_s00521_022_07242_0
Cites_doi 10.1016/j.inffus.2011.08.002
10.1049/iet-ipr.2012.0558
10.1016/j.neucom.2015.07.160
10.1016/j.patrec.2006.09.005
10.1162/neco.1990.2.3.293
10.1109/TIP.2013.2244222
10.1109/TBME.2013.2282461
10.1364/AO.33.006239
10.1016/j.ins.2017.09.010
10.1016/j.acha.2007.09.003
10.1016/0167-8655(89)90004-4
10.1016/j.inffus.2007.04.003
10.1016/j.eswa.2012.09.011
10.1016/j.inffus.2010.04.001
10.1016/j.neucom.2015.01.025
10.1109/TCOM.1983.1095851
10.1016/j.inffus.2014.09.004
10.1109/LSP.2016.2618776
10.1016/S1874-1029(08)60174-3
10.1016/j.inffus.2013.12.002
10.1109/TIM.2017.2658098
10.1016/j.infrared.2015.02.008
10.1016/j.inffus.2016.12.001
10.1016/j.inffus.2005.09.006
10.1016/j.inffus.2012.09.005
10.1006/gmip.1995.1022
10.1109/TIM.2017.2700198
10.1007/s11831-016-9182-3
10.1016/j.sigpro.2009.01.012
10.1109/ICIP.2003.1247209
10.1016/j.ijleo.2013.10.064
10.1016/j.bspc.2014.11.009
10.1016/S1566-2535(03)00046-0
10.1109/JSEN.2016.2533864
10.1109/TMM.2013.2244870
10.1016/j.inffus.2015.01.001
10.1049/el.2010.1778
10.1109/TNN.2011.2128880
10.1109/TIP.2017.2745202
10.1016/j.eswa.2014.05.043
10.1109/TIM.2009.2026612
10.1109/TBME.2013.2279301
10.1016/j.neucom.2016.02.047
10.1016/j.inffus.2009.05.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2018.2838778
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 64
ExternalDocumentID 10_1109_TIM_2018_2838778
8385209
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: JZ2018HGTB0228; JZ2016HGBZ1025
– fundername: Natural Science Foundation of Anhui Province
  grantid: 1808085QF186
  funderid: 10.13039/501100003995
– fundername: National Natural Science Foundation of China
  grantid: 61701160; 11601115; 81571760; 61501164
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-bc8e52a696ddf48cd6eb5c0b2fead5546c45eca36b64e08ce8d5a0518a47f2c23
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:40 EDT 2025
Tue Jul 01 02:02:33 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Aug 27 02:49:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bc8e52a696ddf48cd6eb5c0b2fead5546c45eca36b64e08ce8d5a0518a47f2c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2211-3535
PQID 2154017607
PQPubID 85462
PageCount 16
ParticipantIDs ieee_primary_8385209
crossref_primary_10_1109_TIM_2018_2838778
proquest_journals_2154017607
crossref_citationtrail_10_1109_TIM_2018_2838778
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref49) 2017
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
(ref46) 2017
guorong (ref20) 2013; 7
ref42
ref41
(ref48) 2017
(ref45) 2013
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
(ref44) 2015
ref24
(ref43) 2015
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
(ref47) 2017
liu (ref30) 2017
References_xml – ident: ref52
  doi: 10.1016/j.inffus.2011.08.002
– year: 2013
  ident: ref45
  publication-title: The Source Code of the GF Method From Xudong Kang's Website
– volume: 7
  start-page: 633
  year: 2013
  ident: ref20
  article-title: Multi-focus image fusion based on non-subsampled shearlet transform
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2012.0558
– start-page: 1
  year: 2017
  ident: ref30
  article-title: A medical image fusion method based on convolutional neural networks
  publication-title: Proc 20th Int Conf Inf Fusion
– ident: ref2
  doi: 10.1016/j.neucom.2015.07.160
– ident: ref41
  doi: 10.1016/j.patrec.2006.09.005
– ident: ref34
  doi: 10.1162/neco.1990.2.3.293
– year: 2017
  ident: ref49
  publication-title: The Source Code of the LLF-IOI Method From Jiao Du's Website
– ident: ref11
  doi: 10.1109/TIP.2013.2244222
– ident: ref23
  doi: 10.1109/TBME.2013.2282461
– ident: ref33
  doi: 10.1364/AO.33.006239
– ident: ref28
  doi: 10.1016/j.ins.2017.09.010
– ident: ref36
  doi: 10.1016/j.acha.2007.09.003
– ident: ref16
  doi: 10.1016/0167-8655(89)90004-4
– year: 2017
  ident: ref48
  publication-title: The Source Code of the LP-SR Method From Yu Liu's Website
– ident: ref3
  doi: 10.1016/j.inffus.2007.04.003
– ident: ref42
  doi: 10.1016/j.eswa.2012.09.011
– ident: ref4
  doi: 10.1016/j.inffus.2010.04.001
– ident: ref10
  doi: 10.1016/j.neucom.2015.01.025
– ident: ref15
  doi: 10.1109/TCOM.1983.1095851
– ident: ref8
  doi: 10.1016/j.inffus.2014.09.004
– ident: ref13
  doi: 10.1109/LSP.2016.2618776
– ident: ref21
  doi: 10.1016/S1874-1029(08)60174-3
– ident: ref1
  doi: 10.1016/j.inffus.2013.12.002
– ident: ref5
  doi: 10.1109/TIM.2017.2658098
– ident: ref38
  doi: 10.1016/j.infrared.2015.02.008
– ident: ref32
  doi: 10.1016/j.inffus.2016.12.001
– ident: ref18
  doi: 10.1016/j.inffus.2005.09.006
– ident: ref7
  doi: 10.1016/j.inffus.2012.09.005
– ident: ref17
  doi: 10.1006/gmip.1995.1022
– year: 2015
  ident: ref43
  publication-title: The Whole Brain Atlas- Harvard Medical School
– ident: ref9
  doi: 10.1109/TIM.2017.2700198
– ident: ref40
  doi: 10.1007/s11831-016-9182-3
– ident: ref19
  doi: 10.1016/j.sigpro.2009.01.012
– ident: ref51
  doi: 10.1109/ICIP.2003.1247209
– ident: ref39
  doi: 10.1016/j.ijleo.2013.10.064
– ident: ref37
  doi: 10.1016/j.bspc.2014.11.009
– year: 2017
  ident: ref47
  publication-title: The Source Code of the NSCT-RPCNN Method From Dudeb Das's Website
– ident: ref14
  doi: 10.1016/S1566-2535(03)00046-0
– year: 2015
  ident: ref44
  publication-title: The Source Code of the NSCT-SF-PCNN Method From Xiaobo Qu's Website
– ident: ref27
  doi: 10.1109/JSEN.2016.2533864
– ident: ref22
  doi: 10.1109/TMM.2013.2244870
– ident: ref12
  doi: 10.1016/j.inffus.2015.01.001
– ident: ref50
  doi: 10.1049/el.2010.1778
– ident: ref35
  doi: 10.1109/TNN.2011.2128880
– ident: ref29
  doi: 10.1109/TIP.2017.2745202
– ident: ref24
  doi: 10.1016/j.eswa.2014.05.043
– year: 2017
  ident: ref46
  publication-title: The Source Code of the NSCT-PCDC Method From Gaurav Bhatnagar's Website
– ident: ref31
  doi: 10.1109/TIM.2009.2026612
– ident: ref25
  doi: 10.1109/TBME.2013.2279301
– ident: ref26
  doi: 10.1016/j.neucom.2016.02.047
– ident: ref6
  doi: 10.1016/j.inffus.2009.05.003
SSID ssj0007647
Score 2.6681983
Snippet As an effective way to integrate the information contained in multiple medical images with different modalities, medical image fusion has emerged as a powerful...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Activity level measure
Adaptation models
Computed tomography
Computer vision
Defense industry
Frequencies
Image fusion
Image processing
Image reconstruction
Magnetic resonance
Market shares
Medical diagnostic imaging
Medical imaging
Neural networks
Neurons
nonsubsampled shearlet transform (NSST)
Parameter estimation
Photon emission
Positron emission
pulse coupled neural network (PCNN)
Quality assessment
State of the art
Tomography
Transforms
Title Medical Image Fusion With Parameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain
URI https://ieeexplore.ieee.org/document/8385209
https://www.proquest.com/docview/2154017607
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB6SQCE9NK-WOI-yh14Kkb16rLR7DGlNErDJwaG5iX1Sk1g2sXTpr8_sSjIhKaU3gXbFonnPfDsD8M0wZqhObSSM01GWahEJZk3EqHJZEqtUOB8oTqb59X12-8AetuBicxfGWhvAZ3boH0Mt3yx141NlI55yj9rYhm1ks_au1kbrFnnW9seMUYDRK-hLklSMZjcTj-HiQzSlvPAD1V6ZoDBT5Z0iDtZlvAeT_lwtqORx2NRqqP-8adn4vwffh0-dm0kuW744gC1bHcLHV80HD-FDAH_q9RHUXbWG3CxQu5Bx4zNo5Ne8_k3upAdv4b-PLo1cedVI7hq0puRq2ayerCG-uQfunLZocjKvyNRf6lRruQjvw8Rs5A0y6z1k8mO5kPPqM9yPf86urqNuGkOkExHXkdLcskTmIjfGZVyb3CqmqUocMqPHuumMWS3TXOWZpVxbbphEkecyK1yik_QL7FTLyh4D8TEkk8oHR7jWpYLaODYpVUJpwZwbwKgnUKm7VuV-YsZTGUIWKkokaelJWnYkHcD3zY5V26bjH2uPPIU26zriDOCs54Gyk-N1iQ4RBqBFTouTv-86hV38tmiTMmewUz839hzdlFp9Dfz5Arf35Yk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH9ioGlwGBsMUb7mwy6TltZJ7MQ-Iraq3WjFoWjcIn9qFTStaHLhr8d2kgpt07RbpNiKlff93s_vAXzSlGqsUhNxbVVEUsUjTo2OKJaWJLFMufWB4mSajW7J9zt6twVfNndhjDEBfGb6_jHU8vVS1T5VNmAp86iNV7Dj7D6hzW2tjd7NM9J0yIydCDu_oCtKYj6YjScexcX6zpiy3I9Ue2GEwlSVP1RxsC_DfZh0J2tgJff9upJ99fRb08b_Pfo7eNs6muiy4Yz3sGXKA9h70X7wAF4H-KdaH0LV1mvQeOH0CxrWPoeGfs6rX-hGePiW-_vRpRYrrxzRTe3sKbpa1qsHo5Fv7-F2Ths8OZqXaOqvdcq1WIT3YWa24w4063xk9HW5EPPyA9wOv82uRlE7jyFSCY-rSCpmaCIynmltCVM6M5IqLBPr2NGj3RShRok0kxkxmCnDNBVO6JkguU1Ukh7BdrkszTEgH0VSIX145NbalGMTxzrFkkvFqbU9GHQEKlTbrNzPzHgoQtCCeeFIWniSFi1Je_B5s2PVNOr4x9pDT6HNupY4PTjreKBoJXldOJfIhaB5hvOTv-_6CG9Gs8l1cT2e_jiFXfcd3qRozmC7eqzNuXNaKnkRePUZ4Wzo1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Fusion+With+Parameter-Adaptive+Pulse+Coupled+Neural+Network+in+Nonsubsampled+Shearlet+Transform+Domain&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Yin%2C+Ming&rft.au=Liu%2C+Xiaoning&rft.au=Liu%2C+Yu&rft.au=Chen%2C+Xun&rft.date=2019-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=68&rft.issue=1&rft.spage=49&rft_id=info:doi/10.1109%2FTIM.2018.2838778&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon