Elucidation of gene action and combining ability for productive tillering in spring barley

The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were crea...

Full description

Saved in:
Bibliographic Details
Published inRegulatory mechanisms in biosystems Vol. 13; no. 2; pp. 197 - 206
Main Authors Hudzenko, V. M., Polishchuk, T. P., Lysenko, A. A., Fedorenko, I. V., Fedorenko, M. V., Khudolii, L. V., Ishchenko, V. A., Kozelets, H. M., Babenko, A. I., Tanchyk, S. P., Mandrovska, S. M.
Format Journal Article
LanguageEnglish
Published Oles Honchar Dnipro National University 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.
AbstractList The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.
Author Kozelets, H. M.
Fedorenko, I. V.
Khudolii, L. V.
Babenko, A. I.
Tanchyk, S. P.
Polishchuk, T. P.
Lysenko, A. A.
Mandrovska, S. M.
Fedorenko, M. V.
Hudzenko, V. M.
Ishchenko, V. A.
Author_xml – sequence: 1
  givenname: V. M.
  surname: Hudzenko
  fullname: Hudzenko, V. M.
– sequence: 2
  givenname: T. P.
  surname: Polishchuk
  fullname: Polishchuk, T. P.
– sequence: 3
  givenname: A. A.
  surname: Lysenko
  fullname: Lysenko, A. A.
– sequence: 4
  givenname: I. V.
  surname: Fedorenko
  fullname: Fedorenko, I. V.
– sequence: 5
  givenname: M. V.
  surname: Fedorenko
  fullname: Fedorenko, M. V.
– sequence: 6
  givenname: L. V.
  surname: Khudolii
  fullname: Khudolii, L. V.
– sequence: 7
  givenname: V. A.
  surname: Ishchenko
  fullname: Ishchenko, V. A.
– sequence: 8
  givenname: H. M.
  surname: Kozelets
  fullname: Kozelets, H. M.
– sequence: 9
  givenname: A. I.
  surname: Babenko
  fullname: Babenko, A. I.
– sequence: 10
  givenname: S. P.
  surname: Tanchyk
  fullname: Tanchyk, S. P.
– sequence: 11
  givenname: S. M.
  surname: Mandrovska
  fullname: Mandrovska, S. M.
BookMark eNo9kEtLAzEUhYMoWGvxL2TnajSPySSzlFK1UHCjGzfh5lVSpknJTIX-e6dT8W7uuZfDx-HcoeuUk0fogZInKmpGnwkbR1yhGROMVEwodX3WtK2UYPQWLfp-RwihSlFJ5Qx9r7qjjQ6GmBPOAW998hjsdEJy2Oa9iSmmLQYTuziccMgFH0p2x9H04_EQu86XsyEm3B8mZaB0_nSPbgJ0vV_87Tn6el19Lt-rzcfbevmyqSxr6VAZ440w4EzDTd1wDo5QL1RtnKRggmmtbEVQxMmaO8-VBc9aUjfgpKyZBT5H6wvXZdjpMcEeyklniHp65LLVUIZoO6-NsyS0tAkNmNrQoJQKXjhoA0gXHB9ZjxeWLbnviw__PEr01LC-NMx_AUDecUo
CitedBy_id crossref_primary_10_1007_s10681_023_03241_x
Cites_doi 10.30835/2413-7510.2021.237022
10.53560/PPASB(58-2)623
10.1007/s10142-012-0299-7
10.3835/plantgenome2013.10.0032
10.3390/agronomy11091769
10.15832/ankutbd.597545
10.37992/2021.1204.186
10.1534/g3.119.400612
10.1186/s43170-021-00051-w
10.23910/IJBSM/2017.8.6.3C0817
10.3389/fnut.2021.694679
10.5513/JCEA01/15.1.1419
10.18782/2320-7051.7664
10.4025/actasciagron.v41i1.42630
10.3168/jds.2017-14082
10.5897/AJB2019.16815
10.1371/journal.pone.0258473
10.1111/pbi.13170
10.9787/PBB.2018.6.3.206
10.33158/ASB.r135.v7.2021
10.1038/s41598-020-68343-1
10.4172/2329-8863.1000401
10.4236/as.2020.114025
10.59665/rar3609
10.33899/edusj.2020.164365
10.1007/s00122-002-1104-0
10.35418/2526-4117/v2n1a4
10.30835/2413-7510.2021.237026
10.3389/fsufs.2021.663445
10.1093/genetics/45.2.155
10.37992/2021.1202.082
10.3390/agronomy11010067
10.3835/plantgenome2016.02.0016
10.18782/2320-7051.7207
10.1093/genetics/43.1.63
10.1104/pp.19.00717
10.1016/S2095-3119(20)63408-6
10.1186/s41065-018-0072-6
10.25174/2249-4065/2019/83719
10.1007/s00122-017-2917-1
10.1007/s00122-014-2384-x
10.1186/s12870-016-0964-4
10.1038/hdy.1956.2
10.5958/0975-928X.2019.00179.0
10.1007/s10681-021-02833-9
10.1155/2020/9390287
10.1111/ppl.12460
10.1007/s00122-017-2880-x
10.3389/fpls.2020.575467
10.21608/agro.2019.15182.1172
10.20546/ijcmas.2019.812.349
10.1002/ppj2.20027
10.1104/pp.110.166249
10.3390/fermentation7010008
10.1371/journal.pone.0260723
10.1371/journal.pone.0178177
10.2298/GENSR1601073A
10.1007/s00122-011-1544-5
10.37992/2021.1204.153
10.3389/fgene.2021.689319
10.3389/fgene.2019.00352
10.15406/bbij.2016.04.00085
10.3389/fpls.2021.774478
10.3389/fgene.2020.00638
10.3390/agronomy11050894
10.3390/agronomy11061177
10.3390/plants11030266
10.1007/s00122-015-2652-4
10.1104/pp.114.250738
10.17557/tjfc.297681
10.21608/jpp.2016.45485
10.3389/fgene.2016.00117
10.2135/cropsci2016.10.0850
10.17140/AFTNSOJ-6-168
10.4236/ajps.2015.69153
10.1186/s12870-019-1828-5
10.1155/2020/8847753
10.1371/journal.pone.0126828
10.1371/journal.pbio.3000215
10.1038/ng.745
10.4067/S0718-58392016000300005
10.1080/02571862.2021.1903106
10.17508/CJFST.2017.9.2.09
10.1007/s00122-010-1342-5
10.1534/g3.118.200760
10.1007/s13197-017-2669-6
10.3126/ijasbt.v7i2.24635
10.52547/pgr.7.2.7
10.3835/plantgenome2017.08.0073
10.1371/journal.pone.0140246
10.2135/cropsci2016.10.0872
10.17221/146/2019-CJFS
10.1002/tpg2.20127
10.1007/s00122-017-2967-4
10.1590/1678-992x-2019-0191
10.32819/021021
10.1007/s00122-018-3164-9
10.1038/s41598-021-96079-z
10.21608/jpp.2019.36261
10.3923/jas.2019.88.95
10.3923/ijpbg.2018.13.18
10.1093/jxb/ery200
10.3389/fpls.2020.00660
10.1111/pbr.12609
10.3390/agronomy11081450
10.13080/z-a.2021.108.006
10.1186/s12863-014-0107-6
10.1071/BI9560463
10.1016/j.cj.2020.04.012
10.3389/fgene.2021.692870
10.1111/jipb.12757
10.21608/agro.2019.5512.1116
10.1038/s41598-020-77467-3
10.1093/genetics/39.6.789
10.37992/2020.1101.017
10.5713/ajas.2011.11435
10.30835/2413-7510.2014.42052
10.1371/journal.pone.0110046
10.21608/agro.2016.252.1025
10.1201/9780585484624
10.1007/s00122-009-0985-6
10.3835/plantgenome2016.05.0046
10.18805/IJARe.A-5680
10.5958/0975-928X.2016.00136.8
10.30835/2413-7510.2017.120421
10.4141/cjps2013-118
10.17582/journal.sja/2017.33.1.22.29
10.3389/fgene.2020.592769
10.1186/s40066-018-0238-5
10.32819/021008
10.1104/pp.114.252882
10.18782/2320-7051.6817
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.15421/022225
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2520-2588
EndPage 206
ExternalDocumentID oai_doaj_org_article_bdc0f916f6ab4b1f888fe5da9fa7dfd3
10_15421_022225
GroupedDBID AAYXX
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
EOJEC
GROUPED_DOAJ
OBODZ
RIG
ID FETCH-LOGICAL-c291t-bbeb5badb63b4633ad01e584bd71abfb9c795f80d743de38cae29046ad7742ca3
IEDL.DBID DOA
ISSN 2519-8521
IngestDate Mon Oct 07 19:35:57 EDT 2024
Fri Aug 23 03:12:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-bbeb5badb63b4633ad01e584bd71abfb9c795f80d743de38cae29046ad7742ca3
OpenAccessLink https://doaj.org/article/bdc0f916f6ab4b1f888fe5da9fa7dfd3
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_bdc0f916f6ab4b1f888fe5da9fa7dfd3
crossref_primary_10_15421_022225
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Regulatory mechanisms in biosystems
PublicationYear 2022
Publisher Oles Honchar Dnipro National University
Publisher_xml – name: Oles Honchar Dnipro National University
References 32566
32567
32600
32564
32565
32562
32563
32560
32561
32607
32608
32605
32606
32603
32604
32568
32601
32569
32602
32555
32556
32553
32554
32551
32552
32550
32559
32557
32558
32544
32545
32542
32543
32540
32541
32548
32549
32546
32547
32533
32534
32531
32532
32530
32539
32537
32538
32535
32536
32522
32643
32523
32644
32520
32641
32521
32642
32640
32528
32529
32526
32527
32524
32645
32525
32646
32591
32592
32590
32511
32599
32632
32512
32633
32597
32630
32510
32598
32631
32595
32596
32593
32594
32519
32517
32638
32518
32639
32515
32636
32516
32637
32513
32634
32514
32635
32580
32581
32588
32621
32589
32622
32586
32587
32620
32584
32585
32582
32583
32508
32629
32509
32506
32627
32507
32628
32625
32626
32623
32624
32609
32570
32577
32610
32578
32611
32575
32576
32573
32574
32571
32572
32618
32619
32616
32617
32614
32615
32579
32612
32613
References_xml – ident: 32628
  doi: 10.30835/2413-7510.2021.237022
– ident: 32508
  doi: 10.53560/PPASB(58-2)623
– ident: 32603
  doi: 10.1007/s10142-012-0299-7
– ident: 32562
  doi: 10.3835/plantgenome2013.10.0032
– ident: 32531
  doi: 10.3390/agronomy11091769
– ident: 32530
  doi: 10.15832/ankutbd.597545
– ident: 32615
  doi: 10.37992/2021.1204.186
– ident: 32552
  doi: 10.1534/g3.119.400612
– ident: 32515
  doi: 10.1186/s43170-021-00051-w
– ident: 32551
  doi: 10.23910/IJBSM/2017.8.6.3C0817
– ident: 32610
  doi: 10.3389/fnut.2021.694679
– ident: 32586
  doi: 10.5513/JCEA01/15.1.1419
– ident: 32519
  doi: 10.18782/2320-7051.7664
– ident: 32617
  doi: 10.4025/actasciagron.v41i1.42630
– ident: 32639
  doi: 10.3168/jds.2017-14082
– ident: 32509
  doi: 10.5897/AJB2019.16815
– ident: 32525
  doi: 10.1371/journal.pone.0258473
– ident: 32526
  doi: 10.1111/pbi.13170
– ident: 32539
  doi: 10.9787/PBB.2018.6.3.206
– ident: 32534
  doi: 10.33158/ASB.r135.v7.2021
– ident: 32514
  doi: 10.1038/s41598-020-68343-1
– ident: 32535
  doi: 10.4172/2329-8863.1000401
– ident: 32543
– ident: 32613
  doi: 10.4236/as.2020.114025
– ident: 32614
  doi: 10.59665/rar3609
– ident: 32516
  doi: 10.33899/edusj.2020.164365
– ident: 32517
  doi: 10.1007/s00122-002-1104-0
– ident: 32533
  doi: 10.35418/2526-4117/v2n1a4
– ident: 32646
  doi: 10.30835/2413-7510.2021.237026
– ident: 32553
  doi: 10.3389/fsufs.2021.663445
– ident: 32558
  doi: 10.1093/genetics/45.2.155
– ident: 32570
  doi: 10.37992/2021.1202.082
– ident: 32574
  doi: 10.3390/agronomy11010067
– ident: 32608
  doi: 10.3835/plantgenome2016.02.0016
– ident: 32587
  doi: 10.18782/2320-7051.7207
– ident: 32557
  doi: 10.1093/genetics/43.1.63
– ident: 32641
  doi: 10.1104/pp.19.00717
– ident: 32638
  doi: 10.1016/S2095-3119(20)63408-6
– ident: 32561
– ident: 32640
  doi: 10.1186/s41065-018-0072-6
– ident: 32622
  doi: 10.25174/2249-4065/2019/83719
– ident: 32513
– ident: 32626
  doi: 10.1007/s00122-017-2917-1
– ident: 32573
  doi: 10.1007/s00122-014-2384-x
– ident: 32635
  doi: 10.1186/s12870-016-0964-4
– ident: 32549
  doi: 10.1038/hdy.1956.2
– ident: 32621
  doi: 10.5958/0975-928X.2019.00179.0
– ident: 32575
– ident: 32602
  doi: 10.1007/s10681-021-02833-9
– ident: 32605
  doi: 10.1155/2020/9390287
– ident: 32507
– ident: 32589
  doi: 10.1111/ppl.12460
– ident: 32597
  doi: 10.1007/s00122-017-2880-x
– ident: 32550
  doi: 10.3389/fpls.2020.575467
– ident: 32594
  doi: 10.21608/agro.2019.15182.1172
– ident: 32606
  doi: 10.20546/ijcmas.2019.812.349
– ident: 32645
  doi: 10.1002/ppj2.20027
– ident: 32537
  doi: 10.1104/pp.110.166249
– ident: 32555
  doi: 10.3390/fermentation7010008
– ident: 32518
  doi: 10.1371/journal.pone.0260723
– ident: 32559
  doi: 10.1371/journal.pone.0178177
– ident: 32510
  doi: 10.2298/GENSR1601073A
– ident: 32567
  doi: 10.1007/s00122-011-1544-5
– ident: 32595
  doi: 10.37992/2021.1204.153
– ident: 32633
  doi: 10.3389/fgene.2021.689319
– ident: 32540
  doi: 10.3389/fgene.2019.00352
– ident: 32541
  doi: 10.15406/bbij.2016.04.00085
– ident: 32580
  doi: 10.3389/fpls.2021.774478
– ident: 32581
  doi: 10.3389/fgene.2020.00638
– ident: 32611
  doi: 10.3390/agronomy11050894
– ident: 32560
  doi: 10.3390/agronomy11061177
– ident: 32544
  doi: 10.3390/plants11030266
– ident: 32632
  doi: 10.1007/s00122-015-2652-4
– ident: 32536
  doi: 10.1104/pp.114.250738
– ident: 32585
  doi: 10.17557/tjfc.297681
– ident: 32624
  doi: 10.21608/jpp.2016.45485
– ident: 32512
  doi: 10.3389/fgene.2016.00117
– ident: 32601
  doi: 10.2135/cropsci2016.10.0850
– ident: 32571
  doi: 10.17140/AFTNSOJ-6-168
– ident: 32637
  doi: 10.4236/ajps.2015.69153
– ident: 32506
  doi: 10.1186/s12870-019-1828-5
– ident: 32627
  doi: 10.1155/2020/8847753
– ident: 32521
– ident: 32644
  doi: 10.1371/journal.pone.0126828
– ident: 32547
  doi: 10.1371/journal.pbio.3000215
– ident: 32609
  doi: 10.1038/ng.745
– ident: 32604
  doi: 10.4067/S0718-58392016000300005
– ident: 32619
  doi: 10.1080/02571862.2021.1903106
– ident: 32591
  doi: 10.17508/CJFST.2017.9.2.09
– ident: 32524
– ident: 32528
  doi: 10.1007/s00122-010-1342-5
– ident: 32612
  doi: 10.1534/g3.118.200760
– ident: 32598
  doi: 10.1007/s13197-017-2669-6
– ident: 32592
  doi: 10.3126/ijasbt.v7i2.24635
– ident: 32529
  doi: 10.52547/pgr.7.2.7
– ident: 32634
  doi: 10.3835/plantgenome2017.08.0073
– ident: 32583
  doi: 10.1371/journal.pone.0140246
– ident: 32522
  doi: 10.2135/cropsci2016.10.0872
– ident: 32523
  doi: 10.17221/146/2019-CJFS
– ident: 32542
  doi: 10.1002/tpg2.20127
– ident: 32607
– ident: 32578
  doi: 10.1007/s00122-017-2967-4
– ident: 32629
  doi: 10.1590/1678-992x-2019-0191
– ident: 32563
  doi: 10.32819/021021
– ident: 32584
  doi: 10.1007/s00122-018-3164-9
– ident: 32532
  doi: 10.1038/s41598-021-96079-z
– ident: 32590
– ident: 32554
  doi: 10.21608/jpp.2019.36261
– ident: 32564
  doi: 10.3923/jas.2019.88.95
– ident: 32569
  doi: 10.3923/ijpbg.2018.13.18
– ident: 32630
  doi: 10.1093/jxb/ery200
– ident: 32642
  doi: 10.3389/fpls.2020.00660
– ident: 32596
  doi: 10.1111/pbr.12609
– ident: 32568
  doi: 10.3390/agronomy11081450
– ident: 32623
  doi: 10.13080/z-a.2021.108.006
– ident: 32600
  doi: 10.1186/s12863-014-0107-6
– ident: 32548
  doi: 10.1071/BI9560463
– ident: 32631
  doi: 10.1016/j.cj.2020.04.012
– ident: 32577
  doi: 10.3389/fgene.2021.692870
– ident: 32620
  doi: 10.1111/jipb.12757
– ident: 32511
  doi: 10.21608/agro.2019.5512.1116
– ident: 32520
  doi: 10.1038/s41598-020-77467-3
– ident: 32556
  doi: 10.1093/genetics/39.6.789
– ident: 32576
  doi: 10.37992/2020.1101.017
– ident: 32643
  doi: 10.5713/ajas.2011.11435
– ident: 32599
  doi: 10.30835/2413-7510.2014.42052
– ident: 32593
  doi: 10.1371/journal.pone.0110046
– ident: 32588
  doi: 10.21608/agro.2016.252.1025
– ident: 32618
  doi: 10.1201/9780585484624
– ident: 32527
  doi: 10.1007/s00122-009-0985-6
– ident: 32582
  doi: 10.3835/plantgenome2016.05.0046
– ident: 32546
  doi: 10.18805/IJARe.A-5680
– ident: 32566
  doi: 10.5958/0975-928X.2016.00136.8
– ident: 32572
  doi: 10.30835/2413-7510.2017.120421
– ident: 32538
  doi: 10.4141/cjps2013-118
– ident: 32616
  doi: 10.17582/journal.sja/2017.33.1.22.29
– ident: 32565
  doi: 10.3389/fgene.2020.592769
– ident: 32636
  doi: 10.1186/s40066-018-0238-5
– ident: 32545
  doi: 10.32819/021008
– ident: 32625
  doi: 10.1104/pp.114.252882
– ident: 32579
  doi: 10.18782/2320-7051.6817
SSID ssj0001881717
ssib050737334
Score 2.2258918
Snippet The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin,...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 197
SubjectTerms hordeum vulgare l.; phenotypic dominance; mode of inheritance; parameters of genetic variation; general combining ability
Title Elucidation of gene action and combining ability for productive tillering in spring barley
URI https://doaj.org/article/bdc0f916f6ab4b1f888fe5da9fa7dfd3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP3FOJQevZU2zNulRZWMIenIwvJS8vAQG0g3pDvvvfUmK9ObFa5uG8uXR972k7_sYe6QUJKSm6kSZymbEwCEzSpQZlGgq7VSOsW_t7b1armav63I9sPoK_4QleeAE3BTQ5p44jK8MzEB4qti8o4lqbxR6TDqfeT0opiiSiORIJXvhs7jborVQ0X43dGpmmpJW6qAlBlGIaah6gln2IDUNFPxjqlmcsdOeI_Kn9G7n7Mi1F-w4uUYeLtnn_GtvN8kLiW89pxBwPPUncNMipxiCaPvAkwb3gRMx5bsk7UofN97F_r8wYNPydDDLIZy6H67YajH_eFlmvUVCZotadBmAgxIMQiVhVklpMBeOOAWgEgY81FbVpdc5ElFAJ7U1rqipJDZItK-wRl6zUbtt3Q3jVmHhvIUc6XkbNGuAgC4VeIHE6-yYhvToNLukhNGECiIA2CQAx-w5oPZ7O0hXxwu0oE2_oM1fC3r7H5NM2EkR-hTiXskdG3Xfe3dP7KGDhxgoP_JVxAY
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidation+of+gene+action+and+combining+ability+for+productive+tillering+in+spring+barley&rft.jtitle=Regulatory+mechanisms+in+biosystems&rft.au=V.+M.+Hudzenko&rft.au=T.+P.+Polishchuk&rft.au=A.+A.+Lysenko&rft.au=I.+V.+Fedorenko&rft.date=2022-01-01&rft.pub=Oles+Honchar+Dnipro+National+University&rft.issn=2519-8521&rft.eissn=2520-2588&rft.volume=13&rft.issue=2&rft.spage=197&rft.epage=206&rft_id=info:doi/10.15421%2F022225&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bdc0f916f6ab4b1f888fe5da9fa7dfd3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2519-8521&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2519-8521&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2519-8521&client=summon