Elucidation of gene action and combining ability for productive tillering in spring barley
The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were crea...
Saved in:
Published in | Regulatory mechanisms in biosystems Vol. 13; no. 2; pp. 197 - 206 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oles Honchar Dnipro National University
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement. |
---|---|
AbstractList | The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement. |
Author | Kozelets, H. M. Fedorenko, I. V. Khudolii, L. V. Babenko, A. I. Tanchyk, S. P. Polishchuk, T. P. Lysenko, A. A. Mandrovska, S. M. Fedorenko, M. V. Hudzenko, V. M. Ishchenko, V. A. |
Author_xml | – sequence: 1 givenname: V. M. surname: Hudzenko fullname: Hudzenko, V. M. – sequence: 2 givenname: T. P. surname: Polishchuk fullname: Polishchuk, T. P. – sequence: 3 givenname: A. A. surname: Lysenko fullname: Lysenko, A. A. – sequence: 4 givenname: I. V. surname: Fedorenko fullname: Fedorenko, I. V. – sequence: 5 givenname: M. V. surname: Fedorenko fullname: Fedorenko, M. V. – sequence: 6 givenname: L. V. surname: Khudolii fullname: Khudolii, L. V. – sequence: 7 givenname: V. A. surname: Ishchenko fullname: Ishchenko, V. A. – sequence: 8 givenname: H. M. surname: Kozelets fullname: Kozelets, H. M. – sequence: 9 givenname: A. I. surname: Babenko fullname: Babenko, A. I. – sequence: 10 givenname: S. P. surname: Tanchyk fullname: Tanchyk, S. P. – sequence: 11 givenname: S. M. surname: Mandrovska fullname: Mandrovska, S. M. |
BookMark | eNo9kEtLAzEUhYMoWGvxL2TnajSPySSzlFK1UHCjGzfh5lVSpknJTIX-e6dT8W7uuZfDx-HcoeuUk0fogZInKmpGnwkbR1yhGROMVEwodX3WtK2UYPQWLfp-RwihSlFJ5Qx9r7qjjQ6GmBPOAW998hjsdEJy2Oa9iSmmLQYTuziccMgFH0p2x9H04_EQu86XsyEm3B8mZaB0_nSPbgJ0vV_87Tn6el19Lt-rzcfbevmyqSxr6VAZ440w4EzDTd1wDo5QL1RtnKRggmmtbEVQxMmaO8-VBc9aUjfgpKyZBT5H6wvXZdjpMcEeyklniHp65LLVUIZoO6-NsyS0tAkNmNrQoJQKXjhoA0gXHB9ZjxeWLbnviw__PEr01LC-NMx_AUDecUo |
CitedBy_id | crossref_primary_10_1007_s10681_023_03241_x |
Cites_doi | 10.30835/2413-7510.2021.237022 10.53560/PPASB(58-2)623 10.1007/s10142-012-0299-7 10.3835/plantgenome2013.10.0032 10.3390/agronomy11091769 10.15832/ankutbd.597545 10.37992/2021.1204.186 10.1534/g3.119.400612 10.1186/s43170-021-00051-w 10.23910/IJBSM/2017.8.6.3C0817 10.3389/fnut.2021.694679 10.5513/JCEA01/15.1.1419 10.18782/2320-7051.7664 10.4025/actasciagron.v41i1.42630 10.3168/jds.2017-14082 10.5897/AJB2019.16815 10.1371/journal.pone.0258473 10.1111/pbi.13170 10.9787/PBB.2018.6.3.206 10.33158/ASB.r135.v7.2021 10.1038/s41598-020-68343-1 10.4172/2329-8863.1000401 10.4236/as.2020.114025 10.59665/rar3609 10.33899/edusj.2020.164365 10.1007/s00122-002-1104-0 10.35418/2526-4117/v2n1a4 10.30835/2413-7510.2021.237026 10.3389/fsufs.2021.663445 10.1093/genetics/45.2.155 10.37992/2021.1202.082 10.3390/agronomy11010067 10.3835/plantgenome2016.02.0016 10.18782/2320-7051.7207 10.1093/genetics/43.1.63 10.1104/pp.19.00717 10.1016/S2095-3119(20)63408-6 10.1186/s41065-018-0072-6 10.25174/2249-4065/2019/83719 10.1007/s00122-017-2917-1 10.1007/s00122-014-2384-x 10.1186/s12870-016-0964-4 10.1038/hdy.1956.2 10.5958/0975-928X.2019.00179.0 10.1007/s10681-021-02833-9 10.1155/2020/9390287 10.1111/ppl.12460 10.1007/s00122-017-2880-x 10.3389/fpls.2020.575467 10.21608/agro.2019.15182.1172 10.20546/ijcmas.2019.812.349 10.1002/ppj2.20027 10.1104/pp.110.166249 10.3390/fermentation7010008 10.1371/journal.pone.0260723 10.1371/journal.pone.0178177 10.2298/GENSR1601073A 10.1007/s00122-011-1544-5 10.37992/2021.1204.153 10.3389/fgene.2021.689319 10.3389/fgene.2019.00352 10.15406/bbij.2016.04.00085 10.3389/fpls.2021.774478 10.3389/fgene.2020.00638 10.3390/agronomy11050894 10.3390/agronomy11061177 10.3390/plants11030266 10.1007/s00122-015-2652-4 10.1104/pp.114.250738 10.17557/tjfc.297681 10.21608/jpp.2016.45485 10.3389/fgene.2016.00117 10.2135/cropsci2016.10.0850 10.17140/AFTNSOJ-6-168 10.4236/ajps.2015.69153 10.1186/s12870-019-1828-5 10.1155/2020/8847753 10.1371/journal.pone.0126828 10.1371/journal.pbio.3000215 10.1038/ng.745 10.4067/S0718-58392016000300005 10.1080/02571862.2021.1903106 10.17508/CJFST.2017.9.2.09 10.1007/s00122-010-1342-5 10.1534/g3.118.200760 10.1007/s13197-017-2669-6 10.3126/ijasbt.v7i2.24635 10.52547/pgr.7.2.7 10.3835/plantgenome2017.08.0073 10.1371/journal.pone.0140246 10.2135/cropsci2016.10.0872 10.17221/146/2019-CJFS 10.1002/tpg2.20127 10.1007/s00122-017-2967-4 10.1590/1678-992x-2019-0191 10.32819/021021 10.1007/s00122-018-3164-9 10.1038/s41598-021-96079-z 10.21608/jpp.2019.36261 10.3923/jas.2019.88.95 10.3923/ijpbg.2018.13.18 10.1093/jxb/ery200 10.3389/fpls.2020.00660 10.1111/pbr.12609 10.3390/agronomy11081450 10.13080/z-a.2021.108.006 10.1186/s12863-014-0107-6 10.1071/BI9560463 10.1016/j.cj.2020.04.012 10.3389/fgene.2021.692870 10.1111/jipb.12757 10.21608/agro.2019.5512.1116 10.1038/s41598-020-77467-3 10.1093/genetics/39.6.789 10.37992/2020.1101.017 10.5713/ajas.2011.11435 10.30835/2413-7510.2014.42052 10.1371/journal.pone.0110046 10.21608/agro.2016.252.1025 10.1201/9780585484624 10.1007/s00122-009-0985-6 10.3835/plantgenome2016.05.0046 10.18805/IJARe.A-5680 10.5958/0975-928X.2016.00136.8 10.30835/2413-7510.2017.120421 10.4141/cjps2013-118 10.17582/journal.sja/2017.33.1.22.29 10.3389/fgene.2020.592769 10.1186/s40066-018-0238-5 10.32819/021008 10.1104/pp.114.252882 10.18782/2320-7051.6817 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.15421/022225 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2520-2588 |
EndPage | 206 |
ExternalDocumentID | oai_doaj_org_article_bdc0f916f6ab4b1f888fe5da9fa7dfd3 10_15421_022225 |
GroupedDBID | AAYXX ABDBF ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION EOJEC GROUPED_DOAJ OBODZ RIG |
ID | FETCH-LOGICAL-c291t-bbeb5badb63b4633ad01e584bd71abfb9c795f80d743de38cae29046ad7742ca3 |
IEDL.DBID | DOA |
ISSN | 2519-8521 |
IngestDate | Mon Oct 07 19:35:57 EDT 2024 Fri Aug 23 03:12:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-bbeb5badb63b4633ad01e584bd71abfb9c795f80d743de38cae29046ad7742ca3 |
OpenAccessLink | https://doaj.org/article/bdc0f916f6ab4b1f888fe5da9fa7dfd3 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdc0f916f6ab4b1f888fe5da9fa7dfd3 crossref_primary_10_15421_022225 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Regulatory mechanisms in biosystems |
PublicationYear | 2022 |
Publisher | Oles Honchar Dnipro National University |
Publisher_xml | – name: Oles Honchar Dnipro National University |
References | 32566 32567 32600 32564 32565 32562 32563 32560 32561 32607 32608 32605 32606 32603 32604 32568 32601 32569 32602 32555 32556 32553 32554 32551 32552 32550 32559 32557 32558 32544 32545 32542 32543 32540 32541 32548 32549 32546 32547 32533 32534 32531 32532 32530 32539 32537 32538 32535 32536 32522 32643 32523 32644 32520 32641 32521 32642 32640 32528 32529 32526 32527 32524 32645 32525 32646 32591 32592 32590 32511 32599 32632 32512 32633 32597 32630 32510 32598 32631 32595 32596 32593 32594 32519 32517 32638 32518 32639 32515 32636 32516 32637 32513 32634 32514 32635 32580 32581 32588 32621 32589 32622 32586 32587 32620 32584 32585 32582 32583 32508 32629 32509 32506 32627 32507 32628 32625 32626 32623 32624 32609 32570 32577 32610 32578 32611 32575 32576 32573 32574 32571 32572 32618 32619 32616 32617 32614 32615 32579 32612 32613 |
References_xml | – ident: 32628 doi: 10.30835/2413-7510.2021.237022 – ident: 32508 doi: 10.53560/PPASB(58-2)623 – ident: 32603 doi: 10.1007/s10142-012-0299-7 – ident: 32562 doi: 10.3835/plantgenome2013.10.0032 – ident: 32531 doi: 10.3390/agronomy11091769 – ident: 32530 doi: 10.15832/ankutbd.597545 – ident: 32615 doi: 10.37992/2021.1204.186 – ident: 32552 doi: 10.1534/g3.119.400612 – ident: 32515 doi: 10.1186/s43170-021-00051-w – ident: 32551 doi: 10.23910/IJBSM/2017.8.6.3C0817 – ident: 32610 doi: 10.3389/fnut.2021.694679 – ident: 32586 doi: 10.5513/JCEA01/15.1.1419 – ident: 32519 doi: 10.18782/2320-7051.7664 – ident: 32617 doi: 10.4025/actasciagron.v41i1.42630 – ident: 32639 doi: 10.3168/jds.2017-14082 – ident: 32509 doi: 10.5897/AJB2019.16815 – ident: 32525 doi: 10.1371/journal.pone.0258473 – ident: 32526 doi: 10.1111/pbi.13170 – ident: 32539 doi: 10.9787/PBB.2018.6.3.206 – ident: 32534 doi: 10.33158/ASB.r135.v7.2021 – ident: 32514 doi: 10.1038/s41598-020-68343-1 – ident: 32535 doi: 10.4172/2329-8863.1000401 – ident: 32543 – ident: 32613 doi: 10.4236/as.2020.114025 – ident: 32614 doi: 10.59665/rar3609 – ident: 32516 doi: 10.33899/edusj.2020.164365 – ident: 32517 doi: 10.1007/s00122-002-1104-0 – ident: 32533 doi: 10.35418/2526-4117/v2n1a4 – ident: 32646 doi: 10.30835/2413-7510.2021.237026 – ident: 32553 doi: 10.3389/fsufs.2021.663445 – ident: 32558 doi: 10.1093/genetics/45.2.155 – ident: 32570 doi: 10.37992/2021.1202.082 – ident: 32574 doi: 10.3390/agronomy11010067 – ident: 32608 doi: 10.3835/plantgenome2016.02.0016 – ident: 32587 doi: 10.18782/2320-7051.7207 – ident: 32557 doi: 10.1093/genetics/43.1.63 – ident: 32641 doi: 10.1104/pp.19.00717 – ident: 32638 doi: 10.1016/S2095-3119(20)63408-6 – ident: 32561 – ident: 32640 doi: 10.1186/s41065-018-0072-6 – ident: 32622 doi: 10.25174/2249-4065/2019/83719 – ident: 32513 – ident: 32626 doi: 10.1007/s00122-017-2917-1 – ident: 32573 doi: 10.1007/s00122-014-2384-x – ident: 32635 doi: 10.1186/s12870-016-0964-4 – ident: 32549 doi: 10.1038/hdy.1956.2 – ident: 32621 doi: 10.5958/0975-928X.2019.00179.0 – ident: 32575 – ident: 32602 doi: 10.1007/s10681-021-02833-9 – ident: 32605 doi: 10.1155/2020/9390287 – ident: 32507 – ident: 32589 doi: 10.1111/ppl.12460 – ident: 32597 doi: 10.1007/s00122-017-2880-x – ident: 32550 doi: 10.3389/fpls.2020.575467 – ident: 32594 doi: 10.21608/agro.2019.15182.1172 – ident: 32606 doi: 10.20546/ijcmas.2019.812.349 – ident: 32645 doi: 10.1002/ppj2.20027 – ident: 32537 doi: 10.1104/pp.110.166249 – ident: 32555 doi: 10.3390/fermentation7010008 – ident: 32518 doi: 10.1371/journal.pone.0260723 – ident: 32559 doi: 10.1371/journal.pone.0178177 – ident: 32510 doi: 10.2298/GENSR1601073A – ident: 32567 doi: 10.1007/s00122-011-1544-5 – ident: 32595 doi: 10.37992/2021.1204.153 – ident: 32633 doi: 10.3389/fgene.2021.689319 – ident: 32540 doi: 10.3389/fgene.2019.00352 – ident: 32541 doi: 10.15406/bbij.2016.04.00085 – ident: 32580 doi: 10.3389/fpls.2021.774478 – ident: 32581 doi: 10.3389/fgene.2020.00638 – ident: 32611 doi: 10.3390/agronomy11050894 – ident: 32560 doi: 10.3390/agronomy11061177 – ident: 32544 doi: 10.3390/plants11030266 – ident: 32632 doi: 10.1007/s00122-015-2652-4 – ident: 32536 doi: 10.1104/pp.114.250738 – ident: 32585 doi: 10.17557/tjfc.297681 – ident: 32624 doi: 10.21608/jpp.2016.45485 – ident: 32512 doi: 10.3389/fgene.2016.00117 – ident: 32601 doi: 10.2135/cropsci2016.10.0850 – ident: 32571 doi: 10.17140/AFTNSOJ-6-168 – ident: 32637 doi: 10.4236/ajps.2015.69153 – ident: 32506 doi: 10.1186/s12870-019-1828-5 – ident: 32627 doi: 10.1155/2020/8847753 – ident: 32521 – ident: 32644 doi: 10.1371/journal.pone.0126828 – ident: 32547 doi: 10.1371/journal.pbio.3000215 – ident: 32609 doi: 10.1038/ng.745 – ident: 32604 doi: 10.4067/S0718-58392016000300005 – ident: 32619 doi: 10.1080/02571862.2021.1903106 – ident: 32591 doi: 10.17508/CJFST.2017.9.2.09 – ident: 32524 – ident: 32528 doi: 10.1007/s00122-010-1342-5 – ident: 32612 doi: 10.1534/g3.118.200760 – ident: 32598 doi: 10.1007/s13197-017-2669-6 – ident: 32592 doi: 10.3126/ijasbt.v7i2.24635 – ident: 32529 doi: 10.52547/pgr.7.2.7 – ident: 32634 doi: 10.3835/plantgenome2017.08.0073 – ident: 32583 doi: 10.1371/journal.pone.0140246 – ident: 32522 doi: 10.2135/cropsci2016.10.0872 – ident: 32523 doi: 10.17221/146/2019-CJFS – ident: 32542 doi: 10.1002/tpg2.20127 – ident: 32607 – ident: 32578 doi: 10.1007/s00122-017-2967-4 – ident: 32629 doi: 10.1590/1678-992x-2019-0191 – ident: 32563 doi: 10.32819/021021 – ident: 32584 doi: 10.1007/s00122-018-3164-9 – ident: 32532 doi: 10.1038/s41598-021-96079-z – ident: 32590 – ident: 32554 doi: 10.21608/jpp.2019.36261 – ident: 32564 doi: 10.3923/jas.2019.88.95 – ident: 32569 doi: 10.3923/ijpbg.2018.13.18 – ident: 32630 doi: 10.1093/jxb/ery200 – ident: 32642 doi: 10.3389/fpls.2020.00660 – ident: 32596 doi: 10.1111/pbr.12609 – ident: 32568 doi: 10.3390/agronomy11081450 – ident: 32623 doi: 10.13080/z-a.2021.108.006 – ident: 32600 doi: 10.1186/s12863-014-0107-6 – ident: 32548 doi: 10.1071/BI9560463 – ident: 32631 doi: 10.1016/j.cj.2020.04.012 – ident: 32577 doi: 10.3389/fgene.2021.692870 – ident: 32620 doi: 10.1111/jipb.12757 – ident: 32511 doi: 10.21608/agro.2019.5512.1116 – ident: 32520 doi: 10.1038/s41598-020-77467-3 – ident: 32556 doi: 10.1093/genetics/39.6.789 – ident: 32576 doi: 10.37992/2020.1101.017 – ident: 32643 doi: 10.5713/ajas.2011.11435 – ident: 32599 doi: 10.30835/2413-7510.2014.42052 – ident: 32593 doi: 10.1371/journal.pone.0110046 – ident: 32588 doi: 10.21608/agro.2016.252.1025 – ident: 32618 doi: 10.1201/9780585484624 – ident: 32527 doi: 10.1007/s00122-009-0985-6 – ident: 32582 doi: 10.3835/plantgenome2016.05.0046 – ident: 32546 doi: 10.18805/IJARe.A-5680 – ident: 32566 doi: 10.5958/0975-928X.2016.00136.8 – ident: 32572 doi: 10.30835/2413-7510.2017.120421 – ident: 32538 doi: 10.4141/cjps2013-118 – ident: 32616 doi: 10.17582/journal.sja/2017.33.1.22.29 – ident: 32565 doi: 10.3389/fgene.2020.592769 – ident: 32636 doi: 10.1186/s40066-018-0238-5 – ident: 32545 doi: 10.32819/021008 – ident: 32625 doi: 10.1104/pp.114.252882 – ident: 32579 doi: 10.18782/2320-7051.6817 |
SSID | ssj0001881717 ssib050737334 |
Score | 2.2258918 |
Snippet | The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin,... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 197 |
SubjectTerms | hordeum vulgare l.; phenotypic dominance; mode of inheritance; parameters of genetic variation; general combining ability |
Title | Elucidation of gene action and combining ability for productive tillering in spring barley |
URI | https://doaj.org/article/bdc0f916f6ab4b1f888fe5da9fa7dfd3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yELyIP3FOJQevZU2zNulRZWMIenIwvJS8vAQG0g3pDvvvfUmK9ObFa5uG8uXR972k7_sYe6QUJKSm6kSZymbEwCEzSpQZlGgq7VSOsW_t7b1armav63I9sPoK_4QleeAE3BTQ5p44jK8MzEB4qti8o4lqbxR6TDqfeT0opiiSiORIJXvhs7jborVQ0X43dGpmmpJW6qAlBlGIaah6gln2IDUNFPxjqlmcsdOeI_Kn9G7n7Mi1F-w4uUYeLtnn_GtvN8kLiW89pxBwPPUncNMipxiCaPvAkwb3gRMx5bsk7UofN97F_r8wYNPydDDLIZy6H67YajH_eFlmvUVCZotadBmAgxIMQiVhVklpMBeOOAWgEgY81FbVpdc5ElFAJ7U1rqipJDZItK-wRl6zUbtt3Q3jVmHhvIUc6XkbNGuAgC4VeIHE6-yYhvToNLukhNGECiIA2CQAx-w5oPZ7O0hXxwu0oE2_oM1fC3r7H5NM2EkR-hTiXskdG3Xfe3dP7KGDhxgoP_JVxAY |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidation+of+gene+action+and+combining+ability+for+productive+tillering+in+spring+barley&rft.jtitle=Regulatory+mechanisms+in+biosystems&rft.au=V.+M.+Hudzenko&rft.au=T.+P.+Polishchuk&rft.au=A.+A.+Lysenko&rft.au=I.+V.+Fedorenko&rft.date=2022-01-01&rft.pub=Oles+Honchar+Dnipro+National+University&rft.issn=2519-8521&rft.eissn=2520-2588&rft.volume=13&rft.issue=2&rft.spage=197&rft.epage=206&rft_id=info:doi/10.15421%2F022225&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bdc0f916f6ab4b1f888fe5da9fa7dfd3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2519-8521&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2519-8521&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2519-8521&client=summon |