Adaptive occlusion hybrid second-order attention network for head pose estimation
Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention recognition, and human-computer interaction. However, there are two challenging problems in HPE, the first one is that in real application scenari...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 15; no. 2; pp. 667 - 683 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention recognition, and human-computer interaction. However, there are two challenging problems in HPE, the first one is that in real application scenarios, occlusion is very common, which affects the accuracy of HPE to a great extent. The second is that most research works use Euler angles to represent the head pose, which may lead to problems in neural network optimization. To solve these problems, an adaptive occlusion hybrid second-order attention network model was proposed. First, facial landmarks were detected by the occlusion-aware module to generate heat maps reflecting the presence or absence of occlusion in the specific facial parts, thereby enhancing features in the non-occluded parts of the face and suppressing features in the occluded regions. Meanwhile, we designed a novel second-order information attention module to interact with spatial and channel information using second-order statistical information, such that the model learns the feature correlations of different facial parts while paying more attention to important channels and suppressing redundant ones to further reduce the effect of occlusion and excavate more powerful features. Furthermore, to avoid ambiguity in common head pose representation, we introduced an exponential map to represent the head pose and designed a prediction framework capable of capturing the geometry of the pose space. The results of the experiments showed that the proposed model was competitive with methods using depth information from the BIWI dataset and achieved obvious advantages on the challenging AFLW2000 dataset, with more robust performance under large poses and occlusion interference, and stronger robustness compared with other models. |
---|---|
AbstractList | Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention recognition, and human-computer interaction. However, there are two challenging problems in HPE, the first one is that in real application scenarios, occlusion is very common, which affects the accuracy of HPE to a great extent. The second is that most research works use Euler angles to represent the head pose, which may lead to problems in neural network optimization. To solve these problems, an adaptive occlusion hybrid second-order attention network model was proposed. First, facial landmarks were detected by the occlusion-aware module to generate heat maps reflecting the presence or absence of occlusion in the specific facial parts, thereby enhancing features in the non-occluded parts of the face and suppressing features in the occluded regions. Meanwhile, we designed a novel second-order information attention module to interact with spatial and channel information using second-order statistical information, such that the model learns the feature correlations of different facial parts while paying more attention to important channels and suppressing redundant ones to further reduce the effect of occlusion and excavate more powerful features. Furthermore, to avoid ambiguity in common head pose representation, we introduced an exponential map to represent the head pose and designed a prediction framework capable of capturing the geometry of the pose space. The results of the experiments showed that the proposed model was competitive with methods using depth information from the BIWI dataset and achieved obvious advantages on the challenging AFLW2000 dataset, with more robust performance under large poses and occlusion interference, and stronger robustness compared with other models. |
Author | Xie, Kai Yang, Sheng Fu, Qi Wen, Chang Zhang, Wei He, Jianbiao Tian, Hongling |
Author_xml | – sequence: 1 givenname: Qi surname: Fu fullname: Fu, Qi organization: School of Electronic Information, Yangtze University, Western Research Institute of Yangtze University, Yangtze University – sequence: 2 givenname: Kai orcidid: 0000-0003-3991-2771 surname: Xie fullname: Xie, Kai email: pami2009@163.com organization: School of Electronic Information, Yangtze University, Western Research Institute of Yangtze University, Yangtze University – sequence: 3 givenname: Chang surname: Wen fullname: Wen, Chang organization: Western Research Institute of Yangtze University, Yangtze University – sequence: 4 givenname: Jianbiao surname: He fullname: He, Jianbiao organization: School of Computer science, Central South University – sequence: 5 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: School of Computer science, Central South University – sequence: 6 givenname: Hongling surname: Tian fullname: Tian, Hongling organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences – sequence: 7 givenname: Sheng surname: Yang fullname: Yang, Sheng organization: College of Computer Science and Electronic Engineering, Hunan University |
BookMark | eNp9kM9OAjEQxhuDiYi8gKe-QHW63WXbIyH-ISExJhy8Nd12VhaxJW3R8PYuYDx4YC4zyXy_yTffNRn44JGQWw53HKC-T1xAWTAoBAOuhGDiggy5nEgmQb4N_uaaX5FxSmvoawJCQDEkr1Nntrn7Qhqs3exSFzxd7ZvYOZrQBu9YiA4jNTmjz4etx_wd4gdtQ6QrNI5uQ0KKKXef5iC4IZet2SQc__YRWT4-LGfPbPHyNJ9NF8wWimfWqKYujVSytmVbu0qWFSjZWHQ1ctXY1k4MyFYWnAMKax1iI2wlUZXOKCtGRJ7O2hhSithq2-WjgRxNt9Ec9CEcfQpH9-HoYzha9GjxD93G3nzcn4fECUq92L9j1Ouwi77_8Bz1A4Mpe2w |
CitedBy_id | crossref_primary_10_1007_s13042_024_02336_8 |
Cites_doi | 10.3390/e24070974 10.1080/19942060.2022.2053786 10.1016/j.neucom.2020.09.068 10.1080/19942060.2021.2009374 10.1109/TAFFC.2019.2908837 10.1007/S11269-021-02920-5 10.1016/j.patcog.2022.108591 10.1109/TPAMI.2008.106 10.1109/TPAMI.2017.2781233 10.1109/TMM.2021.3081873 10.1561/0600000001 10.1016/j.patcog.2021.108210 10.1016/j.neucom.2018.12.074 10.1080/19942060.2021.1974093 10.1007/s10489-021-02491-3 10.1109/LSP.2016.2603342 10.1002/rnc.3319 10.1109/TAC.2018.2797162 10.1016/j.aquaeng.2020.102053 10.1109/TMM.2015.2482819 10.1109/TPAMI.2020.2983935 10.1109/TMM.2018.2866770 10.1007/s11263-012-0549-0 10.1002/acs.3396 10.1109/TPAMI.2019.2913372 10.1609/aaai.v34i07.6974 10.1109/CVPRW53098.2021.00162 10.1109/FG.2018.00126 10.1109/3DV.2014.54 10.1109/ICCVW.2013.59 10.1109/CVPR.2017.167 10.1007/978-0-387-21554-9_2 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00124 10.1109/CVPR46437.2021.01350 10.1109/CVPR.2019.00118 10.1109/CVPR.2019.01132 10.1109/CVPR.2018.00045 10.1109/CVPRW.2018.00281 10.1109/CVPR42600.2020.01176 10.1109/TIP.2018.2886767 10.1109/MVT.2021.3140047 10.1109/TSMC.2022.3225381 10.1109/WACV48630.2021.00123 10.1109/CVPR.2016.23 10.1007/s10489-021-02886-2 10.1016/j.neucom.2020.12.090 10.1109/FG.2017.149 10.1109/ICCV.2017.116 10.1109/WACV51458.2022.00127 10.1109/CVPR.2013.446 10.1007/978-3-030-58529-7_10 10.1109/FG52635.2021.9667080 10.1109/CVPR.2014.241 10.1109/CVPR.2016.90 10.1109/CVPR.2018.00047 10.1109/CVPR42600.2020.01155 10.1109/ICECIE47765.2019.8974824 10.1007/978-3-030-01234-2_1 10.1109/ITSC55140.2022.9922277 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13042-023-01933-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 683 |
ExternalDocumentID | 10_1007_s13042_023_01933_3 |
GrantInformation_xml | – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region grantid: 2020D01A131 – fundername: National Natural Science Foundation of China grantid: 62272485 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Teaching and Research Fund of Yangtze University grantid: JY2020101 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c291t-b9b74a8987c4f7d5845098bced7e19bcfc6a08f82110e3ccdeeb3c58e94da9c3 |
IEDL.DBID | U2A |
ISSN | 1868-8071 |
IngestDate | Thu Apr 24 22:57:33 EDT 2025 Tue Jul 01 03:51:04 EDT 2025 Fri Feb 21 02:41:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Attention mechanism Exponential map Occlusion-aware Head pose estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b9b74a8987c4f7d5845098bced7e19bcfc6a08f82110e3ccdeeb3c58e94da9c3 |
ORCID | 0000-0003-3991-2771 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1007_s13042_023_01933_3 crossref_primary_10_1007_s13042_023_01933_3 springer_journals_10_1007_s13042_023_01933_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240200 2024-02-00 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | Murphy-Chutorian, Trivedi (CR1) 2009; 31 Bosch, Dmello (CR4) 2021; 12 Hsu, Wu, Wan (CR35) 2019; 21 Zhang, Zhang, Li (CR56) 2016; 23 CR39 Stojanovic, Nedic (CR7) 2016; 26 Abate, Bisogni, Castiglione (CR17) 2022; 127 CR38 CR36 CR33 CR32 CR30 Banan, Nasiri, Taheri-Garavand (CR8) 2020; 89 CR2 CR3 CR5 Hu, Shen, Sun (CR43) 2020; 42 CR49 Ranjan, Patel, Chellappa (CR20) 2019; 41 CR46 Zhuang, Tao, Chen (CR6) 2022; 36 CR44 CR42 Fanelli, Dantone, Gall (CR54) 2013; 101 CR41 Lee (CR48) 2018; 63 Wang, Du, Chau (CR12) 2021; 35 Xu, Jung, Chang (CR31) 2021; 121 Wang, Liu (CR37) 2022; 52 Mukherjee, Robertson (CR60) 2015; 17 Chen, Zhang, Kashani (CR9) 2022; 16 Xu, Chen, Gan (CR47) 2019; 337 Liu, Fang, Zhang (CR34) 2021; 24 CR18 CR16 CR15 CR59 CR14 CR58 CR57 CR55 CR53 Lepetit, Fua (CR13) 2005; 1 CR52 Chen, Sharifrazi, Liang (CR11) 2022; 16 CR51 CR50 Dong, Yu, Weng (CR19) 2021; 43 Afan, Ibrahem Ahmed Osman, Essam (CR10) 2021; 15 CR29 CR28 CR27 CR26 CR25 CR24 CR23 Zhu, Yang, Zhao (CR40) 2022; 24 CR22 CR21 CR63 CR62 Liu, Nie, Zhang (CR45) 2021; 433 CR61 H Liu (1933_CR34) 2021; 24 H Liu (1933_CR45) 2021; 433 1933_CR38 SS Mukherjee (1933_CR60) 2015; 17 1933_CR36 X Zhu (1933_CR40) 2022; 24 1933_CR39 1933_CR30 G Fanelli (1933_CR54) 2013; 101 1933_CR33 1933_CR32 H-W Hsu (1933_CR35) 2019; 21 1933_CR27 1933_CR5 1933_CR26 1933_CR2 1933_CR25 1933_CR3 1933_CR24 LH Xu (1933_CR47) 2019; 337 1933_CR29 1933_CR28 E Murphy-Chutorian (1933_CR1) 2009; 31 1933_CR63 1933_CR62 1933_CR61 HA Afan (1933_CR10) 2021; 15 1933_CR23 A Banan (1933_CR8) 2020; 89 1933_CR22 1933_CR21 V Lepetit (1933_CR13) 2005; 1 AF Abate (1933_CR17) 2022; 127 C Chen (1933_CR9) 2022; 16 K Wang (1933_CR37) 2022; 52 Y-Q Xu (1933_CR31) 2021; 121 J Hu (1933_CR43) 2020; 42 1933_CR16 1933_CR15 1933_CR59 1933_CR14 1933_CR58 X Dong (1933_CR19) 2021; 43 1933_CR57 1933_CR18 R Ranjan (1933_CR20) 2019; 41 1933_CR52 1933_CR51 1933_CR50 1933_CR55 1933_CR53 N Bosch (1933_CR4) 2021; 12 W Chen (1933_CR11) 2022; 16 W Wang (1933_CR12) 2021; 35 Z Zhuang (1933_CR6) 2022; 36 V Stojanovic (1933_CR7) 2016; 26 1933_CR49 KP Zhang (1933_CR56) 2016; 23 1933_CR46 1933_CR41 T Lee (1933_CR48) 2018; 63 1933_CR44 1933_CR42 |
References_xml | – ident: CR22 – ident: CR49 – ident: CR39 – ident: CR16 – ident: CR51 – volume: 24 start-page: 974 issue: 7 year: 2022 ident: CR40 article-title: An Improved Tiered Head Pose Estimation Network with Self-Adjust Loss Function publication-title: Entropy doi: 10.3390/e24070974 – ident: CR29 – ident: CR61 – ident: CR58 – volume: 16 start-page: 965 issue: 1 year: 2022 end-page: 976 ident: CR11 article-title: Accurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unit publication-title: Eng Appl of Comput Fluid Mech doi: 10.1080/19942060.2022.2053786 – ident: CR25 – ident: CR42 – volume: 433 start-page: 310 year: 2021 end-page: 322 ident: CR45 article-title: Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.068 – volume: 16 start-page: 248 issue: 1 year: 2022 end-page: 261 ident: CR9 article-title: Forecast of rainfall distribution based on fixed sliding window long short-term memory publication-title: Eng Appl of Comput Fluid Mech doi: 10.1080/19942060.2021.2009374 – ident: CR21 – ident: CR46 – ident: CR15 – ident: CR50 – volume: 12 start-page: 974 issue: 4 year: 2021 end-page: 988 ident: CR4 article-title: Automatic detection of mind wandering from video in the lab and in the classroom publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2019.2908837 – volume: 35 start-page: 4695 year: 2021 end-page: 4726 ident: CR12 article-title: An ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural network publication-title: Water Resour Manag doi: 10.1007/S11269-021-02920-5 – ident: CR57 – volume: 127 year: 2022 ident: CR17 article-title: Head pose estimation: An extensive survey on recent techniques and applications publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108591 – volume: 31 start-page: 607 issue: 4 year: 2009 end-page: 626 ident: CR1 article-title: Head pose estimation in computer vision: a survey publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.106 – ident: CR32 – volume: 41 start-page: 121 issue: 1 year: 2019 end-page: 135 ident: CR20 article-title: Hyperface: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2781233 – volume: 24 start-page: 2449 year: 2021 end-page: 2460 ident: CR34 article-title: MFDNet: Collaborative poses perception and matrix Fisher distribution for head pose estimation publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2021.3081873 – ident: CR36 – ident: CR5 – ident: CR26 – volume: 1 start-page: 1 issue: 1 year: 2005 end-page: 89 ident: CR13 article-title: Monocular Model-Based 3D Tracking of Rigid Objects: A Survey publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000001 – ident: CR18 – volume: 121 year: 2021 ident: CR31 article-title: Head pose estimation using deep neural networks and 3D point clouds publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.108210 – volume: 337 start-page: 339 year: 2019 end-page: 353 ident: CR47 article-title: Head pose estimation with soft labels using regularized convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.074 – ident: CR14 – ident: CR2 – volume: 15 start-page: 1420 issue: 1 year: 2021 end-page: 1439 ident: CR10 article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques publication-title: Eng Appl of Comput Fluid Mech doi: 10.1080/19942060.2021.1974093 – ident: CR53 – ident: CR30 – volume: 52 start-page: 2070 issue: 2 year: 2022 end-page: 2091 ident: CR37 article-title: YOLOv3-MT: A YOLOv3 using multi-target tracking for vehicle visual detection publication-title: Appl Intell doi: 10.1007/s10489-021-02491-3 – ident: CR33 – ident: CR63 – ident: CR27 – volume: 23 start-page: 1499 issue: 10 year: 2016 end-page: 1503 ident: CR56 article-title: Joint Face Detection and Alignment using Multitask Cascaded Convolutional Networks publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2603342 – volume: 26 start-page: 445 issue: 3 year: 2016 end-page: 460 ident: CR7 article-title: Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise publication-title: Int J of Robust and Nonlinear Control doi: 10.1002/rnc.3319 – ident: CR23 – volume: 63 start-page: 3377 issue: 10 year: 2018 end-page: 3392 ident: CR48 article-title: Bayesian attitude estimation with the matrix fisher distribution on SO(3) publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2018.2797162 – ident: CR44 – volume: 89 year: 2020 ident: CR8 article-title: Deep learning-based appearance features extraction for automated carp species identification publication-title: Aquac Eng doi: 10.1016/j.aquaeng.2020.102053 – ident: CR3 – ident: CR38 – ident: CR52 – volume: 17 start-page: 2094 issue: 11 year: 2015 end-page: 2107 ident: CR60 article-title: Deep head pose: Gaze-direction estimation in multimodal video publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2015.2482819 – volume: 43 start-page: 3681 issue: 10 year: 2021 end-page: 3694 ident: CR19 article-title: Supervision by Registration and Triangulation for Landmark Detection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2983935 – volume: 21 start-page: 1035 issue: 4 year: 2019 end-page: 1046 ident: CR35 article-title: Quatnet: Quaternion-Based Head Pose Estimation with Multiregression Loss publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2866770 – volume: 101 start-page: 437 issue: 3 year: 2013 end-page: 458 ident: CR54 article-title: Random Forests for Real Time 3D Face Analysis publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0549-0 – volume: 36 start-page: 1196 issue: 5 year: 2022 end-page: 1215 ident: CR6 article-title: Iterative learning control for repetitive tasks with randomly varying trial lengths using successive projection publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.3396 – ident: CR55 – ident: CR59 – ident: CR28 – ident: CR41 – ident: CR62 – volume: 42 start-page: 2011 issue: 8 year: 2020 end-page: 2023 ident: CR43 article-title: Squeeze-and-excitation networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2913372 – ident: CR24 – volume: 17 start-page: 2094 issue: 11 year: 2015 ident: 1933_CR60 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2015.2482819 – ident: 1933_CR28 doi: 10.1609/aaai.v34i07.6974 – ident: 1933_CR59 doi: 10.1109/CVPRW53098.2021.00162 – ident: 1933_CR52 – ident: 1933_CR2 doi: 10.1109/FG.2018.00126 – volume: 52 start-page: 2070 issue: 2 year: 2022 ident: 1933_CR37 publication-title: Appl Intell doi: 10.1007/s10489-021-02491-3 – volume: 35 start-page: 4695 year: 2021 ident: 1933_CR12 publication-title: Water Resour Manag doi: 10.1007/S11269-021-02920-5 – ident: 1933_CR62 doi: 10.1109/3DV.2014.54 – volume: 121 year: 2021 ident: 1933_CR31 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.108210 – ident: 1933_CR55 doi: 10.1109/ICCVW.2013.59 – ident: 1933_CR61 doi: 10.1109/CVPR.2017.167 – volume: 16 start-page: 248 issue: 1 year: 2022 ident: 1933_CR9 publication-title: Eng Appl of Comput Fluid Mech doi: 10.1080/19942060.2021.2009374 – volume: 1 start-page: 1 issue: 1 year: 2005 ident: 1933_CR13 publication-title: Found Trends Comput Graph Vis doi: 10.1561/0600000001 – ident: 1933_CR16 doi: 10.1007/978-0-387-21554-9_2 – ident: 1933_CR3 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00124 – ident: 1933_CR53 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 1933_CR56 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2603342 – ident: 1933_CR51 doi: 10.1109/CVPR46437.2021.01350 – ident: 1933_CR27 doi: 10.1109/CVPR.2019.00118 – volume: 24 start-page: 974 issue: 7 year: 2022 ident: 1933_CR40 publication-title: Entropy doi: 10.3390/e24070974 – ident: 1933_CR57 – ident: 1933_CR15 doi: 10.1109/CVPR.2019.01132 – volume: 21 start-page: 1035 issue: 4 year: 2019 ident: 1933_CR35 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2866770 – ident: 1933_CR18 doi: 10.1109/CVPR.2018.00045 – volume: 433 start-page: 310 year: 2021 ident: 1933_CR45 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.068 – ident: 1933_CR26 doi: 10.1109/CVPRW.2018.00281 – ident: 1933_CR14 doi: 10.1109/CVPR42600.2020.01176 – ident: 1933_CR42 doi: 10.1109/TIP.2018.2886767 – ident: 1933_CR32 doi: 10.1109/MVT.2021.3140047 – volume: 63 start-page: 3377 issue: 10 year: 2018 ident: 1933_CR48 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2018.2797162 – volume: 24 start-page: 2449 year: 2021 ident: 1933_CR34 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2021.3081873 – ident: 1933_CR5 doi: 10.1109/TSMC.2022.3225381 – ident: 1933_CR33 doi: 10.1109/WACV48630.2021.00123 – volume: 26 start-page: 445 issue: 3 year: 2016 ident: 1933_CR7 publication-title: Int J of Robust and Nonlinear Control doi: 10.1002/rnc.3319 – ident: 1933_CR24 doi: 10.1109/CVPR.2016.23 – ident: 1933_CR38 doi: 10.1007/s10489-021-02886-2 – ident: 1933_CR46 doi: 10.1016/j.neucom.2020.12.090 – volume: 12 start-page: 974 issue: 4 year: 2021 ident: 1933_CR4 publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2019.2908837 – ident: 1933_CR21 doi: 10.1109/FG.2017.149 – ident: 1933_CR22 doi: 10.1109/ICCV.2017.116 – volume: 36 start-page: 1196 issue: 5 year: 2022 ident: 1933_CR6 publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.3396 – volume: 337 start-page: 339 year: 2019 ident: 1933_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.074 – volume: 101 start-page: 437 issue: 3 year: 2013 ident: 1933_CR54 publication-title: Int J Comput Vis doi: 10.1007/s11263-012-0549-0 – volume: 31 start-page: 607 issue: 4 year: 2009 ident: 1933_CR1 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.106 – ident: 1933_CR29 doi: 10.1109/WACV51458.2022.00127 – ident: 1933_CR39 – volume: 42 start-page: 2011 issue: 8 year: 2020 ident: 1933_CR43 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2913372 – ident: 1933_CR23 doi: 10.1109/CVPR.2013.446 – ident: 1933_CR25 doi: 10.1007/978-3-030-58529-7_10 – volume: 43 start-page: 3681 issue: 10 year: 2021 ident: 1933_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2983935 – ident: 1933_CR30 doi: 10.1109/FG52635.2021.9667080 – ident: 1933_CR58 doi: 10.1109/CVPR.2014.241 – ident: 1933_CR49 doi: 10.1109/CVPR.2016.90 – ident: 1933_CR50 doi: 10.1109/CVPR.2018.00047 – ident: 1933_CR63 doi: 10.1109/CVPR42600.2020.01155 – ident: 1933_CR36 doi: 10.1109/ICECIE47765.2019.8974824 – volume: 89 year: 2020 ident: 1933_CR8 publication-title: Aquac Eng doi: 10.1016/j.aquaeng.2020.102053 – volume: 16 start-page: 965 issue: 1 year: 2022 ident: 1933_CR11 publication-title: Eng Appl of Comput Fluid Mech doi: 10.1080/19942060.2022.2053786 – volume: 41 start-page: 121 issue: 1 year: 2019 ident: 1933_CR20 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2781233 – ident: 1933_CR44 doi: 10.1007/978-3-030-01234-2_1 – volume: 15 start-page: 1420 issue: 1 year: 2021 ident: 1933_CR10 publication-title: Eng Appl of Comput Fluid Mech doi: 10.1080/19942060.2021.1974093 – ident: 1933_CR41 doi: 10.1109/ITSC55140.2022.9922277 – volume: 127 year: 2022 ident: 1933_CR17 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108591 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.3121717 |
Snippet | Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 667 |
SubjectTerms | Artificial Intelligence Complex Systems Computational Intelligence Control Engineering Mechatronics Original Article Pattern Recognition Robotics Systems Biology |
Title | Adaptive occlusion hybrid second-order attention network for head pose estimation |
URI | https://link.springer.com/article/10.1007/s13042-023-01933-3 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBbFWsj7IHD4oGkmweu8dWWotiQWihnkL2ETyUtJj24L93Jtm0FkTwkkDYJDA7u_N9uzPfEnIDiCKMtPScVKRAUPDCfWYcYBKhrzPOmMYF_ddxNJoGz7NwZovCijrbvd6SLGfqbbEbMm8HYgzQX6DhDtsnzRC5O3jx1O_VXsQ81FfZBlnGglJnarPy4kbwrEpG5BFHNV7PVtP8_pvdiLW7XVpGoeExObLwkfaq_m6RPZO3yeEPUcE2adnhWtBbqyl9d0Leejpd4sxGF0rN17hERj--sFqLFkiJtVNqcFJU2yzzH2le5YdTALUUJmxNl4vCUNTkqIodT8lkOJg8jhx7moKjfOGtHClkHKRc8FgFWawBeABW4FIZHRtPSJWpKHV5xpERGqaUNsCzVciNCHQqFDsjjXyRm3NCpS8k1ghlYNnA8DBlgMNcN40EfMQNvA7xaoMlyiqN44EX82SrkYxGTsDISWnkhHXI_eadZaWz8Wfrh7ofEjvmij-aX_yv-SU5ALcKqtzsK9JYfa7NNUCPleySZm_Y74_x_vT-MuiWnvcNqYXN9w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D-pB3FScnzl4UDTQNv1IjkMcU7eBsMFuJV_Fw-iG3Q7-97606eZABl56KEkLL8l7v1_y3i8I3QGiiGItfSK4AIJiHyyghgCTiAKdMUq13dAfDOPeOHybRBNXFFbU2e71kWTpqdfFbpZ5E4gxQH-BhhO6i_YADDCbyDUOOvUsor7VV1kHWUrDUmdqtfPixfCuSkZkMbNqvL6rpvn7N5sRa_O4tIxC3WN05OAj7lTj3UQ7Jm-hw1-igi3UdMu1wPdOU_rhBH10tJhbz4ZnSk2XdosMf37bai1cWEqsSanBia3aZpn_iPMqPxwDqMXgsDWezwqDrSZHVex4ikbdl9Fzj7jbFIgKuL8gksskFIyzRIVZogF4AFZgUhmdGJ9LlalYeCxjlhEaqpQ2wLNVxAwPteCKnqFGPsvNOcIy4NLWCGVg2dCwSFDAYZ4nYg4f8UK_jfzaYKlySuP2wotputZItkZOwchpaeSUttHjqs-80tnY2vqpHofUrbliS_OL_zW_Rfu90aCf9l-H75foIAAYU-VpX6HG4mtprgGGLORNOet-AJwfzdo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB60guhBbFWs6xw8KBpMMllmjkUtdSsKLfQWJjMTPJQ02PTgv_e9LF1ACl5yCJME3izv-2be94WQK0AUfqBjx5JCAkHBC3eZsYBJ-K5OOGMaN_Tf-0Fv6L2M_NGSir-odq-PJEtNA7o0pfl9ppP7hfANWbgF-QaoMFByi22SLViOHRzXQ7dTjyjmoNfKIuEy5hWeU_NdGDuAe2VhIg84OvM6lbLm78-sZq_Vo9MiI3X3yV4FJWmn7Psm2TBpi-wuGQy2SLOaulN6XflL3xyQz46WGa5ydKLUeIbbZfTrB5VbdIr0WFuFHydF582iFpKmZa04BYBLYfHWNJtMDUV_jlL4eEgG3afBQ8-q_qxgKVc4uRWLOPQkFzxUXhJqACGAG3isjA6NI2KVqEDaPOHIDg1TShvg3MrnRnhaCsWOSCOdpOaY0NgVMeqFEoisZ7gvGWAy25aBgJfYntMmTh2wSFWu4_jzi3G08EvGIEcQ5KgIcsTa5Hb-TFZ6bqxtfVf3Q1TNv-ma5if_a35Jtj8eu9Hbc__1lOy4gGjKku0z0si_Z-YcEEkeXxSD7hfyT9IW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+occlusion+hybrid+second-order+attention+network+for+head+pose+estimation&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Fu%2C+Qi&rft.au=Xie%2C+Kai&rft.au=Wen%2C+Chang&rft.au=He%2C+Jianbiao&rft.date=2024-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=2&rft.spage=667&rft.epage=683&rft_id=info:doi/10.1007%2Fs13042-023-01933-3&rft.externalDocID=10_1007_s13042_023_01933_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |