Adaptive occlusion hybrid second-order attention network for head pose estimation

Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention recognition, and human-computer interaction. However, there are two challenging problems in HPE, the first one is that in real application scenari...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 2; pp. 667 - 683
Main Authors Fu, Qi, Xie, Kai, Wen, Chang, He, Jianbiao, Zhang, Wei, Tian, Hongling, Yang, Sheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention recognition, and human-computer interaction. However, there are two challenging problems in HPE, the first one is that in real application scenarios, occlusion is very common, which affects the accuracy of HPE to a great extent. The second is that most research works use Euler angles to represent the head pose, which may lead to problems in neural network optimization. To solve these problems, an adaptive occlusion hybrid second-order attention network model was proposed. First, facial landmarks were detected by the occlusion-aware module to generate heat maps reflecting the presence or absence of occlusion in the specific facial parts, thereby enhancing features in the non-occluded parts of the face and suppressing features in the occluded regions. Meanwhile, we designed a novel second-order information attention module to interact with spatial and channel information using second-order statistical information, such that the model learns the feature correlations of different facial parts while paying more attention to important channels and suppressing redundant ones to further reduce the effect of occlusion and excavate more powerful features. Furthermore, to avoid ambiguity in common head pose representation, we introduced an exponential map to represent the head pose and designed a prediction framework capable of capturing the geometry of the pose space. The results of the experiments showed that the proposed model was competitive with methods using depth information from the BIWI dataset and achieved obvious advantages on the challenging AFLW2000 dataset, with more robust performance under large poses and occlusion interference, and stronger robustness compared with other models.
AbstractList Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention recognition, and human-computer interaction. However, there are two challenging problems in HPE, the first one is that in real application scenarios, occlusion is very common, which affects the accuracy of HPE to a great extent. The second is that most research works use Euler angles to represent the head pose, which may lead to problems in neural network optimization. To solve these problems, an adaptive occlusion hybrid second-order attention network model was proposed. First, facial landmarks were detected by the occlusion-aware module to generate heat maps reflecting the presence or absence of occlusion in the specific facial parts, thereby enhancing features in the non-occluded parts of the face and suppressing features in the occluded regions. Meanwhile, we designed a novel second-order information attention module to interact with spatial and channel information using second-order statistical information, such that the model learns the feature correlations of different facial parts while paying more attention to important channels and suppressing redundant ones to further reduce the effect of occlusion and excavate more powerful features. Furthermore, to avoid ambiguity in common head pose representation, we introduced an exponential map to represent the head pose and designed a prediction framework capable of capturing the geometry of the pose space. The results of the experiments showed that the proposed model was competitive with methods using depth information from the BIWI dataset and achieved obvious advantages on the challenging AFLW2000 dataset, with more robust performance under large poses and occlusion interference, and stronger robustness compared with other models.
Author Xie, Kai
Yang, Sheng
Fu, Qi
Wen, Chang
Zhang, Wei
He, Jianbiao
Tian, Hongling
Author_xml – sequence: 1
  givenname: Qi
  surname: Fu
  fullname: Fu, Qi
  organization: School of Electronic Information, Yangtze University, Western Research Institute of Yangtze University, Yangtze University
– sequence: 2
  givenname: Kai
  orcidid: 0000-0003-3991-2771
  surname: Xie
  fullname: Xie, Kai
  email: pami2009@163.com
  organization: School of Electronic Information, Yangtze University, Western Research Institute of Yangtze University, Yangtze University
– sequence: 3
  givenname: Chang
  surname: Wen
  fullname: Wen, Chang
  organization: Western Research Institute of Yangtze University, Yangtze University
– sequence: 4
  givenname: Jianbiao
  surname: He
  fullname: He, Jianbiao
  organization: School of Computer science, Central South University
– sequence: 5
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: School of Computer science, Central South University
– sequence: 6
  givenname: Hongling
  surname: Tian
  fullname: Tian, Hongling
  organization: Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
– sequence: 7
  givenname: Sheng
  surname: Yang
  fullname: Yang, Sheng
  organization: College of Computer Science and Electronic Engineering, Hunan University
BookMark eNp9kM9OAjEQxhuDiYi8gKe-QHW63WXbIyH-ISExJhy8Nd12VhaxJW3R8PYuYDx4YC4zyXy_yTffNRn44JGQWw53HKC-T1xAWTAoBAOuhGDiggy5nEgmQb4N_uaaX5FxSmvoawJCQDEkr1Nntrn7Qhqs3exSFzxd7ZvYOZrQBu9YiA4jNTmjz4etx_wd4gdtQ6QrNI5uQ0KKKXef5iC4IZet2SQc__YRWT4-LGfPbPHyNJ9NF8wWimfWqKYujVSytmVbu0qWFSjZWHQ1ctXY1k4MyFYWnAMKax1iI2wlUZXOKCtGRJ7O2hhSithq2-WjgRxNt9Ec9CEcfQpH9-HoYzha9GjxD93G3nzcn4fECUq92L9j1Ouwi77_8Bz1A4Mpe2w
CitedBy_id crossref_primary_10_1007_s13042_024_02336_8
Cites_doi 10.3390/e24070974
10.1080/19942060.2022.2053786
10.1016/j.neucom.2020.09.068
10.1080/19942060.2021.2009374
10.1109/TAFFC.2019.2908837
10.1007/S11269-021-02920-5
10.1016/j.patcog.2022.108591
10.1109/TPAMI.2008.106
10.1109/TPAMI.2017.2781233
10.1109/TMM.2021.3081873
10.1561/0600000001
10.1016/j.patcog.2021.108210
10.1016/j.neucom.2018.12.074
10.1080/19942060.2021.1974093
10.1007/s10489-021-02491-3
10.1109/LSP.2016.2603342
10.1002/rnc.3319
10.1109/TAC.2018.2797162
10.1016/j.aquaeng.2020.102053
10.1109/TMM.2015.2482819
10.1109/TPAMI.2020.2983935
10.1109/TMM.2018.2866770
10.1007/s11263-012-0549-0
10.1002/acs.3396
10.1109/TPAMI.2019.2913372
10.1609/aaai.v34i07.6974
10.1109/CVPRW53098.2021.00162
10.1109/FG.2018.00126
10.1109/3DV.2014.54
10.1109/ICCVW.2013.59
10.1109/CVPR.2017.167
10.1007/978-0-387-21554-9_2
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00124
10.1109/CVPR46437.2021.01350
10.1109/CVPR.2019.00118
10.1109/CVPR.2019.01132
10.1109/CVPR.2018.00045
10.1109/CVPRW.2018.00281
10.1109/CVPR42600.2020.01176
10.1109/TIP.2018.2886767
10.1109/MVT.2021.3140047
10.1109/TSMC.2022.3225381
10.1109/WACV48630.2021.00123
10.1109/CVPR.2016.23
10.1007/s10489-021-02886-2
10.1016/j.neucom.2020.12.090
10.1109/FG.2017.149
10.1109/ICCV.2017.116
10.1109/WACV51458.2022.00127
10.1109/CVPR.2013.446
10.1007/978-3-030-58529-7_10
10.1109/FG52635.2021.9667080
10.1109/CVPR.2014.241
10.1109/CVPR.2016.90
10.1109/CVPR.2018.00047
10.1109/CVPR42600.2020.01155
10.1109/ICECIE47765.2019.8974824
10.1007/978-3-030-01234-2_1
10.1109/ITSC55140.2022.9922277
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13042-023-01933-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 683
ExternalDocumentID 10_1007_s13042_023_01933_3
GrantInformation_xml – fundername: Natural Science Foundation of Xinjiang Uygur Autonomous Region
  grantid: 2020D01A131
– fundername: National Natural Science Foundation of China
  grantid: 62272485
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Teaching and Research Fund of Yangtze University
  grantid: JY2020101
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c291t-b9b74a8987c4f7d5845098bced7e19bcfc6a08f82110e3ccdeeb3c58e94da9c3
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Thu Apr 24 22:57:33 EDT 2025
Tue Jul 01 03:51:04 EDT 2025
Fri Feb 21 02:41:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Attention mechanism
Exponential map
Occlusion-aware
Head pose estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b9b74a8987c4f7d5845098bced7e19bcfc6a08f82110e3ccdeeb3c58e94da9c3
ORCID 0000-0003-3991-2771
PageCount 17
ParticipantIDs crossref_citationtrail_10_1007_s13042_023_01933_3
crossref_primary_10_1007_s13042_023_01933_3
springer_journals_10_1007_s13042_023_01933_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Murphy-Chutorian, Trivedi (CR1) 2009; 31
Bosch, Dmello (CR4) 2021; 12
Hsu, Wu, Wan (CR35) 2019; 21
Zhang, Zhang, Li (CR56) 2016; 23
CR39
Stojanovic, Nedic (CR7) 2016; 26
Abate, Bisogni, Castiglione (CR17) 2022; 127
CR38
CR36
CR33
CR32
CR30
Banan, Nasiri, Taheri-Garavand (CR8) 2020; 89
CR2
CR3
CR5
Hu, Shen, Sun (CR43) 2020; 42
CR49
Ranjan, Patel, Chellappa (CR20) 2019; 41
CR46
Zhuang, Tao, Chen (CR6) 2022; 36
CR44
CR42
Fanelli, Dantone, Gall (CR54) 2013; 101
CR41
Lee (CR48) 2018; 63
Wang, Du, Chau (CR12) 2021; 35
Xu, Jung, Chang (CR31) 2021; 121
Wang, Liu (CR37) 2022; 52
Mukherjee, Robertson (CR60) 2015; 17
Chen, Zhang, Kashani (CR9) 2022; 16
Xu, Chen, Gan (CR47) 2019; 337
Liu, Fang, Zhang (CR34) 2021; 24
CR18
CR16
CR15
CR59
CR14
CR58
CR57
CR55
CR53
Lepetit, Fua (CR13) 2005; 1
CR52
Chen, Sharifrazi, Liang (CR11) 2022; 16
CR51
CR50
Dong, Yu, Weng (CR19) 2021; 43
Afan, Ibrahem Ahmed Osman, Essam (CR10) 2021; 15
CR29
CR28
CR27
CR26
CR25
CR24
CR23
Zhu, Yang, Zhao (CR40) 2022; 24
CR22
CR21
CR63
CR62
Liu, Nie, Zhang (CR45) 2021; 433
CR61
H Liu (1933_CR34) 2021; 24
H Liu (1933_CR45) 2021; 433
1933_CR38
SS Mukherjee (1933_CR60) 2015; 17
1933_CR36
X Zhu (1933_CR40) 2022; 24
1933_CR39
1933_CR30
G Fanelli (1933_CR54) 2013; 101
1933_CR33
1933_CR32
H-W Hsu (1933_CR35) 2019; 21
1933_CR27
1933_CR5
1933_CR26
1933_CR2
1933_CR25
1933_CR3
1933_CR24
LH Xu (1933_CR47) 2019; 337
1933_CR29
1933_CR28
E Murphy-Chutorian (1933_CR1) 2009; 31
1933_CR63
1933_CR62
1933_CR61
HA Afan (1933_CR10) 2021; 15
1933_CR23
A Banan (1933_CR8) 2020; 89
1933_CR22
1933_CR21
V Lepetit (1933_CR13) 2005; 1
AF Abate (1933_CR17) 2022; 127
C Chen (1933_CR9) 2022; 16
K Wang (1933_CR37) 2022; 52
Y-Q Xu (1933_CR31) 2021; 121
J Hu (1933_CR43) 2020; 42
1933_CR16
1933_CR15
1933_CR59
1933_CR14
1933_CR58
X Dong (1933_CR19) 2021; 43
1933_CR57
1933_CR18
R Ranjan (1933_CR20) 2019; 41
1933_CR52
1933_CR51
1933_CR50
1933_CR55
1933_CR53
N Bosch (1933_CR4) 2021; 12
W Chen (1933_CR11) 2022; 16
W Wang (1933_CR12) 2021; 35
Z Zhuang (1933_CR6) 2022; 36
V Stojanovic (1933_CR7) 2016; 26
1933_CR49
KP Zhang (1933_CR56) 2016; 23
1933_CR46
1933_CR41
T Lee (1933_CR48) 2018; 63
1933_CR44
1933_CR42
References_xml – ident: CR22
– ident: CR49
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 24
  start-page: 974
  issue: 7
  year: 2022
  ident: CR40
  article-title: An Improved Tiered Head Pose Estimation Network with Self-Adjust Loss Function
  publication-title: Entropy
  doi: 10.3390/e24070974
– ident: CR29
– ident: CR61
– ident: CR58
– volume: 16
  start-page: 965
  issue: 1
  year: 2022
  end-page: 976
  ident: CR11
  article-title: Accurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unit
  publication-title: Eng Appl of Comput Fluid Mech
  doi: 10.1080/19942060.2022.2053786
– ident: CR25
– ident: CR42
– volume: 433
  start-page: 310
  year: 2021
  end-page: 322
  ident: CR45
  article-title: Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.068
– volume: 16
  start-page: 248
  issue: 1
  year: 2022
  end-page: 261
  ident: CR9
  article-title: Forecast of rainfall distribution based on fixed sliding window long short-term memory
  publication-title: Eng Appl of Comput Fluid Mech
  doi: 10.1080/19942060.2021.2009374
– ident: CR21
– ident: CR46
– ident: CR15
– ident: CR50
– volume: 12
  start-page: 974
  issue: 4
  year: 2021
  end-page: 988
  ident: CR4
  article-title: Automatic detection of mind wandering from video in the lab and in the classroom
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2019.2908837
– volume: 35
  start-page: 4695
  year: 2021
  end-page: 4726
  ident: CR12
  article-title: An ensemble hybrid forecasting model for annual runoff based on sample entropy, secondary decomposition, and long short-term memory neural network
  publication-title: Water Resour Manag
  doi: 10.1007/S11269-021-02920-5
– ident: CR57
– volume: 127
  year: 2022
  ident: CR17
  article-title: Head pose estimation: An extensive survey on recent techniques and applications
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108591
– volume: 31
  start-page: 607
  issue: 4
  year: 2009
  end-page: 626
  ident: CR1
  article-title: Head pose estimation in computer vision: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.106
– ident: CR32
– volume: 41
  start-page: 121
  issue: 1
  year: 2019
  end-page: 135
  ident: CR20
  article-title: Hyperface: A Deep Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2781233
– volume: 24
  start-page: 2449
  year: 2021
  end-page: 2460
  ident: CR34
  article-title: MFDNet: Collaborative poses perception and matrix Fisher distribution for head pose estimation
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2021.3081873
– ident: CR36
– ident: CR5
– ident: CR26
– volume: 1
  start-page: 1
  issue: 1
  year: 2005
  end-page: 89
  ident: CR13
  article-title: Monocular Model-Based 3D Tracking of Rigid Objects: A Survey
  publication-title: Found Trends Comput Graph Vis
  doi: 10.1561/0600000001
– ident: CR18
– volume: 121
  year: 2021
  ident: CR31
  article-title: Head pose estimation using deep neural networks and 3D point clouds
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.108210
– volume: 337
  start-page: 339
  year: 2019
  end-page: 353
  ident: CR47
  article-title: Head pose estimation with soft labels using regularized convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.074
– ident: CR14
– ident: CR2
– volume: 15
  start-page: 1420
  issue: 1
  year: 2021
  end-page: 1439
  ident: CR10
  article-title: Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
  publication-title: Eng Appl of Comput Fluid Mech
  doi: 10.1080/19942060.2021.1974093
– ident: CR53
– ident: CR30
– volume: 52
  start-page: 2070
  issue: 2
  year: 2022
  end-page: 2091
  ident: CR37
  article-title: YOLOv3-MT: A YOLOv3 using multi-target tracking for vehicle visual detection
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02491-3
– ident: CR33
– ident: CR63
– ident: CR27
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  end-page: 1503
  ident: CR56
  article-title: Joint Face Detection and Alignment using Multitask Cascaded Convolutional Networks
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2603342
– volume: 26
  start-page: 445
  issue: 3
  year: 2016
  end-page: 460
  ident: CR7
  article-title: Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non-Gaussian noise
  publication-title: Int J of Robust and Nonlinear Control
  doi: 10.1002/rnc.3319
– ident: CR23
– volume: 63
  start-page: 3377
  issue: 10
  year: 2018
  end-page: 3392
  ident: CR48
  article-title: Bayesian attitude estimation with the matrix fisher distribution on SO(3)
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2018.2797162
– ident: CR44
– volume: 89
  year: 2020
  ident: CR8
  article-title: Deep learning-based appearance features extraction for automated carp species identification
  publication-title: Aquac Eng
  doi: 10.1016/j.aquaeng.2020.102053
– ident: CR3
– ident: CR38
– ident: CR52
– volume: 17
  start-page: 2094
  issue: 11
  year: 2015
  end-page: 2107
  ident: CR60
  article-title: Deep head pose: Gaze-direction estimation in multimodal video
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2015.2482819
– volume: 43
  start-page: 3681
  issue: 10
  year: 2021
  end-page: 3694
  ident: CR19
  article-title: Supervision by Registration and Triangulation for Landmark Detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2983935
– volume: 21
  start-page: 1035
  issue: 4
  year: 2019
  end-page: 1046
  ident: CR35
  article-title: Quatnet: Quaternion-Based Head Pose Estimation with Multiregression Loss
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2018.2866770
– volume: 101
  start-page: 437
  issue: 3
  year: 2013
  end-page: 458
  ident: CR54
  article-title: Random Forests for Real Time 3D Face Analysis
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-012-0549-0
– volume: 36
  start-page: 1196
  issue: 5
  year: 2022
  end-page: 1215
  ident: CR6
  article-title: Iterative learning control for repetitive tasks with randomly varying trial lengths using successive projection
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.3396
– ident: CR55
– ident: CR59
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  end-page: 2023
  ident: CR43
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2913372
– ident: CR24
– volume: 17
  start-page: 2094
  issue: 11
  year: 2015
  ident: 1933_CR60
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2015.2482819
– ident: 1933_CR28
  doi: 10.1609/aaai.v34i07.6974
– ident: 1933_CR59
  doi: 10.1109/CVPRW53098.2021.00162
– ident: 1933_CR52
– ident: 1933_CR2
  doi: 10.1109/FG.2018.00126
– volume: 52
  start-page: 2070
  issue: 2
  year: 2022
  ident: 1933_CR37
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02491-3
– volume: 35
  start-page: 4695
  year: 2021
  ident: 1933_CR12
  publication-title: Water Resour Manag
  doi: 10.1007/S11269-021-02920-5
– ident: 1933_CR62
  doi: 10.1109/3DV.2014.54
– volume: 121
  year: 2021
  ident: 1933_CR31
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.108210
– ident: 1933_CR55
  doi: 10.1109/ICCVW.2013.59
– ident: 1933_CR61
  doi: 10.1109/CVPR.2017.167
– volume: 16
  start-page: 248
  issue: 1
  year: 2022
  ident: 1933_CR9
  publication-title: Eng Appl of Comput Fluid Mech
  doi: 10.1080/19942060.2021.2009374
– volume: 1
  start-page: 1
  issue: 1
  year: 2005
  ident: 1933_CR13
  publication-title: Found Trends Comput Graph Vis
  doi: 10.1561/0600000001
– ident: 1933_CR16
  doi: 10.1007/978-0-387-21554-9_2
– ident: 1933_CR3
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00124
– ident: 1933_CR53
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 1933_CR56
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2603342
– ident: 1933_CR51
  doi: 10.1109/CVPR46437.2021.01350
– ident: 1933_CR27
  doi: 10.1109/CVPR.2019.00118
– volume: 24
  start-page: 974
  issue: 7
  year: 2022
  ident: 1933_CR40
  publication-title: Entropy
  doi: 10.3390/e24070974
– ident: 1933_CR57
– ident: 1933_CR15
  doi: 10.1109/CVPR.2019.01132
– volume: 21
  start-page: 1035
  issue: 4
  year: 2019
  ident: 1933_CR35
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2018.2866770
– ident: 1933_CR18
  doi: 10.1109/CVPR.2018.00045
– volume: 433
  start-page: 310
  year: 2021
  ident: 1933_CR45
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.068
– ident: 1933_CR26
  doi: 10.1109/CVPRW.2018.00281
– ident: 1933_CR14
  doi: 10.1109/CVPR42600.2020.01176
– ident: 1933_CR42
  doi: 10.1109/TIP.2018.2886767
– ident: 1933_CR32
  doi: 10.1109/MVT.2021.3140047
– volume: 63
  start-page: 3377
  issue: 10
  year: 2018
  ident: 1933_CR48
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2018.2797162
– volume: 24
  start-page: 2449
  year: 2021
  ident: 1933_CR34
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2021.3081873
– ident: 1933_CR5
  doi: 10.1109/TSMC.2022.3225381
– ident: 1933_CR33
  doi: 10.1109/WACV48630.2021.00123
– volume: 26
  start-page: 445
  issue: 3
  year: 2016
  ident: 1933_CR7
  publication-title: Int J of Robust and Nonlinear Control
  doi: 10.1002/rnc.3319
– ident: 1933_CR24
  doi: 10.1109/CVPR.2016.23
– ident: 1933_CR38
  doi: 10.1007/s10489-021-02886-2
– ident: 1933_CR46
  doi: 10.1016/j.neucom.2020.12.090
– volume: 12
  start-page: 974
  issue: 4
  year: 2021
  ident: 1933_CR4
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2019.2908837
– ident: 1933_CR21
  doi: 10.1109/FG.2017.149
– ident: 1933_CR22
  doi: 10.1109/ICCV.2017.116
– volume: 36
  start-page: 1196
  issue: 5
  year: 2022
  ident: 1933_CR6
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.3396
– volume: 337
  start-page: 339
  year: 2019
  ident: 1933_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.074
– volume: 101
  start-page: 437
  issue: 3
  year: 2013
  ident: 1933_CR54
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-012-0549-0
– volume: 31
  start-page: 607
  issue: 4
  year: 2009
  ident: 1933_CR1
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.106
– ident: 1933_CR29
  doi: 10.1109/WACV51458.2022.00127
– ident: 1933_CR39
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  ident: 1933_CR43
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2913372
– ident: 1933_CR23
  doi: 10.1109/CVPR.2013.446
– ident: 1933_CR25
  doi: 10.1007/978-3-030-58529-7_10
– volume: 43
  start-page: 3681
  issue: 10
  year: 2021
  ident: 1933_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2983935
– ident: 1933_CR30
  doi: 10.1109/FG52635.2021.9667080
– ident: 1933_CR58
  doi: 10.1109/CVPR.2014.241
– ident: 1933_CR49
  doi: 10.1109/CVPR.2016.90
– ident: 1933_CR50
  doi: 10.1109/CVPR.2018.00047
– ident: 1933_CR63
  doi: 10.1109/CVPR42600.2020.01155
– ident: 1933_CR36
  doi: 10.1109/ICECIE47765.2019.8974824
– volume: 89
  year: 2020
  ident: 1933_CR8
  publication-title: Aquac Eng
  doi: 10.1016/j.aquaeng.2020.102053
– volume: 16
  start-page: 965
  issue: 1
  year: 2022
  ident: 1933_CR11
  publication-title: Eng Appl of Comput Fluid Mech
  doi: 10.1080/19942060.2022.2053786
– volume: 41
  start-page: 121
  issue: 1
  year: 2019
  ident: 1933_CR20
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2781233
– ident: 1933_CR44
  doi: 10.1007/978-3-030-01234-2_1
– volume: 15
  start-page: 1420
  issue: 1
  year: 2021
  ident: 1933_CR10
  publication-title: Eng Appl of Comput Fluid Mech
  doi: 10.1080/19942060.2021.1974093
– ident: 1933_CR41
  doi: 10.1109/ITSC55140.2022.9922277
– volume: 127
  year: 2022
  ident: 1933_CR17
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108591
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3121717
Snippet Head pose estimation (HPE) is a challenging and critical research subject with a wide range of applications in areas such as driver monitoring, attention...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Engineering
Mechatronics
Original Article
Pattern Recognition
Robotics
Systems Biology
Title Adaptive occlusion hybrid second-order attention network for head pose estimation
URI https://link.springer.com/article/10.1007/s13042-023-01933-3
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBbFWsj7IHD4oGkmweu8dWWotiQWihnkL2ETyUtJj24L93Jtm0FkTwkkDYJDA7u_N9uzPfEnIDiCKMtPScVKRAUPDCfWYcYBKhrzPOmMYF_ddxNJoGz7NwZovCijrbvd6SLGfqbbEbMm8HYgzQX6DhDtsnzRC5O3jx1O_VXsQ81FfZBlnGglJnarPy4kbwrEpG5BFHNV7PVtP8_pvdiLW7XVpGoeExObLwkfaq_m6RPZO3yeEPUcE2adnhWtBbqyl9d0Leejpd4sxGF0rN17hERj--sFqLFkiJtVNqcFJU2yzzH2le5YdTALUUJmxNl4vCUNTkqIodT8lkOJg8jhx7moKjfOGtHClkHKRc8FgFWawBeABW4FIZHRtPSJWpKHV5xpERGqaUNsCzVciNCHQqFDsjjXyRm3NCpS8k1ghlYNnA8DBlgMNcN40EfMQNvA7xaoMlyiqN44EX82SrkYxGTsDISWnkhHXI_eadZaWz8Wfrh7ofEjvmij-aX_yv-SU5ALcKqtzsK9JYfa7NNUCPleySZm_Y74_x_vT-MuiWnvcNqYXN9w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D-pB3FScnzl4UDTQNv1IjkMcU7eBsMFuJV_Fw-iG3Q7-97606eZABl56KEkLL8l7v1_y3i8I3QGiiGItfSK4AIJiHyyghgCTiAKdMUq13dAfDOPeOHybRBNXFFbU2e71kWTpqdfFbpZ5E4gxQH-BhhO6i_YADDCbyDUOOvUsor7VV1kHWUrDUmdqtfPixfCuSkZkMbNqvL6rpvn7N5sRa_O4tIxC3WN05OAj7lTj3UQ7Jm-hw1-igi3UdMu1wPdOU_rhBH10tJhbz4ZnSk2XdosMf37bai1cWEqsSanBia3aZpn_iPMqPxwDqMXgsDWezwqDrSZHVex4ikbdl9Fzj7jbFIgKuL8gksskFIyzRIVZogF4AFZgUhmdGJ9LlalYeCxjlhEaqpQ2wLNVxAwPteCKnqFGPsvNOcIy4NLWCGVg2dCwSFDAYZ4nYg4f8UK_jfzaYKlySuP2wotputZItkZOwchpaeSUttHjqs-80tnY2vqpHofUrbliS_OL_zW_Rfu90aCf9l-H75foIAAYU-VpX6HG4mtprgGGLORNOet-AJwfzdo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB60guhBbFWs6xw8KBpMMllmjkUtdSsKLfQWJjMTPJQ02PTgv_e9LF1ACl5yCJME3izv-2be94WQK0AUfqBjx5JCAkHBC3eZsYBJ-K5OOGMaN_Tf-0Fv6L2M_NGSir-odq-PJEtNA7o0pfl9ppP7hfANWbgF-QaoMFByi22SLViOHRzXQ7dTjyjmoNfKIuEy5hWeU_NdGDuAe2VhIg84OvM6lbLm78-sZq_Vo9MiI3X3yV4FJWmn7Psm2TBpi-wuGQy2SLOaulN6XflL3xyQz46WGa5ydKLUeIbbZfTrB5VbdIr0WFuFHydF582iFpKmZa04BYBLYfHWNJtMDUV_jlL4eEgG3afBQ8-q_qxgKVc4uRWLOPQkFzxUXhJqACGAG3isjA6NI2KVqEDaPOHIDg1TShvg3MrnRnhaCsWOSCOdpOaY0NgVMeqFEoisZ7gvGWAy25aBgJfYntMmTh2wSFWu4_jzi3G08EvGIEcQ5KgIcsTa5Hb-TFZ6bqxtfVf3Q1TNv-ma5if_a35Jtj8eu9Hbc__1lOy4gGjKku0z0si_Z-YcEEkeXxSD7hfyT9IW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+occlusion+hybrid+second-order+attention+network+for+head+pose+estimation&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Fu%2C+Qi&rft.au=Xie%2C+Kai&rft.au=Wen%2C+Chang&rft.au=He%2C+Jianbiao&rft.date=2024-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=2&rft.spage=667&rft.epage=683&rft_id=info:doi/10.1007%2Fs13042-023-01933-3&rft.externalDocID=10_1007_s13042_023_01933_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon