2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition

The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to a...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 7; no. 4; pp. 10367 - 10374
Main Authors Jeong, Hwayeong, Feng, Jirou, Kim, Jung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to accelerate customized sensor fabrication from design to production. The customized textile-based sensor provides high wearing comfort and improves the sensor signal quality through stable contact. We implemented a foam-filled electrode to ensure solid skin-electrode contact even during perspiration and varying pressure conditions, and evaluated its performance experimentally. The sensor-integrated garments one for the leg and one for the arm were fabricated with the proposed design method for further evaluation and application. Consistent sensor performance was demonstrated during squats and running (i.e., perspiration) while wearing the leg sensor. The sensor sleeve for the arm was integrated with intention recognition algorithms for hand gesture recognition. A Convolutional Neural Network (CNN) architecture was employed to classify 28 hand gestures, including finger and wrist motions. The average classification accuracy of five subjects achieved 93.21%, and further increased to 94.34% after perspiration.
AbstractList The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to accelerate customized sensor fabrication from design to production. The customized textile-based sensor provides high wearing comfort and improves the sensor signal quality through stable contact. We implemented a foam-filled electrode to ensure solid skin-electrode contact even during perspiration and varying pressure conditions, and evaluated its performance experimentally. The sensor-integrated garments one for the leg and one for the arm were fabricated with the proposed design method for further evaluation and application. Consistent sensor performance was demonstrated during squats and running (i.e., perspiration) while wearing the leg sensor. The sensor sleeve for the arm was integrated with intention recognition algorithms for hand gesture recognition. A Convolutional Neural Network (CNN) architecture was employed to classify 28 hand gestures, including finger and wrist motions. The average classification accuracy of five subjects achieved 93.21%, and further increased to 94.34% after perspiration.
Author Feng, Jirou
Kim, Jung
Jeong, Hwayeong
Author_xml – sequence: 1
  givenname: Hwayeong
  orcidid: 0000-0002-0840-7425
  surname: Jeong
  fullname: Jeong, Hwayeong
  email: jhy1268@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
– sequence: 2
  givenname: Jirou
  orcidid: 0000-0002-7399-6596
  surname: Feng
  fullname: Feng, Jirou
  email: fengjirou@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
– sequence: 3
  givenname: Jung
  orcidid: 0000-0002-1825-6325
  surname: Kim
  fullname: Kim, Jung
  email: jungkim@kaist.ac.kr
  organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
BookMark eNp9kMtLAzEYxIMoWB93wUvA89Y8usnGm1arhRVBKx6X7O63JaVNNElBvfivmz4Q8eBpJjAz4fsdoF3rLCB0QkmfUqLOy8fLPiOM9TlVRDCyg3qMS5lxKcTuL7-PjkOYEUJoziRXeQ99sX5-jUsdwGfDZYzGTrOr9GrxcBmiW5jPZEe69qbR0TiLXYdLl0IT8Av8Atrreg54Au_RJA0397f4CWxw_gKPvFvgawhmanF0eGwj2PXGIzRuas3KH6G9Ts8DHG_1ED2PbibDu6x8uB0PL8usYYrGrC6EIG2rJSOq0Ip3tOaUdLIQULTAZStaSDIoaFfwuuF1lyjkZNDlGhihmh-is83uq3dvSwixmrmlt-nLigkl8zTPeEqJTarxLgQPXdWYuL47em3mFSXVineVeFcr3tWWdyqSP8VXbxbaf_xXOd1UDAD8xFXBFBOSfwM0hYw_
CODEN IRALC6
CitedBy_id crossref_primary_10_3788_CJL231372
crossref_primary_10_1109_TNSRE_2022_3196361
crossref_primary_10_3389_fnins_2023_1238176
crossref_primary_10_1016_j_cej_2023_147819
crossref_primary_10_1109_TII_2023_3280312
crossref_primary_10_1109_TIM_2024_3480235
Cites_doi 10.1109/EMBC44109.2020.9176485
10.1109/TNSRE.2016.2633506
10.1109/IWW-BCI.2016.7457459
10.1080/00405160802597479
10.3390/s22020666
10.1186/s12938-015-0044-2
10.3390/s19081954
10.1109/TNSRE.2019.2916397
10.1038/s41598-019-42027-x
10.1109/CACS.2018.8606762
10.3390/electronics8050479
10.1038/ncomms4266
10.1109/JSEN.2019.2912667
10.1109/MeMeA.2015.7145176
10.1155/2019/3679174
10.3389/fnins.2017.00033
10.1109/PHT.2013.6461326
10.3390/s20041196
10.3390/polym10060663
10.1109/JBHI.2020.3009383
10.1109/TITB.2010.2040832
10.1177/0040517519858768
10.1007/s10854-019-02047-9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3190620
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 10374
ExternalDocumentID 10_1109_LRA_2022_3190620
9829267
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Ministry of Science and ICT
  grantid: NRF-2020M3C1B8A01111567
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-b8660dda72098a93f1b310f786e8de37d6dee37481f83bc3bf620504f5ae201a3
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Mon Jun 30 03:43:26 EDT 2025
Wed Aug 27 16:27:46 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Wed Aug 27 02:23:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b8660dda72098a93f1b310f786e8de37d6dee37481f83bc3bf620504f5ae201a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7399-6596
0000-0002-0840-7425
0000-0002-1825-6325
PQID 2697566023
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2022_3190620
proquest_journals_2697566023
crossref_citationtrail_10_1109_LRA_2022_3190620
ieee_primary_9829267
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Stegeman (ref19) 2007; 10
ref24
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/EMBC44109.2020.9176485
– volume: 10
  start-page: 8
  year: 2007
  ident: ref19
  article-title: Standards for surface electromyography: The European project surface EMG for non-invasive assessment of muscles (SENIAM
  publication-title: Enschede: Roessingh Res. Develop.
– ident: ref10
  doi: 10.1109/TNSRE.2016.2633506
– ident: ref15
  doi: 10.1109/IWW-BCI.2016.7457459
– ident: ref5
  doi: 10.1080/00405160802597479
– ident: ref7
  doi: 10.3390/s22020666
– ident: ref21
  doi: 10.1186/s12938-015-0044-2
– ident: ref8
  doi: 10.3390/s19081954
– ident: ref12
  doi: 10.1109/TNSRE.2019.2916397
– ident: ref20
  doi: 10.1038/s41598-019-42027-x
– ident: ref1
  doi: 10.1109/CACS.2018.8606762
– ident: ref4
  doi: 10.3390/electronics8050479
– ident: ref18
  doi: 10.1038/ncomms4266
– ident: ref17
  doi: 10.1109/JSEN.2019.2912667
– ident: ref11
  doi: 10.1109/MeMeA.2015.7145176
– ident: ref14
  doi: 10.1155/2019/3679174
– ident: ref23
  doi: 10.3389/fnins.2017.00033
– ident: ref3
  doi: 10.1109/PHT.2013.6461326
– ident: ref9
  doi: 10.3390/s20041196
– ident: ref22
  doi: 10.3390/polym10060663
– ident: ref24
  doi: 10.1109/JBHI.2020.3009383
– ident: ref2
  doi: 10.1109/TITB.2010.2040832
– ident: ref6
  doi: 10.1177/0040517519858768
– ident: ref16
  doi: 10.1007/s10854-019-02047-9
SSID ssj0001527395
Score 2.257597
Snippet The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10367
SubjectTerms Algorithms
Artificial neural networks
Contact pressure
Customization
Cutting wear
Electrodes
Electromyography
Fabrication
Fabrics
Gesture recognition
Hand (anatomy)
Intention recognition
Laser beam cutting
Man-machine interfaces
Performance evaluation
Perspiration
Robot sensing systems
sEMG sensor
Sensors
Signal quality
soft sensors and actuators
wearable robotics
Wearable technology
Wires
Wrist
Title 2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition
URI https://ieeexplore.ieee.org/document/9829267
https://www.proquest.com/docview/2697566023
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED7EmZKhjyRF3TzAIUuByqYpiSK7JY7doLA7pA6aTSBFEijaWIUiLRnSv94jJblPFNkkgSQIHXn3HfnxI8ApRnFLC0xyDCtclEhDI5Vi1qqLRCGeyCh-9myLD_zyOnl_k95swZvNWRhrbSCf2ZF_DHv5piwav1Q2loJJxrMBDDBxa89q_VxP8UpiMu13IqkcL67OMP9jDNNSL8ZLf4s84SqVv_xvCCrzp7Dsu9NySb6MmlqPivs_lBof299n8KRDl-SsHQ7PYcuu92D3F83BffjORukFWWDwqqJpE1jP0Tm-GTJtEAjefr7Hx7nSVbeYR0pHFiUWWqEPJ59wYvjDVmSFTh0dCrmbLd-Rj5gLl9VbMq_KW3IROCGkLkmgx4c2rnqaUrk-gOv5bDW9jLpbGKKCyUkdacE5NUZljEqhZOwmGiGhywS3wtg4M9xY60VsJk7Euoi1w3-d0sSlyiK6UPEL2F6Xa_sSyERx4RTOeaa4V8IXcRI7g6BDGy44tUMY9xbKi06i3N-U8TUPqQqVOdo09zbNO5sO4fWmxrdWnuM_Zfe9iTblOusM4agfBHk3f-9yxmWGQBcBzat_1zqEHd92S-s7gu26auwxwpNan8Bg-TA7CaPzBx7q4sU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfJWKhQI-cEEiu46TODa3su2yQLaHshW9RXZsSwi6QWly6YW_zthJlk8hbklkJ1bGnnljPz8DPMcobmmFSY5hlYtSaWikMsxadZUqxBM5xceebXHCl2fpu_PsfAdebvfCWGsD-cxO_WVYyzd11fmpspkUTDKeX4PrGPezuN-t9WNGxWuJyWxci6RyVpweYgbIGCamXo6X_hJ7wmEqf3jgEFYWd2A1Nqhnk3yedq2eVle_aTX-b4vvwu0BX5LDvkPcgx27uQ-3flId3INvbJodkQLDVxPNu8B7jl7jnSHzDqHgxacrvFwo3QzTeaR2pKix0Bq9OPmIQ8NvtyJrdOvoUsjl8eoN-YDZcN28IoumviBHgRVC2poEgnx4x-lIVKo3D-BscbyeL6PhHIaoYjJuIy04p8aonFEplExcrBEUulxwK4xNcsONtV7GJnYi0VWiHf7rjKYuUxbxhUr2YXdTb-xDILHiwikc9Uxxr4UvkjRxBmGHNlxwaicwGy1UVoNIuT8r40sZkhUqS7Rp6W1aDjadwIttja-9QMc_yu55E23LDdaZwMHYCcphBF-WjMscoS5Cmkd_r_UMbizXq6Is3p68fww3_Xd6kt8B7LZNZ58gWGn109BHvwO8puTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2.5D+Laser-Cutting-Based+Customized+Fabrication+of+Long-Term+Wearable+Textile+sEMG+Sensor%3A+From+Design+to+Intention+Recognition&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Jeong%2C+Hwayeong&rft.au=Feng%2C+Jirou&rft.au=Jung%2C+Kim&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=4&rft.spage=10367&rft_id=info:doi/10.1109%2FLRA.2022.3190620&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon