2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition
The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to a...
Saved in:
Published in | IEEE robotics and automation letters Vol. 7; no. 4; pp. 10367 - 10374 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to accelerate customized sensor fabrication from design to production. The customized textile-based sensor provides high wearing comfort and improves the sensor signal quality through stable contact. We implemented a foam-filled electrode to ensure solid skin-electrode contact even during perspiration and varying pressure conditions, and evaluated its performance experimentally. The sensor-integrated garments one for the leg and one for the arm were fabricated with the proposed design method for further evaluation and application. Consistent sensor performance was demonstrated during squats and running (i.e., perspiration) while wearing the leg sensor. The sensor sleeve for the arm was integrated with intention recognition algorithms for hand gesture recognition. A Convolutional Neural Network (CNN) architecture was employed to classify 28 hand gestures, including finger and wrist motions. The average classification accuracy of five subjects achieved 93.21%, and further increased to 94.34% after perspiration. |
---|---|
AbstractList | The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG systems to wearable devices, these are inconvenient and not suitable for long-term use. Herein, we introduce a 2.5D laser cutting method to accelerate customized sensor fabrication from design to production. The customized textile-based sensor provides high wearing comfort and improves the sensor signal quality through stable contact. We implemented a foam-filled electrode to ensure solid skin-electrode contact even during perspiration and varying pressure conditions, and evaluated its performance experimentally. The sensor-integrated garments one for the leg and one for the arm were fabricated with the proposed design method for further evaluation and application. Consistent sensor performance was demonstrated during squats and running (i.e., perspiration) while wearing the leg sensor. The sensor sleeve for the arm was integrated with intention recognition algorithms for hand gesture recognition. A Convolutional Neural Network (CNN) architecture was employed to classify 28 hand gestures, including finger and wrist motions. The average classification accuracy of five subjects achieved 93.21%, and further increased to 94.34% after perspiration. |
Author | Feng, Jirou Kim, Jung Jeong, Hwayeong |
Author_xml | – sequence: 1 givenname: Hwayeong orcidid: 0000-0002-0840-7425 surname: Jeong fullname: Jeong, Hwayeong email: jhy1268@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea – sequence: 2 givenname: Jirou orcidid: 0000-0002-7399-6596 surname: Feng fullname: Feng, Jirou email: fengjirou@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea – sequence: 3 givenname: Jung orcidid: 0000-0002-1825-6325 surname: Kim fullname: Kim, Jung email: jungkim@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea |
BookMark | eNp9kMtLAzEYxIMoWB93wUvA89Y8usnGm1arhRVBKx6X7O63JaVNNElBvfivmz4Q8eBpJjAz4fsdoF3rLCB0QkmfUqLOy8fLPiOM9TlVRDCyg3qMS5lxKcTuL7-PjkOYEUJoziRXeQ99sX5-jUsdwGfDZYzGTrOr9GrxcBmiW5jPZEe69qbR0TiLXYdLl0IT8Av8Atrreg54Au_RJA0397f4CWxw_gKPvFvgawhmanF0eGwj2PXGIzRuas3KH6G9Ts8DHG_1ED2PbibDu6x8uB0PL8usYYrGrC6EIG2rJSOq0Ip3tOaUdLIQULTAZStaSDIoaFfwuuF1lyjkZNDlGhihmh-is83uq3dvSwixmrmlt-nLigkl8zTPeEqJTarxLgQPXdWYuL47em3mFSXVineVeFcr3tWWdyqSP8VXbxbaf_xXOd1UDAD8xFXBFBOSfwM0hYw_ |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_3788_CJL231372 crossref_primary_10_1109_TNSRE_2022_3196361 crossref_primary_10_3389_fnins_2023_1238176 crossref_primary_10_1016_j_cej_2023_147819 crossref_primary_10_1109_TII_2023_3280312 crossref_primary_10_1109_TIM_2024_3480235 |
Cites_doi | 10.1109/EMBC44109.2020.9176485 10.1109/TNSRE.2016.2633506 10.1109/IWW-BCI.2016.7457459 10.1080/00405160802597479 10.3390/s22020666 10.1186/s12938-015-0044-2 10.3390/s19081954 10.1109/TNSRE.2019.2916397 10.1038/s41598-019-42027-x 10.1109/CACS.2018.8606762 10.3390/electronics8050479 10.1038/ncomms4266 10.1109/JSEN.2019.2912667 10.1109/MeMeA.2015.7145176 10.1155/2019/3679174 10.3389/fnins.2017.00033 10.1109/PHT.2013.6461326 10.3390/s20041196 10.3390/polym10060663 10.1109/JBHI.2020.3009383 10.1109/TITB.2010.2040832 10.1177/0040517519858768 10.1007/s10854-019-02047-9 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LRA.2022.3190620 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 10374 |
ExternalDocumentID | 10_1109_LRA_2022_3190620 9829267 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Ministry of Science and ICT grantid: NRF-2020M3C1B8A01111567 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-b8660dda72098a93f1b310f786e8de37d6dee37481f83bc3bf620504f5ae201a3 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Mon Jun 30 03:43:26 EDT 2025 Wed Aug 27 16:27:46 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Wed Aug 27 02:23:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b8660dda72098a93f1b310f786e8de37d6dee37481f83bc3bf620504f5ae201a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7399-6596 0000-0002-0840-7425 0000-0002-1825-6325 |
PQID | 2697566023 |
PQPubID | 4437225 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_LRA_2022_3190620 proquest_journals_2697566023 crossref_citationtrail_10_1109_LRA_2022_3190620 ieee_primary_9829267 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Stegeman (ref19) 2007; 10 ref24 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/EMBC44109.2020.9176485 – volume: 10 start-page: 8 year: 2007 ident: ref19 article-title: Standards for surface electromyography: The European project surface EMG for non-invasive assessment of muscles (SENIAM publication-title: Enschede: Roessingh Res. Develop. – ident: ref10 doi: 10.1109/TNSRE.2016.2633506 – ident: ref15 doi: 10.1109/IWW-BCI.2016.7457459 – ident: ref5 doi: 10.1080/00405160802597479 – ident: ref7 doi: 10.3390/s22020666 – ident: ref21 doi: 10.1186/s12938-015-0044-2 – ident: ref8 doi: 10.3390/s19081954 – ident: ref12 doi: 10.1109/TNSRE.2019.2916397 – ident: ref20 doi: 10.1038/s41598-019-42027-x – ident: ref1 doi: 10.1109/CACS.2018.8606762 – ident: ref4 doi: 10.3390/electronics8050479 – ident: ref18 doi: 10.1038/ncomms4266 – ident: ref17 doi: 10.1109/JSEN.2019.2912667 – ident: ref11 doi: 10.1109/MeMeA.2015.7145176 – ident: ref14 doi: 10.1155/2019/3679174 – ident: ref23 doi: 10.3389/fnins.2017.00033 – ident: ref3 doi: 10.1109/PHT.2013.6461326 – ident: ref9 doi: 10.3390/s20041196 – ident: ref22 doi: 10.3390/polym10060663 – ident: ref24 doi: 10.1109/JBHI.2020.3009383 – ident: ref2 doi: 10.1109/TITB.2010.2040832 – ident: ref6 doi: 10.1177/0040517519858768 – ident: ref16 doi: 10.1007/s10854-019-02047-9 |
SSID | ssj0001527395 |
Score | 2.257597 |
Snippet | The surface electromyography(sEMG) sensor is widely used as a human-machine interface in wearable systems. Although numerous studies have applied compact sEMG... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10367 |
SubjectTerms | Algorithms Artificial neural networks Contact pressure Customization Cutting wear Electrodes Electromyography Fabrication Fabrics Gesture recognition Hand (anatomy) Intention recognition Laser beam cutting Man-machine interfaces Performance evaluation Perspiration Robot sensing systems sEMG sensor Sensors Signal quality soft sensors and actuators wearable robotics Wearable technology Wires Wrist |
Title | 2.5D Laser-Cutting-Based Customized Fabrication of Long-Term Wearable Textile sEMG Sensor: From Design to Intention Recognition |
URI | https://ieeexplore.ieee.org/document/9829267 https://www.proquest.com/docview/2697566023 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED7EmZKhjyRF3TzAIUuByqYpiSK7JY7doLA7pA6aTSBFEijaWIUiLRnSv94jJblPFNkkgSQIHXn3HfnxI8ApRnFLC0xyDCtclEhDI5Vi1qqLRCGeyCh-9myLD_zyOnl_k95swZvNWRhrbSCf2ZF_DHv5piwav1Q2loJJxrMBDDBxa89q_VxP8UpiMu13IqkcL67OMP9jDNNSL8ZLf4s84SqVv_xvCCrzp7Dsu9NySb6MmlqPivs_lBof299n8KRDl-SsHQ7PYcuu92D3F83BffjORukFWWDwqqJpE1jP0Tm-GTJtEAjefr7Hx7nSVbeYR0pHFiUWWqEPJ59wYvjDVmSFTh0dCrmbLd-Rj5gLl9VbMq_KW3IROCGkLkmgx4c2rnqaUrk-gOv5bDW9jLpbGKKCyUkdacE5NUZljEqhZOwmGiGhywS3wtg4M9xY60VsJk7Euoi1w3-d0sSlyiK6UPEL2F6Xa_sSyERx4RTOeaa4V8IXcRI7g6BDGy44tUMY9xbKi06i3N-U8TUPqQqVOdo09zbNO5sO4fWmxrdWnuM_Zfe9iTblOusM4agfBHk3f-9yxmWGQBcBzat_1zqEHd92S-s7gu26auwxwpNan8Bg-TA7CaPzBx7q4sU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfJWKhQI-cEEiu46TODa3su2yQLaHshW9RXZsSwi6QWly6YW_zthJlk8hbklkJ1bGnnljPz8DPMcobmmFSY5hlYtSaWikMsxadZUqxBM5xceebXHCl2fpu_PsfAdebvfCWGsD-cxO_WVYyzd11fmpspkUTDKeX4PrGPezuN-t9WNGxWuJyWxci6RyVpweYgbIGCamXo6X_hJ7wmEqf3jgEFYWd2A1Nqhnk3yedq2eVle_aTX-b4vvwu0BX5LDvkPcgx27uQ-3flId3INvbJodkQLDVxPNu8B7jl7jnSHzDqHgxacrvFwo3QzTeaR2pKix0Bq9OPmIQ8NvtyJrdOvoUsjl8eoN-YDZcN28IoumviBHgRVC2poEgnx4x-lIVKo3D-BscbyeL6PhHIaoYjJuIy04p8aonFEplExcrBEUulxwK4xNcsONtV7GJnYi0VWiHf7rjKYuUxbxhUr2YXdTb-xDILHiwikc9Uxxr4UvkjRxBmGHNlxwaicwGy1UVoNIuT8r40sZkhUqS7Rp6W1aDjadwIttja-9QMc_yu55E23LDdaZwMHYCcphBF-WjMscoS5Cmkd_r_UMbizXq6Is3p68fww3_Xd6kt8B7LZNZ58gWGn109BHvwO8puTd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2.5D+Laser-Cutting-Based+Customized+Fabrication+of+Long-Term+Wearable+Textile+sEMG+Sensor%3A+From+Design+to+Intention+Recognition&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Jeong%2C+Hwayeong&rft.au=Feng%2C+Jirou&rft.au=Jung%2C+Kim&rft.date=2022-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=4&rft.spage=10367&rft_id=info:doi/10.1109%2FLRA.2022.3190620&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |