Online Anticipatory Proactive Network Association in Mobile Edge Computing for IoT
Ultra-low latency communication for mobile intelligent machines, such as autonomous vehicles and robots, is a central technology in Internet of Things (IoT) to achieve system reliability. Proactive network association and communication has been suggested to achieve ultra-low latency under the assist...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 19; no. 7; pp. 4519 - 4534 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1536-1276 1558-2248 |
DOI | 10.1109/TWC.2020.2984599 |
Cover
Loading…
Abstract | Ultra-low latency communication for mobile intelligent machines, such as autonomous vehicles and robots, is a central technology in Internet of Things (IoT) to achieve system reliability. Proactive network association and communication has been suggested to achieve ultra-low latency under the assistance of mobile edge computing. Highly dynamic and stochastic nature of IoT mobile machines suggests applying machine learning methodology to effectively enhance the proactive network association. In this paper, an online proactive network association is proposed for this distributed computing and networking scenario, in order to minimize the average task delay subject to time-average energy consumption. We first formulate an event-triggered delay model for mobility-aware anticipatory network association mechanism that takes future possible handovers into account. Based on the Markov decision processes (MDP) and Lyapunov optimization, a two-stage online decision algorithm for proactive network association is innovated for individual mobile machine without the statistical knowledge of random events that may lack of enough prior data. Theoretical analysis proves that the delay performance of proposed algorithm attains asymptotic optimality within the bounded deviation. Furthermore, an asynchronous online distributed association decision algorithm based on the nonlinear problem transformation is proposed to support more general scenarios of multi-machine event-triggered associations. Simulations verify the effectiveness of the proposed methodology. |
---|---|
AbstractList | Ultra-low latency communication for mobile intelligent machines, such as autonomous vehicles and robots, is a central technology in Internet of Things (IoT) to achieve system reliability. Proactive network association and communication has been suggested to achieve ultra-low latency under the assistance of mobile edge computing. Highly dynamic and stochastic nature of IoT mobile machines suggests applying machine learning methodology to effectively enhance the proactive network association. In this paper, an online proactive network association is proposed for this distributed computing and networking scenario, in order to minimize the average task delay subject to time-average energy consumption. We first formulate an event-triggered delay model for mobility-aware anticipatory network association mechanism that takes future possible handovers into account. Based on the Markov decision processes (MDP) and Lyapunov optimization, a two-stage online decision algorithm for proactive network association is innovated for individual mobile machine without the statistical knowledge of random events that may lack of enough prior data. Theoretical analysis proves that the delay performance of proposed algorithm attains asymptotic optimality within the bounded deviation. Furthermore, an asynchronous online distributed association decision algorithm based on the nonlinear problem transformation is proposed to support more general scenarios of multi-machine event-triggered associations. Simulations verify the effectiveness of the proposed methodology. |
Author | Cui, Qimei Tao, Xiaofeng Zhang, Xuefei Zhang, Jian Chen, Kwang-Cheng Zhang, Ping |
Author_xml | – sequence: 1 givenname: Qimei orcidid: 0000-0003-1720-220X surname: Cui fullname: Cui, Qimei email: cuiqimei@bupt.edu.cn organization: National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Jian orcidid: 0000-0002-5642-9098 surname: Zhang fullname: Zhang, Jian email: bupt_zhangjian@bupt.edu.cn organization: National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 3 givenname: Xuefei orcidid: 0000-0001-7096-9667 surname: Zhang fullname: Zhang, Xuefei email: zhangxuefei@bupt.edu.cn organization: National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 4 givenname: Kwang-Cheng orcidid: 0000-0002-1024-6106 surname: Chen fullname: Chen, Kwang-Cheng email: kwangcheng@usf.edu organization: Electrical Engineering Department, University of South Florida, Tampa, FL, USA – sequence: 5 givenname: Xiaofeng orcidid: 0000-0001-9518-1622 surname: Tao fullname: Tao, Xiaofeng email: taoxf@bupt.edu.cn organization: National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 6 givenname: Ping orcidid: 0000-0002-0269-104X surname: Zhang fullname: Zhang, Ping email: pzhang@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China |
BookMark | eNp9kEFPAjEQRhuDiYDeTbw08bzYdrvd9kgIKgmKMRiPm26dkiK02C0a_r2LEA8ePM0cvvdN5vVQxwcPCF1SMqCUqJv562jACCMDpiQvlDpBXVoUMmOMy85-z0VGWSnOUK9ploTQUhRFFz3P_Mp5wEOfnHEbnULc4acYtEnuE_AjpK8Q3_GwaYJxOrngsfP4IdRuBXj8tgA8CuvNNjm_wDZEPAnzc3Rq9aqBi-Pso5fb8Xx0n01nd5PRcJoZpmjKask1K4EZzowtC86JIbklopRW5roGwYEyUNqURElhBbc5NyUFWtaFlMTmfXR96N3E8LGFJlXLsI2-PVkxzjhVROSqTYlDysTQNBFsZVz6eSRF7VYVJdXeX9X6q_b-qqO_FiR_wE10ax13_yFXB8QBwG9ckUKR1v83yz58aw |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_TVT_2021_3133940 crossref_primary_10_1109_JIOT_2021_3057360 crossref_primary_10_1109_JPROC_2020_3033753 crossref_primary_10_3390_s23146550 crossref_primary_10_1109_JIOT_2020_3041673 crossref_primary_10_1049_cmu2_12397 crossref_primary_10_1109_JIOT_2022_3211911 crossref_primary_10_1109_TVT_2022_3206137 crossref_primary_10_1109_TCOMM_2024_3405316 crossref_primary_10_1109_TVT_2021_3128772 crossref_primary_10_1155_2021_6668984 crossref_primary_10_1109_JSYST_2021_3134820 crossref_primary_10_1109_OJCOMS_2024_3489873 crossref_primary_10_1109_JIOT_2021_3078701 crossref_primary_10_1109_TMC_2023_3342102 crossref_primary_10_1109_TWC_2022_3188695 crossref_primary_10_3390_app13074096 crossref_primary_10_1002_spe_3025 crossref_primary_10_3390_electronics13101871 crossref_primary_10_1016_j_comnet_2022_109158 crossref_primary_10_1109_ACCESS_2022_3168986 crossref_primary_10_1109_LWC_2022_3215765 crossref_primary_10_1142_S0219649223500144 crossref_primary_10_1109_TVT_2022_3232806 crossref_primary_10_1109_ACCESS_2020_3043010 crossref_primary_10_1109_TVT_2023_3298599 crossref_primary_10_1016_j_comnet_2022_109430 |
Cites_doi | 10.1109/TNSM.2019.2939685 10.1109/Allerton.2011.6120189 10.1109/TAC.2012.2191874 10.1017/CBO9781316534298 10.1109/JSAC.2016.2621361 10.2200/S00271ED1V01Y201006CNT007 10.1109/TWC.2018.2845360 10.1109/TNET.2017.2702605 10.1109/TWC.2016.2633522 10.1109/MCOM.2019.1900271 10.1109/JIOT.2016.2584538 10.1007/978-1-4614-0505-4 10.1109/TWC.2013.040413.120676 10.1109/TGCN.2019.2918847 10.1109/TCC.2016.2522439 10.1109/GLOCOM.2018.8647380 10.1109/TWC.2012.041912.110912 10.1109/JSAC.2017.2760160 10.1109/ICC.2018.8422231 10.1109/TMC.2018.2815702 10.1109/JSAC.2017.2760186 10.1109/TWC.2018.2868710 10.1109/MWC.2014.7000978 10.1109/TWC.2013.013013.120940 10.1145/1409635.1409677 10.1109/MNET.2018.1800011 10.1109/JSAC.2018.2815359 10.1109/ITW.2012.6404677 10.1109/JSAC.2016.2600581 10.1109/ACCESS.2018.2818111 10.1109/TWC.2016.2519401 10.1109/MCOM.2019.1800644 10.1109/JIOT.2018.2867481 10.1109/TWC.2019.2950632 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2020.2984599 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 4534 |
ExternalDocumentID | 10_1109_TWC_2020_2984599 9059015 |
Genre | orig-research |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: L182038 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61971066; 61941114; 61790553 funderid: 10.13039/501100001809 – fundername: National Youth Top-notch Talent Support Program – fundername: Florida Center for Cybersecurity, University of South Florida; Cyber Florida funderid: 10.13039/100014961 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-b84a27e2c42cf75440c03f0678f83abe64e12e9ac70986f64f34c71e17b5880f3 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:25:23 EDT 2025 Tue Jul 01 04:13:27 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Wed Aug 27 02:35:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b84a27e2c42cf75440c03f0678f83abe64e12e9ac70986f64f34c71e17b5880f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0269-104X 0000-0001-9518-1622 0000-0002-1024-6106 0000-0002-5642-9098 0000-0001-7096-9667 0000-0003-1720-220X |
PQID | 2424190639 |
PQPubID | 105736 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TWC_2020_2984599 crossref_primary_10_1109_TWC_2020_2984599 proquest_journals_2424190639 ieee_primary_9059015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-July 2020-7-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-July |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref36 ref14 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 lee (ref12) 2016 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 altman (ref31) 1999; 7 |
References_xml | – ident: ref18 doi: 10.1109/TNSM.2019.2939685 – ident: ref32 doi: 10.1109/Allerton.2011.6120189 – ident: ref34 doi: 10.1109/TAC.2012.2191874 – ident: ref28 doi: 10.1017/CBO9781316534298 – ident: ref21 doi: 10.1109/JSAC.2016.2621361 – ident: ref33 doi: 10.2200/S00271ED1V01Y201006CNT007 – ident: ref17 doi: 10.1109/TWC.2018.2845360 – ident: ref15 doi: 10.1109/TNET.2017.2702605 – ident: ref10 doi: 10.1109/TWC.2016.2633522 – ident: ref26 doi: 10.1109/MCOM.2019.1900271 – ident: ref3 doi: 10.1109/JIOT.2016.2584538 – ident: ref30 doi: 10.1007/978-1-4614-0505-4 – ident: ref16 doi: 10.1109/TWC.2013.040413.120676 – ident: ref20 doi: 10.1109/TGCN.2019.2918847 – ident: ref11 doi: 10.1109/TCC.2016.2522439 – ident: ref1 doi: 10.1109/GLOCOM.2018.8647380 – ident: ref29 doi: 10.1109/TWC.2012.041912.110912 – ident: ref27 doi: 10.1109/JSAC.2017.2760160 – year: 2016 ident: ref12 publication-title: Introduction to Embedded Systems-A Cyber-Physical Systems Approach – ident: ref6 doi: 10.1109/ICC.2018.8422231 – ident: ref5 doi: 10.1109/TMC.2018.2815702 – ident: ref24 doi: 10.1109/JSAC.2017.2760186 – ident: ref25 doi: 10.1109/TWC.2018.2868710 – ident: ref9 doi: 10.1109/MWC.2014.7000978 – ident: ref8 doi: 10.1109/TWC.2013.013013.120940 – ident: ref36 doi: 10.1145/1409635.1409677 – ident: ref4 doi: 10.1109/MNET.2018.1800011 – volume: 7 year: 1999 ident: ref31 publication-title: Constrained Markov Decision Processes – ident: ref13 doi: 10.1109/JSAC.2018.2815359 – ident: ref35 doi: 10.1109/ITW.2012.6404677 – ident: ref23 doi: 10.1109/JSAC.2016.2600581 – ident: ref22 doi: 10.1109/ACCESS.2018.2818111 – ident: ref7 doi: 10.1109/TWC.2016.2519401 – ident: ref2 doi: 10.1109/MCOM.2019.1800644 – ident: ref14 doi: 10.1109/JIOT.2018.2867481 – ident: ref19 doi: 10.1109/TWC.2019.2950632 |
SSID | ssj0017655 |
Score | 2.4724486 |
Snippet | Ultra-low latency communication for mobile intelligent machines, such as autonomous vehicles and robots, is a central technology in Internet of Things (IoT) to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4519 |
SubjectTerms | Algorithms Associations Computational modeling Computer networks Computer simulation Delay Delays distributed computing Distributed processing Edge computing Energy conservation Energy consumption event-triggered Internet of Things Internet of Things (IoT) Lyapunov optimization Machine learning Markov decision process (MDP) Markov processes Mobile communication systems Mobile computing mobile edge computing network association Network latency Network reliability Optimization Servers System reliability Task analysis Wireless communication Wireless networks |
Title | Online Anticipatory Proactive Network Association in Mobile Edge Computing for IoT |
URI | https://ieeexplore.ieee.org/document/9059015 https://www.proquest.com/docview/2424190639 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4nfTgtzidkoMXwW5pmibNcQyHChsiE72VJk1ElFbmdtC_3iTtqqiItx6SEN7L--p77_cATgSNuGHWczOxwQElnARSMBKwnGZM5YmWvr9iPGEXt_TqPr5fgbOmF0Zr7YvPdM99-lx-XqqF-1XWF75TMm5BywZuVa9WkzHgzE84tQLs5srwJiWJRX96N7SBIME9IhIae5TXTxPkZ6r8UMTeuow2YLy8V1VU8tRbzGVPvX-DbPzvxTdhvXYz0aB6F1uwoottWPsCPrgDNxXKKBoUdWF1OXtD167BymlANKnqw9EX_qHHAo1LafUIOs8fNKomQtjDkPV80WU53YXb0fl0eBHUExYCRUQ4D2RCM8I1UZQo46DwsMKRcQbMJFEmNaM6JFpkimORMMOoiajioQ65jK3gm2gP2kVZ6H1AOaER0SwniQ3wQmykJUKWsQjTLOIJFR3oL4meqhp-3E3BeE59GIJFatmUOjalNZs6cNrseKmgN_5Yu-Oo3qyrCd6B7pKvaS2br6lriLFukHXNDn7fdQir7uyqKLcL7flsoY-s6zGXx_7NfQAdctOd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAgkdZxHDseEQKVRyuEimCLYsdGCJSg0g7w67GdNCBAiC2DnVh3vlfu7juAA0Ejbpj13ExscEAJJ4EUjAQspxlTeaKl76_o9Vn3ll7cx_dTcNT0wmitffGZbrtHn8vPSzV2v8o6wndKxtMwa-0-FVW3VpMz4MzPOLUi7CbL8CYpiUVncHdiQ0GC20QkNPY4r59GyE9V-aGKvX05W4Le5GRVWclTezySbfX-DbTxv0dfhsXa0UTH1c1YgSldrMLCF_jBNbipcEbRcVGXVpfDN3TtWqycDkT9qkIcfeEgeixQr5RWk6DT_EGjaiaEfRmyvi86LwfrcHt2OjjpBvWMhUAREY4CmdCMcE0UJco4MDyscGScCTNJlEnNqA6JFpniWCTMMGoiqnioQy5jK_om2oCZoiz0JqCc0IholpPEhnghNtISIctYhGkW8YSKFnQmRE9VDUDu5mA8pz4QwSK1bEodm9KaTS04bHa8VOAbf6xdc1Rv1tUEb8HOhK9pLZ2vqWuJsY6Qdc62ft-1D3PdQe8qvTrvX27DvPtOVaK7AzOj4VjvWkdkJPf8_fsAZPfW7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Anticipatory+Proactive+Network+Association+in+Mobile+Edge+Computing+for+IoT&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Cui%2C+Qimei&rft.au=Zhang%2C+Jian&rft.au=Zhang%2C+Xuefei&rft.au=Chen%2C+Kwang-Cheng&rft.date=2020-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=19&rft.issue=7&rft.spage=4519&rft.epage=4534&rft_id=info:doi/10.1109%2FTWC.2020.2984599&rft.externalDocID=9059015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |