Sliding Mode Control for Nonlinear Stochastic Singular Semi-Markov Jump Systems
This paper deals with the problem of sliding mode control design for nonlinear stochastic singular semi-Markov jump systems (S-MJSs). Stochastic disturbance is first considered in studying S-MJSs with a stochastic semi-Markov process related to Weibull distribution. The specific information includin...
Saved in:
Published in | IEEE transactions on automatic control Vol. 65; no. 1; pp. 361 - 368 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper deals with the problem of sliding mode control design for nonlinear stochastic singular semi-Markov jump systems (S-MJSs). Stochastic disturbance is first considered in studying S-MJSs with a stochastic semi-Markov process related to Weibull distribution. The specific information including the bound of nonlinearity is known for the control design. Our attention is to design sliding mode control law to attenuate the influences of uncertainty and nonlinear term. First, by the use of the Lyapunov function, a set of sufficient conditions are developed such that the closed-loop sliding mode dynamics are stochastically admissible. Then, the sliding mode control law is proposed to ensure the reachability in a finite-time region. Finally, the practical system about dc motor model is given to verify the validity of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2019.2915141 |