Solutions for 100/400-Gb/s Ethernet Systems Based on Multimode Photonic Technologies

In this paper, we experimentally demonstrate the transmission of 112 Gb/s four-level pulse amplitude modulation over 100-m OM4 multimode fiber employing a multimode 850-nm vertical-cavity surface-emitting laser (VCSEL) at the transmitter side and equalization techniques at the receiver's digita...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 35; no. 15; pp. 3214 - 3222
Main Authors Karinou, Fotini, Stojanovic, Nebojsa, Prodaniuc, Cristian, Agustin, Mikel, Kropp, Jorg, Ledentsov, Nikolay N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we experimentally demonstrate the transmission of 112 Gb/s four-level pulse amplitude modulation over 100-m OM4 multimode fiber employing a multimode 850-nm vertical-cavity surface-emitting laser (VCSEL) at the transmitter side and equalization techniques at the receiver's digital signal processing (DSP). The penalties imposed by the strong bandwidth limitations due to the optical components as well as the low modal bandwidth of the fiber are compensated by three variant DSP schemes at the receiver, i.e., 1) a finite-impulse response (FIR) filter, 2) a maximum likelihood sequence estimation equalizer (MLSE), and 3) an FIR filter followed by an MLSE equalizer (FIR/MLSE) in a cascaded form. We evaluate all three aforementioned equalization schemes under two different transmitter implementations, i.e., employing a 30-GHz arbitrary waveform generator and a lower bandwidth 15-GHz commercially available digital-to-analog converter and we infer about the applicability of each DSP scheme under these implementations. We show that the hybrid implementation of an FIR followed by a 16-state MLSE can enable the 100-m transmission below the 7% hard decision (HD) forward error correction (FEC) threshold limit and outperforms its other two counterparts for the back-to-back case as well as after 100-m transmission for the high-bandwidth transmitter implementation. On the other hand, lower bandwidth DAC implementations, i.e., 15 GHz, require an increased state MLSE without the need for a preceding FIR filter to bring the bit error rate (BER) below the HD-FEC limit after 100-m OM4 fiber transmission. DSP complexity versus BER performance is assessed for all the aforementioned scenarios evaluating the impact of the transmitter's bandwidth on the overall system's performance. Our proposed solutions show that 112 Gb/s 100-m OM4 multimode links based on VCSELs and standard OM4 fiber can enable next generation 100 and 400 Gb/s wavelength division multiplexed optical interconnects.
AbstractList In this paper, we experimentally demonstrate the transmission of 112 Gb/s four-level pulse amplitude modulation over 100-m OM4 multimode fiber employing a multimode 850-nm vertical-cavity surface-emitting laser (VCSEL) at the transmitter side and equalization techniques at the receiver's digital signal processing (DSP). The penalties imposed by the strong bandwidth limitations due to the optical components as well as the low modal bandwidth of the fiber are compensated by three variant DSP schemes at the receiver, i.e., 1) a finite-impulse response (FIR) filter, 2) a maximum likelihood sequence estimation equalizer (MLSE), and 3) an FIR filter followed by an MLSE equalizer (FIR/MLSE) in a cascaded form. We evaluate all three aforementioned equalization schemes under two different transmitter implementations, i.e., employing a 30-GHz arbitrary waveform generator and a lower bandwidth 15-GHz commercially available digital-to-analog converter and we infer about the applicability of each DSP scheme under these implementations. We show that the hybrid implementation of an FIR followed by a 16-state MLSE can enable the 100-m transmission below the 7% hard decision (HD) forward error correction (FEC) threshold limit and outperforms its other two counterparts for the back-to-back case as well as after 100-m transmission for the high-bandwidth transmitter implementation. On the other hand, lower bandwidth DAC implementations, i.e., 15 GHz, require an increased state MLSE without the need for a preceding FIR filter to bring the bit error rate (BER) below the HD-FEC limit after 100-m OM4 fiber transmission. DSP complexity versus BER performance is assessed for all the aforementioned scenarios evaluating the impact of the transmitter's bandwidth on the overall syste's performance. Our proposed solutions show that 112 Gb/s 100-m OM4 multimode links based on VCSELs and standard OM4 fiber can enable next generation 100 and 400 Gb/s wavelength division multiplexed optical interconnects.
In this paper, we experimentally demonstrate the transmission of 112 Gb/s four-level pulse amplitude modulation over 100-m OM4 multimode fiber employing a multimode 850-nm vertical-cavity surface-emitting laser (VCSEL) at the transmitter side and equalization techniques at the receiver's digital signal processing (DSP). The penalties imposed by the strong bandwidth limitations due to the optical components as well as the low modal bandwidth of the fiber are compensated by three variant DSP schemes at the receiver, i.e., 1) a finite-impulse response (FIR) filter, 2) a maximum likelihood sequence estimation equalizer (MLSE), and 3) an FIR filter followed by an MLSE equalizer (FIR/MLSE) in a cascaded form. We evaluate all three aforementioned equalization schemes under two different transmitter implementations, i.e., employing a 30-GHz arbitrary waveform generator and a lower bandwidth 15-GHz commercially available digital-to-analog converter and we infer about the applicability of each DSP scheme under these implementations. We show that the hybrid implementation of an FIR followed by a 16-state MLSE can enable the 100-m transmission below the 7% hard decision (HD) forward error correction (FEC) threshold limit and outperforms its other two counterparts for the back-to-back case as well as after 100-m transmission for the high-bandwidth transmitter implementation. On the other hand, lower bandwidth DAC implementations, i.e., 15 GHz, require an increased state MLSE without the need for a preceding FIR filter to bring the bit error rate (BER) below the HD-FEC limit after 100-m OM4 fiber transmission. DSP complexity versus BER performance is assessed for all the aforementioned scenarios evaluating the impact of the transmitter's bandwidth on the overall system's performance. Our proposed solutions show that 112 Gb/s 100-m OM4 multimode links based on VCSELs and standard OM4 fiber can enable next generation 100 and 400 Gb/s wavelength division multiplexed optical interconnects.
Author Ledentsov, Nikolay N.
Prodaniuc, Cristian
Stojanovic, Nebojsa
Agustin, Mikel
Karinou, Fotini
Kropp, Jorg
Author_xml – sequence: 1
  givenname: Fotini
  surname: Karinou
  fullname: Karinou, Fotini
  email: Fotini.Karinou@huawei.com
  organization: Eur. Res. Center, Huawei Technol. Duesseldorf GmbH, Munich, Germany
– sequence: 2
  givenname: Nebojsa
  surname: Stojanovic
  fullname: Stojanovic, Nebojsa
  email: Nebojsa.Stojanovic@huawei.com
  organization: Eur. Res. Center, Huawei Technol. Duesseldorf GmbH, Munich, Germany
– sequence: 3
  givenname: Cristian
  surname: Prodaniuc
  fullname: Prodaniuc, Cristian
  email: Cristian.Prodaniuc@huawei.com
  organization: Eur. Res. Center, Huawei Technol. Duesseldorf GmbH, Munich, Germany
– sequence: 4
  givenname: Mikel
  surname: Agustin
  fullname: Agustin, Mikel
  email: mikel.agustin@v-i-systems.com
  organization: VI Syst. GmbH, Berlin, Germany
– sequence: 5
  givenname: Jorg
  surname: Kropp
  fullname: Kropp, Jorg
  email: joerg.kropp@v-i-systems.com
  organization: VI Syst. GmbH, Berlin, Germany
– sequence: 6
  givenname: Nikolay N.
  surname: Ledentsov
  fullname: Ledentsov, Nikolay N.
  email: nikolay.ledentsov@v-i-systems.com
  organization: VI Syst. GmbH, Berlin, Germany
BookMark eNo9kEtPwkAUhScGEwHdm7iZxHXhzqO97VIJogajCXXd9HErJWUGO9MF_94SiKuz-c45yTdhI2MNMXYvYCYEJPP3dTqTIKKZjBQIqa7YWIRhHEgp1IiNAZUKYpT6hk2c2wEIrWMcs3Rj29431jhe244LgLkGCFbF3PGl31JnyPPN0XnaO_6cO6q4Nfyjb32ztxXxr6311jQlT6ncGtvan4bcLbuu89bR3SWn7PtlmS5eg_Xn6m3xtA5KmQgfFBjKinLAGusaIVdFXIVlUuu4oCKpEkQZgVBVAjGEsagjzEtQsop0AloVlZqyx_PuobO_PTmf7WzfmeEyE4nAUCAO4JTBmSo761xHdXbomn3eHTMB2cldNrjLTu6yi7uh8nCuNET0jyNq1BGqPwUhamA
CODEN JLTEDG
CitedBy_id crossref_primary_10_1109_JLT_2017_2781800
crossref_primary_10_1364_OL_440459
crossref_primary_10_1109_JLT_2020_2973718
crossref_primary_10_3788_AOS230751
crossref_primary_10_1021_acsphotonics_6b00552
crossref_primary_10_1016_j_osn_2017_12_006
crossref_primary_10_3390_app9235095
crossref_primary_10_1016_j_optcom_2024_130574
Cites_doi 10.1109/26.380070
10.1109/TCOM.1964.1088964
10.1002/pssc.201100315
10.1002/0470855509.ch8
10.1364/OFC.2016.Tu2G.1
10.1109/LPT.2015.2439571
10.1109/TIT.1972.1054829
10.1109/50.803016
10.1109/LPT.2013.2280726
10.1088/0268-1242/30/4/045001
10.1002/0470855509
10.1364/OFC.2016.Tu2G.4
10.1109/LED.2005.846591
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2016.2630123
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 3222
ExternalDocumentID 10_1109_JLT_2016_2630123
7747467
Genre orig-research
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AASAJ
AAWJZ
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RIG
RNS
ROL
ROP
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c291t-b752dea07f7ff70a3b8d5c9f48beb9d97726013d9080581f67ac032d649043bd3
IEDL.DBID RIE
ISSN 0733-8724
IngestDate Fri Sep 13 01:09:23 EDT 2024
Fri Aug 23 02:39:28 EDT 2024
Wed Jun 26 19:22:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b752dea07f7ff70a3b8d5c9f48beb9d97726013d9080581f67ac032d649043bd3
PQID 1917517704
PQPubID 85485
PageCount 9
ParticipantIDs proquest_journals_1917517704
crossref_primary_10_1109_JLT_2016_2630123
ieee_primary_7747467
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
szczerba (ref9) 0
ref15
ref14
ref17
ref18
kupfer (ref24) 0
proakis (ref25) 2001
oikawa (ref6) 2007; 19
sun (ref11) 0
suhr (ref22) 0
zuo (ref13) 0
ref23
ref26
ref20
ref21
(ref1) 2016
ref27
kolesar (ref2) 2016
ingham (ref3) 2016
ref7
ref4
ref5
stojanovi? (ref19) 0
(ref16) 2004
kuchta (ref10) 0
puerta (ref8) 0
References_xml – year: 0
  ident: ref11
  article-title: 51.56 Gb/s SWDM PAM4 transmission over next generation wide band multimode optical fiber
  publication-title: Proc Optical Fiber Communication
  contributor:
    fullname: sun
– year: 2016
  ident: ref1
– year: 0
  ident: ref10
  article-title: 64 Gbps transmission over 57 m MMF using an NRZ monulated 950-nm VCSEL
  publication-title: Proc Optical Fiber Communication
  contributor:
    fullname: kuchta
– ident: ref27
  doi: 10.1109/26.380070
– ident: ref20
  doi: 10.1109/TCOM.1964.1088964
– ident: ref18
  doi: 10.1002/pssc.201100315
– year: 0
  ident: ref13
  article-title: 112-Gb/s duobinary 4-PAM transmission over 200-m multi- mode fibre
  publication-title: Proc Eur Conf Opt Commun
  contributor:
    fullname: zuo
– volume: 19
  start-page: 613
  year: 2007
  ident: ref6
  article-title: 4 × 10 Gb/s WDM transmission over a 5-km-long photonic crystal fiber in the 800-nm region
  contributor:
    fullname: oikawa
– year: 2016
  ident: ref2
  contributor:
    fullname: kolesar
– year: 0
  ident: ref9
  article-title: 70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL
  publication-title: Proc Eur Conf Opt Commun
  contributor:
    fullname: szczerba
– ident: ref14
  doi: 10.1002/0470855509.ch8
– ident: ref12
  doi: 10.1364/OFC.2016.Tu2G.1
– ident: ref23
  doi: 10.1109/LPT.2015.2439571
– year: 2001
  ident: ref25
  publication-title: Digital Communications
  contributor:
    fullname: proakis
– ident: ref15
  doi: 10.1109/TIT.1972.1054829
– year: 0
  ident: ref19
  article-title: Modified gardner phase detector for nyquist coherent optical transmission systems
  publication-title: Proc Opt Fiber Commun
  contributor:
    fullname: stojanovi?
– ident: ref21
  doi: 10.1109/50.803016
– year: 0
  ident: ref22
  article-title: 112-Gbit/s × 4-Lane polybinary-4- PAM for 400GBase
  publication-title: Proc Eur Conf Opt Commun
  contributor:
    fullname: suhr
– year: 2016
  ident: ref3
  contributor:
    fullname: ingham
– ident: ref5
  doi: 10.1109/LPT.2013.2280726
– ident: ref17
  doi: 10.1088/0268-1242/30/4/045001
– ident: ref26
  doi: 10.1002/0470855509
– ident: ref7
  doi: 10.1364/OFC.2016.Tu2G.4
– ident: ref4
  doi: 10.1109/LED.2005.846591
– year: 0
  ident: ref8
  article-title: 107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber
  publication-title: Proc Optical Fiber Communication
  contributor:
    fullname: puerta
– year: 2004
  ident: ref16
– start-page: 20_
  year: 0
  ident: ref24
  article-title: Digital equalization at 10.7 Gb/s using maximum likelihood sequence estimation-A present and future technology
  publication-title: Proc IEE Semin Ref No 2005-11310 Opt Fiber Commun Electron Signal Process
  contributor:
    fullname: kupfer
SSID ssj0014487
Score 2.3299837
Snippet In this paper, we experimentally demonstrate the transmission of 112 Gb/s four-level pulse amplitude modulation over 100-m OM4 multimode fiber employing a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 3214
SubjectTerms Analog to digital converters
Bandwidth
Bandwidths
Bit error rate
Complexity
Digital signal processing
Digital signal processors
Digital to analog conversion
Digital to analog converters
Division
Equalization
Equalizers
Error correction
Ethernet
Finite impulse response filters
FIR filters
Interconnections
Links
Maximum likelihood estimation
Multiplexing
Optical components
Optical interconnects
Optical transmitters
Photonics
Pulse amplitude modulation
Receivers
Transmitters
Vertical cavity surface emission lasers
Vertical cavity surface emitting lasers
Title Solutions for 100/400-Gb/s Ethernet Systems Based on Multimode Photonic Technologies
URI https://ieeexplore.ieee.org/document/7747467
https://www.proquest.com/docview/1917517704/abstract/
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qQfBitVWsVtmDF8FNN7t5HlVaS7HioYXeQvYRBCERk1789e5uHuDj4C2HBJb9djLfzM58A3DNeZYGRCkstbvEnia0OPUZxSkLpGYYNHIzk-9YPQeLjbfc-tse3Ha9MEopW3ymHPNo7_JlIXYmVTbVVMVMx9iDvYjQuleruzHQYYZtjQ4Z0xZOvfZKksTT5dPa1HAFDg2YoRDfXJCdqfLrR2y9y3wAq3ZddVHJm7OruCM-f0g2_nfhR3DY0Ex0V5-LY-ipfAiDhnKixqDLIezbClBRjmDdJciQ5rHIJWSqDQ8_8mmJZoYl5qpCjb45ute-T6IiR7Z_10zTQS-vRWVkdlGXrNcx-Als5rP1wwI3IxewoLFbYR76VKqUhFmYZSFJGY-kL-LMi7jisdRk0UiQMRlroulrHIMwFYRRGXgx8RiX7BT6eZGrM0BKuDLLUqEkMTFbHEWKCMGEZzQMXUrGcNOikLzXyhqJjUhInGjEEoNY0iA2hpHZ1O69Zj_HMGlhSxrTKxMTgPpuGBLv_O-vLuCAGt9sq_gm0K8-dupSM4uKX9kj9QXUrMik
link.rule.ids 315,786,790,802,27957,27958,55109
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VIgQLhRZEeXpgQSKtY-flEVBLKW3F0ErdovgRISGliKYLvx7beUg8BrYMiWT58-W-O999B3DNeZoEWClHanfpeJrQOolPiZPQQGqGQSI3NfmO6SwYLbzx0l824LbuhVFK2eIz1TOP9i5frsTGpMr6mqqY6RhbsK39PGZFt1Z9Z6ADDdscHVKqbZx41aUkZv3xZG6quIIeCaghEd-ckJ2q8utXbP3LsAXTamVFWclbb5Pznvj8Idr436UfwH5JNNFdcTIOoaGyNrRK0olKk163YcfWgIp1B-Z1igxpJotcjPva9JxH3l-jgeGJmcpRqXCO7rX3k2iVIdvBa-bpoJfXVW6EdlGdrtdR-BEshoP5w8gphy44gjA3d3joE6kSHKZhmoY4oTySvmCpF3HFmdR00YiQUck01fQ1kkGYCEyJDDyGPcolPYZmtsrUCSAlXJmmiVASm6iNRZHCQlDhGRVDl-Au3FQoxO-FtkZsYxLMYo1YbBCLS8S60DGbWr9X7mcXzivY4tL41rEJQX03DLF3-vdXV7A7mk8n8eRp9nwGe8R4alvTdw7N_GOjLjTPyPmlPV5fmcDL-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+for+100%2F400-Gb%2Fs+Ethernet+Systems+Based+on+Multimode+Photonic+Technologies&rft.jtitle=Journal+of+lightwave+technology&rft.au=Karinou%2C+Fotini&rft.au=Stojanovic%2C+Nebojsa&rft.au=Prodaniuc%2C+Cristian&rft.au=Agustin%2C+Mikel&rft.date=2017-08-01&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=35&rft.issue=15&rft.spage=3214&rft.epage=3222&rft_id=info:doi/10.1109%2FJLT.2016.2630123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2016_2630123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon