Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network
Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 15; no. 7; pp. 4276 - 4284 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1551-3203 1941-0050 |
DOI | 10.1109/TII.2019.2908210 |
Cover
Loading…
Abstract | Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing. Therefore, this paper proposes a smart manufacturing factory framework based on edge computing, and further investigates the JSP under such a framework. With recent success of some AI applications, the deep Q network (DQN), which combines deep learning and reinforcement learning, has showed its great computing power to solve complex problems. Therefore, we adjust the DQN with an edge computing framework to solve the JSP. Different from the classical DQN with only one decision, this paper extends the DQN to address the decisions of multiple edge devices. Simulation results show that the proposed method performs better than the other methods using only one dispatching rule. |
---|---|
AbstractList | Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing. Therefore, this paper proposes a smart manufacturing factory framework based on edge computing, and further investigates the JSP under such a framework. With recent success of some AI applications, the deep Q network (DQN), which combines deep learning and reinforcement learning, has showed its great computing power to solve complex problems. Therefore, we adjust the DQN with an edge computing framework to solve the JSP. Different from the classical DQN with only one decision, this paper extends the DQN to address the decisions of multiple edge devices. Simulation results show that the proposed method performs better than the other methods using only one dispatching rule. |
Author | Deng, Der-Jiunn Lin, Chun-Cheng Chih, Yen-Ling Chiu, Hsin-Ting |
Author_xml | – sequence: 1 givenname: Chun-Cheng orcidid: 0000-0001-9073-593X surname: Lin fullname: Lin, Chun-Cheng email: cclin321@nctu.edu.tw organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan – sequence: 2 givenname: Der-Jiunn orcidid: 0000-0001-8410-164X surname: Deng fullname: Deng, Der-Jiunn email: djdeng@cc.ncue.edu.tw organization: Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua, Taiwan – sequence: 3 givenname: Yen-Ling surname: Chih fullname: Chih, Yen-Ling email: sphere.c7@gmail.com organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan – sequence: 4 givenname: Hsin-Ting surname: Chiu fullname: Chiu, Hsin-Ting email: min850305@gmail.com organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan |
BookMark | eNp9UFFLwzAQDjLBbfou-FLwufOSLG3yKHPqYFN0Gz6GNE23zK6dSYr4722Z-OCDcNx9HPfdd_cNUK-qK4PQJYYRxiBuVrPZiAAWIyKAEwwnqI_FGMcADHotZgzHlAA9QwPvdwA0BSr66HW5Vy5EC1U1hdKhcbbaREu9NXlTdvDNhm00zTcmmtT7QxO63tp3edGUwepSeR_dGXOIXqInEz5r936OTgtVenPxU4dofT9dTR7j-fPDbHI7jzUROMRZorEGqhihGUsEVsAzXZCcG8wN0QqnBWgGJlNMtdcKSDkTBnKAotApBzpE18e9B1d_NMYHuasbV7WSkhBGxwlPoJuC45R2tffOFPLgbPvzl8QgO-dk65zsnJM_zrWU5A9F26CCravglC3_I14didYY86vDkzShbXwDeCl8Yw |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1038_s41598_024_79593_8 crossref_primary_10_1109_ACCESS_2020_3013231 crossref_primary_10_1109_TNNLS_2023_3291371 crossref_primary_10_1007_s10696_024_09560_y crossref_primary_10_1007_s00607_022_01078_1 crossref_primary_10_1007_s10462_024_11059_9 crossref_primary_10_1007_s10732_024_09545_y crossref_primary_10_1016_j_aei_2025_103216 crossref_primary_10_1109_TNNLS_2022_3208942 crossref_primary_10_1007_s10845_023_02258_2 crossref_primary_10_1016_j_cirpj_2022_12_001 crossref_primary_10_1016_j_engappai_2024_109488 crossref_primary_10_3233_JIFS_236874 crossref_primary_10_1109_ACCESS_2021_3097254 crossref_primary_10_1109_TITS_2023_3234010 crossref_primary_10_1016_j_aei_2023_102230 crossref_primary_10_1016_j_asoc_2023_110436 crossref_primary_10_1109_JIOT_2024_3354251 crossref_primary_10_1109_TETCI_2024_3402685 crossref_primary_10_1016_j_jii_2025_100776 crossref_primary_10_1016_j_jmsy_2024_09_018 crossref_primary_10_1109_TIFS_2023_3309095 crossref_primary_10_1186_s13638_023_02314_8 crossref_primary_10_1109_ACCESS_2020_2988118 crossref_primary_10_1109_ACCESS_2023_3246029 crossref_primary_10_1016_j_eswa_2023_122092 crossref_primary_10_1038_s41598_024_51778_1 crossref_primary_10_3390_s21134553 crossref_primary_10_1007_s00521_023_08877_3 crossref_primary_10_1007_s11431_022_2413_5 crossref_primary_10_1080_00207543_2021_1884309 crossref_primary_10_1080_00207543_2020_1718794 crossref_primary_10_1109_TII_2022_3188549 crossref_primary_10_1109_TASE_2019_2956762 crossref_primary_10_1109_ACCESS_2021_3081736 crossref_primary_10_3390_en16124566 crossref_primary_10_1016_j_jmsy_2024_01_002 crossref_primary_10_1016_j_rcim_2022_102412 crossref_primary_10_1016_j_cirp_2020_04_008 crossref_primary_10_1016_j_jmsy_2024_10_026 crossref_primary_10_3233_JIFS_236981 crossref_primary_10_1109_TII_2022_3216295 crossref_primary_10_1109_JPROC_2020_3033753 crossref_primary_10_1109_TII_2021_3138098 crossref_primary_10_1007_s11036_024_02353_5 crossref_primary_10_1177_15589250211008346 crossref_primary_10_1080_00207543_2024_2423807 crossref_primary_10_1109_TNSE_2020_3047427 crossref_primary_10_3390_e25121640 crossref_primary_10_1016_j_ijpe_2023_109102 crossref_primary_10_1016_j_engappai_2023_106508 crossref_primary_10_1515_jisys_2023_0292 crossref_primary_10_1080_21693277_2024_2326526 crossref_primary_10_3233_IDT_230528 crossref_primary_10_1016_j_eswa_2020_114230 crossref_primary_10_1109_JIOT_2021_3139689 crossref_primary_10_1016_j_jmsy_2022_10_019 crossref_primary_10_1016_j_eswa_2022_117796 crossref_primary_10_1109_TII_2020_2999318 crossref_primary_10_1109_TSMC_2023_3305541 crossref_primary_10_1016_j_oceaneng_2022_110545 crossref_primary_10_1109_TSC_2020_3004627 crossref_primary_10_1016_j_cie_2024_110106 crossref_primary_10_1142_S0218126623502419 crossref_primary_10_1016_j_cie_2024_109995 crossref_primary_10_1016_j_cie_2024_110104 crossref_primary_10_1016_j_future_2024_04_028 crossref_primary_10_1109_TII_2024_3371489 crossref_primary_10_1016_j_eswa_2022_117380 crossref_primary_10_1016_j_sciaf_2024_e02235 crossref_primary_10_1016_j_eswa_2021_114666 crossref_primary_10_1016_j_eswa_2021_114820 crossref_primary_10_1016_j_jmsy_2021_09_011 crossref_primary_10_1016_j_cor_2024_106929 crossref_primary_10_1109_TII_2023_3272661 crossref_primary_10_1109_TII_2023_3292538 crossref_primary_10_1080_00207543_2022_2058432 crossref_primary_10_1109_ACCESS_2024_3357969 crossref_primary_10_1016_j_eswa_2023_120614 crossref_primary_10_1109_TSMC_2023_3289322 crossref_primary_10_1109_ACCESS_2021_3050238 crossref_primary_10_1007_s10845_021_01808_w crossref_primary_10_1007_s40747_022_00844_0 crossref_primary_10_1080_00207543_2021_1943037 crossref_primary_10_1109_ACCESS_2021_3094374 crossref_primary_10_1109_JIOT_2022_3151667 crossref_primary_10_1109_ACCESS_2022_3172953 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_1093_jcde_qwac044 crossref_primary_10_1016_j_comcom_2021_07_008 crossref_primary_10_1016_j_ifacol_2022_10_177 crossref_primary_10_1016_j_micpro_2021_104389 crossref_primary_10_1109_ACCESS_2022_3188765 crossref_primary_10_1109_COMST_2021_3106401 crossref_primary_10_1016_j_cie_2024_110359 crossref_primary_10_1007_s10586_023_04017_7 crossref_primary_10_1016_j_cie_2023_109802 crossref_primary_10_1080_00207543_2024_2329324 crossref_primary_10_1007_s11036_024_02354_4 crossref_primary_10_1109_TII_2022_3189725 crossref_primary_10_1007_s11227_023_05358_1 crossref_primary_10_1016_j_cirpj_2022_11_003 crossref_primary_10_1016_j_jmsy_2023_06_007 crossref_primary_10_1016_j_rcim_2021_102283 crossref_primary_10_1051_wujns_2022276531 crossref_primary_10_1109_THMS_2023_3308614 crossref_primary_10_1109_TII_2022_3167380 crossref_primary_10_1080_23080477_2024_2345951 crossref_primary_10_1016_j_asoc_2023_110596 crossref_primary_10_1080_00207543_2021_1925772 crossref_primary_10_3390_app15010232 crossref_primary_10_1016_j_eswa_2023_123019 crossref_primary_10_1061_JCCEE5_CPENG_6042 crossref_primary_10_1016_j_cor_2023_106294 crossref_primary_10_1631_FITEE_2100331 crossref_primary_10_1016_j_cie_2023_109255 crossref_primary_10_1016_j_jclepro_2023_139249 crossref_primary_10_1016_j_egyr_2020_11_055 crossref_primary_10_1109_TII_2023_3282313 crossref_primary_10_1007_s10586_024_04426_2 crossref_primary_10_1016_j_cie_2024_110646 crossref_primary_10_1080_00207543_2021_1904160 crossref_primary_10_1109_JSYST_2022_3192066 crossref_primary_10_3390_biomimetics8060478 crossref_primary_10_1109_LRA_2022_3184795 crossref_primary_10_3390_app11072977 crossref_primary_10_1109_TETCI_2022_3145706 crossref_primary_10_23919_CSMS_2021_0027 crossref_primary_10_3390_app122312377 crossref_primary_10_1080_00207543_2022_2098871 crossref_primary_10_1016_j_compind_2021_103511 crossref_primary_10_1016_j_ifacol_2021_08_093 crossref_primary_10_1109_ACCESS_2020_3020136 crossref_primary_10_1016_j_aei_2023_102307 crossref_primary_10_1109_ACCESS_2021_3110242 crossref_primary_10_3390_su15042920 crossref_primary_10_1109_ACCESS_2020_3029868 crossref_primary_10_1007_s12065_022_00786_z crossref_primary_10_1016_j_jmsy_2024_08_015 crossref_primary_10_1007_s00521_024_09723_w crossref_primary_10_1080_00207543_2020_1870013 crossref_primary_10_1016_j_cie_2024_110656 crossref_primary_10_1016_j_ijepes_2021_107724 crossref_primary_10_3390_s22072445 crossref_primary_10_1109_TASE_2023_3248229 crossref_primary_10_1016_j_engappai_2023_106708 crossref_primary_10_1109_ACCESS_2020_3004861 crossref_primary_10_1016_j_asoc_2024_112002 crossref_primary_10_1145_3590163 crossref_primary_10_1016_j_knosys_2022_110083 crossref_primary_10_1016_j_procir_2020_05_163 crossref_primary_10_3390_app13148483 crossref_primary_10_1109_JIOT_2023_3283056 crossref_primary_10_1109_TCYB_2021_3128075 crossref_primary_10_1109_TSC_2023_3268990 crossref_primary_10_1016_j_chb_2024_108269 crossref_primary_10_1016_j_cie_2025_110856 crossref_primary_10_1007_s10845_023_02208_y crossref_primary_10_1007_s11036_024_02302_2 crossref_primary_10_1016_j_jmsy_2022_11_006 crossref_primary_10_3390_app12010384 crossref_primary_10_1002_cpe_5654 crossref_primary_10_1002_tie_22337 crossref_primary_10_3390_electronics12153288 crossref_primary_10_1016_j_ifacol_2022_10_107 crossref_primary_10_1098_rsta_2020_0360 crossref_primary_10_1007_s12597_024_00865_y crossref_primary_10_3233_JCM_247560 crossref_primary_10_1109_TMC_2024_3357874 crossref_primary_10_3390_info13060286 crossref_primary_10_1007_s10845_021_01847_3 crossref_primary_10_1016_j_aei_2022_101776 crossref_primary_10_1109_ACCESS_2021_3104717 crossref_primary_10_3390_electronics12234752 crossref_primary_10_1080_00207543_2021_1973138 crossref_primary_10_1016_j_cor_2022_106122 crossref_primary_10_1016_j_dcan_2022_08_003 crossref_primary_10_1109_TEM_2022_3166769 crossref_primary_10_1016_j_procir_2023_09_012 crossref_primary_10_1007_s10845_024_02454_8 crossref_primary_10_1007_s40747_025_01828_6 crossref_primary_10_1016_j_jmsy_2020_06_001 crossref_primary_10_3390_s21031019 |
Cites_doi | 10.1016/j.cie.2018.03.039 10.1109/RNDM.2016.7608300 10.1287/opre.25.1.45 10.1007/s00521-018-3394-4 10.1007/s10845-005-7029-0 10.1016/S0921-8890(00)00087-7 10.1287/ijoc.3.2.149 10.1016/0377-2217(93)90182-M 10.1109/TSMCA.2007.914753 10.1109/JIOT.2017.2786349 10.1038/nature14236 10.1016/j.cor.2011.12.005 10.1038/nature16961 10.1109/JIOT.2018.2878872 10.1109/TCYB.2016.2562674 10.1016/S0377-2217(97)00019-2 10.1080/095372800232504 10.1109/ACCESS.2018.2872674 10.1016/S0360-8352(01)00010-9 10.1109/MNET.2018.1700101 10.1016/j.jnca.2017.08.013 10.1287/opre.40.1.113 10.1109/FUZZY.2011.6007565 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2019.2908210 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 4284 |
ExternalDocumentID | 10_1109_TII_2019_2908210 8676376 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-b6c1c03a523b5691a08bcf2d8e18e2ca17f0c50eba5a037907859e0d00ffc7803 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:14:33 EDT 2025 Tue Jul 01 03:00:04 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Aug 27 05:52:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b6c1c03a523b5691a08bcf2d8e18e2ca17f0c50eba5a037907859e0d00ffc7803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8410-164X 0000-0001-9073-593X |
PQID | 2253468600 |
PQPubID | 85507 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1109_TII_2019_2908210 proquest_journals_2253468600 crossref_citationtrail_10_1109_TII_2019_2908210 ieee_primary_8676376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ge (ref9) 2008; 38 ref12 ref15 gu (ref17) 0 ref14 ref30 ref11 ref10 ref2 ref1 ref16 lawrence (ref28) 1984 ref23 ref26 ref25 zhang (ref13) 0; 2 ref22 van hasselt (ref24) 0 ref21 ref29 silver (ref19) 2016; 529 (ref27) 2015 mnih (ref20) 0 ref4 ref3 ref6 liu (ref7) 0 ref5 wang (ref8) 2012; 39 mnih (ref18) 2015; 518 |
References_xml | – ident: ref23 doi: 10.1016/j.cie.2018.03.039 – start-page: 2829 year: 0 ident: ref17 article-title: Continuous deep q-learning with model-based acceleration publication-title: Proc Int Conf Mach Learn – ident: ref4 doi: 10.1109/RNDM.2016.7608300 – ident: ref25 doi: 10.1287/opre.25.1.45 – year: 0 ident: ref20 article-title: Playing Atari With Deep Reinforcement Learning publication-title: NIPS Deep Learning Workshop – ident: ref12 doi: 10.1007/s00521-018-3394-4 – ident: ref15 doi: 10.1007/s10845-005-7029-0 – ident: ref14 doi: 10.1016/S0921-8890(00)00087-7 – ident: ref1 doi: 10.1287/ijoc.3.2.149 – volume: 2 start-page: 1114 year: 0 ident: ref13 article-title: A reinforcement learning approach to job-shop scheduling publication-title: Proc 14th Int Joint Conf Artif Intell – ident: ref30 doi: 10.1016/0377-2217(93)90182-M – year: 0 ident: ref7 article-title: Performance modelling of representative load sharing schemes for clustered servers in multi-access edge computing publication-title: IEEE Internet of Things Journal – volume: 38 start-page: 358 year: 2008 ident: ref9 article-title: An effective PSO and AIS-based hybrid intelligent algorithm for job-shop scheduling publication-title: IEEE Trans Sys Man Cybern A Syst Humans doi: 10.1109/TSMCA.2007.914753 – ident: ref3 doi: 10.1109/JIOT.2017.2786349 – volume: 518 start-page: 529 year: 2015 ident: ref18 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 39 start-page: 2291 year: 2012 ident: ref8 article-title: A new hybrid genetic algorithm for job shop scheduling problem publication-title: Comput Oper Res doi: 10.1016/j.cor.2011.12.005 – year: 1984 ident: ref28 publication-title: An experimental investigation of heuristic scheduling techniques – volume: 529 start-page: 484 year: 2016 ident: ref19 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref6 doi: 10.1109/JIOT.2018.2878872 – ident: ref22 doi: 10.1109/TCYB.2016.2562674 – ident: ref29 doi: 10.1016/S0377-2217(97)00019-2 – start-page: 2094 year: 0 ident: ref24 article-title: Deep reinforcement learning with double Q-learning publication-title: Proc 13th Int Conf on Artificial Intell – ident: ref26 doi: 10.1080/095372800232504 – ident: ref21 doi: 10.1109/ACCESS.2018.2872674 – ident: ref16 doi: 10.1016/S0360-8352(01)00010-9 – year: 2015 ident: ref27 – ident: ref2 doi: 10.1109/MNET.2018.1700101 – ident: ref5 doi: 10.1016/j.jnca.2017.08.013 – ident: ref10 doi: 10.1287/opre.40.1.113 – ident: ref11 doi: 10.1109/FUZZY.2011.6007565 |
SSID | ssj0037039 |
Score | 2.6191354 |
Snippet | Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4276 |
SubjectTerms | Computer simulation Decisions Deep Q network Dispatching Edge computing Factories HyperText Markup Language Industrial plants Job shop scheduling Job shops Machine learning Manufacturing multiple dispatching rules Production facilities Production scheduling Response time Servers Smart manufacturing Task analysis |
Title | Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network |
URI | https://ieeexplore.ieee.org/document/8676376 https://www.proquest.com/docview/2253468600 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwRoyXcuCCRLe0abPkiHhoIG0Sj4ndqiR1BwK2CboLv54kbScECHGrqiSK_DmJnXy2AY4Uask7SgU5z3gQhzoOtElMoJmMTS6VoNrdd_T6vDuIr4fJsAEn81gYRPTkM2y5T_-Wn03MzF2VtQW3q6HDF2DBOm5lrFa96zKrudLnRk3CgEWU1U-SVLbvr64ch0u2Ilff28XKfjmCfE2VHxuxP10uV6FXz6sklTy3ZoVumY9vKRv_O_E1WKnMTHJa6sU6NHC8Actfkg9uwu3dq1Ub0lPjmYtu8OGK5M5imDly-og8PBWP5CIbISkrP7h_nmBAfNCucWY3OUeckhvSL8nkWzC4vLg_6wZVhYXARDIsAs1NaChT1hvVCZehokKbPMoEhgIjo8JOTk1CUatEWRFbR1okEmlGaZ6bjqBsGxbHkzHuANGGutTvuVCCxVY9VZRgzmJGKWYWHNGEdi301FTpx10VjJfUuyFUpham1MGUVjA14XjeY1qm3vij7aaT-rxdJfAm7Ne4ptXafE_tDsZiLqylt_t7rz1YcmOXpNx9WCzeZnhgTY9CH3qd-wR3RdUZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED5t42HjYYOViY4N_MAL0pI6cezaj4htamGpBOtE3yLbuRQEZBNLX_brsZ2kmjaEeIsiW7buzuez_X13AG81GiXGWkeVKEWUJSaLjOU2MkxltlJaUuPvO_KZmFxlHxd8sQEnay4MIgbwGcb-M7zll9d25a_KRlK41TAWm_CEezJuy9bq_S5ztqtCdlSeRCylrH-UpGo0n049ikvFqa_w7dmy9zahUFXlkSsO-8v5HuT9zFpYyY941ZjY3j1I2vi_U38Gu12gSd63lvEcNrDeh6f30g8O4MvlL2c4JNf1yvMbAmGRXDotlh6eviRfvzffyFm5RNLWfvD_AsSABNqu9YE3OUW8IZ_JrIWTv4Cr87P5h0nU1ViIbKqSJjLCJpYy7c6jhguVaCqNrdJSYiIxtToZV9RyikZz7UTsjtKSK6QlpVVlx5KyA9iqr2t8CcRY6pO_V1JLljkD1SnHimWMUiydcuQQRr3QC9slIPd1MH4W4SBCVeHUVHg1FZ2ahvBu3eOmTb7xj7YDL_V1u07gQzjq9Vp0q_O2cD6MZUK6WO_w773ewPZknl8UF9PZp1ew48dpIbpHsNX8XuGxC0Qa8zrY3x--Sdhh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Manufacturing+Scheduling+With+Edge+Computing+Using+Multiclass+Deep+Q+Network&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Lin%2C+Chun-Cheng&rft.au=Deng%2C+Der-Jiunn&rft.au=Chih%2C+Yen-Ling&rft.au=Chiu%2C+Hsin-Ting&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=15&rft.issue=7&rft.spage=4276&rft.epage=4284&rft_id=info:doi/10.1109%2FTII.2019.2908210&rft.externalDocID=8676376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |