Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network

Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 15; no. 7; pp. 4276 - 4284
Main Authors Lin, Chun-Cheng, Deng, Der-Jiunn, Chih, Yen-Ling, Chiu, Hsin-Ting
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2019.2908210

Cover

Loading…
Abstract Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing. Therefore, this paper proposes a smart manufacturing factory framework based on edge computing, and further investigates the JSP under such a framework. With recent success of some AI applications, the deep Q network (DQN), which combines deep learning and reinforcement learning, has showed its great computing power to solve complex problems. Therefore, we adjust the DQN with an edge computing framework to solve the JSP. Different from the classical DQN with only one decision, this paper extends the DQN to address the decisions of multiple edge devices. Simulation results show that the proposed method performs better than the other methods using only one dispatching rule.
AbstractList Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of production in a distributed way to reduce response time of making production decisions. However, most works on JSP did not consider edge computing. Therefore, this paper proposes a smart manufacturing factory framework based on edge computing, and further investigates the JSP under such a framework. With recent success of some AI applications, the deep Q network (DQN), which combines deep learning and reinforcement learning, has showed its great computing power to solve complex problems. Therefore, we adjust the DQN with an edge computing framework to solve the JSP. Different from the classical DQN with only one decision, this paper extends the DQN to address the decisions of multiple edge devices. Simulation results show that the proposed method performs better than the other methods using only one dispatching rule.
Author Deng, Der-Jiunn
Lin, Chun-Cheng
Chih, Yen-Ling
Chiu, Hsin-Ting
Author_xml – sequence: 1
  givenname: Chun-Cheng
  orcidid: 0000-0001-9073-593X
  surname: Lin
  fullname: Lin, Chun-Cheng
  email: cclin321@nctu.edu.tw
  organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 2
  givenname: Der-Jiunn
  orcidid: 0000-0001-8410-164X
  surname: Deng
  fullname: Deng, Der-Jiunn
  email: djdeng@cc.ncue.edu.tw
  organization: Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua, Taiwan
– sequence: 3
  givenname: Yen-Ling
  surname: Chih
  fullname: Chih, Yen-Ling
  email: sphere.c7@gmail.com
  organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 4
  givenname: Hsin-Ting
  surname: Chiu
  fullname: Chiu, Hsin-Ting
  email: min850305@gmail.com
  organization: Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, Taiwan
BookMark eNp9UFFLwzAQDjLBbfou-FLwufOSLG3yKHPqYFN0Gz6GNE23zK6dSYr4722Z-OCDcNx9HPfdd_cNUK-qK4PQJYYRxiBuVrPZiAAWIyKAEwwnqI_FGMcADHotZgzHlAA9QwPvdwA0BSr66HW5Vy5EC1U1hdKhcbbaREu9NXlTdvDNhm00zTcmmtT7QxO63tp3edGUwepSeR_dGXOIXqInEz5r936OTgtVenPxU4dofT9dTR7j-fPDbHI7jzUROMRZorEGqhihGUsEVsAzXZCcG8wN0QqnBWgGJlNMtdcKSDkTBnKAotApBzpE18e9B1d_NMYHuasbV7WSkhBGxwlPoJuC45R2tffOFPLgbPvzl8QgO-dk65zsnJM_zrWU5A9F26CCravglC3_I14didYY86vDkzShbXwDeCl8Yw
CODEN ITIICH
CitedBy_id crossref_primary_10_1038_s41598_024_79593_8
crossref_primary_10_1109_ACCESS_2020_3013231
crossref_primary_10_1109_TNNLS_2023_3291371
crossref_primary_10_1007_s10696_024_09560_y
crossref_primary_10_1007_s00607_022_01078_1
crossref_primary_10_1007_s10462_024_11059_9
crossref_primary_10_1007_s10732_024_09545_y
crossref_primary_10_1016_j_aei_2025_103216
crossref_primary_10_1109_TNNLS_2022_3208942
crossref_primary_10_1007_s10845_023_02258_2
crossref_primary_10_1016_j_cirpj_2022_12_001
crossref_primary_10_1016_j_engappai_2024_109488
crossref_primary_10_3233_JIFS_236874
crossref_primary_10_1109_ACCESS_2021_3097254
crossref_primary_10_1109_TITS_2023_3234010
crossref_primary_10_1016_j_aei_2023_102230
crossref_primary_10_1016_j_asoc_2023_110436
crossref_primary_10_1109_JIOT_2024_3354251
crossref_primary_10_1109_TETCI_2024_3402685
crossref_primary_10_1016_j_jii_2025_100776
crossref_primary_10_1016_j_jmsy_2024_09_018
crossref_primary_10_1109_TIFS_2023_3309095
crossref_primary_10_1186_s13638_023_02314_8
crossref_primary_10_1109_ACCESS_2020_2988118
crossref_primary_10_1109_ACCESS_2023_3246029
crossref_primary_10_1016_j_eswa_2023_122092
crossref_primary_10_1038_s41598_024_51778_1
crossref_primary_10_3390_s21134553
crossref_primary_10_1007_s00521_023_08877_3
crossref_primary_10_1007_s11431_022_2413_5
crossref_primary_10_1080_00207543_2021_1884309
crossref_primary_10_1080_00207543_2020_1718794
crossref_primary_10_1109_TII_2022_3188549
crossref_primary_10_1109_TASE_2019_2956762
crossref_primary_10_1109_ACCESS_2021_3081736
crossref_primary_10_3390_en16124566
crossref_primary_10_1016_j_jmsy_2024_01_002
crossref_primary_10_1016_j_rcim_2022_102412
crossref_primary_10_1016_j_cirp_2020_04_008
crossref_primary_10_1016_j_jmsy_2024_10_026
crossref_primary_10_3233_JIFS_236981
crossref_primary_10_1109_TII_2022_3216295
crossref_primary_10_1109_JPROC_2020_3033753
crossref_primary_10_1109_TII_2021_3138098
crossref_primary_10_1007_s11036_024_02353_5
crossref_primary_10_1177_15589250211008346
crossref_primary_10_1080_00207543_2024_2423807
crossref_primary_10_1109_TNSE_2020_3047427
crossref_primary_10_3390_e25121640
crossref_primary_10_1016_j_ijpe_2023_109102
crossref_primary_10_1016_j_engappai_2023_106508
crossref_primary_10_1515_jisys_2023_0292
crossref_primary_10_1080_21693277_2024_2326526
crossref_primary_10_3233_IDT_230528
crossref_primary_10_1016_j_eswa_2020_114230
crossref_primary_10_1109_JIOT_2021_3139689
crossref_primary_10_1016_j_jmsy_2022_10_019
crossref_primary_10_1016_j_eswa_2022_117796
crossref_primary_10_1109_TII_2020_2999318
crossref_primary_10_1109_TSMC_2023_3305541
crossref_primary_10_1016_j_oceaneng_2022_110545
crossref_primary_10_1109_TSC_2020_3004627
crossref_primary_10_1016_j_cie_2024_110106
crossref_primary_10_1142_S0218126623502419
crossref_primary_10_1016_j_cie_2024_109995
crossref_primary_10_1016_j_cie_2024_110104
crossref_primary_10_1016_j_future_2024_04_028
crossref_primary_10_1109_TII_2024_3371489
crossref_primary_10_1016_j_eswa_2022_117380
crossref_primary_10_1016_j_sciaf_2024_e02235
crossref_primary_10_1016_j_eswa_2021_114666
crossref_primary_10_1016_j_eswa_2021_114820
crossref_primary_10_1016_j_jmsy_2021_09_011
crossref_primary_10_1016_j_cor_2024_106929
crossref_primary_10_1109_TII_2023_3272661
crossref_primary_10_1109_TII_2023_3292538
crossref_primary_10_1080_00207543_2022_2058432
crossref_primary_10_1109_ACCESS_2024_3357969
crossref_primary_10_1016_j_eswa_2023_120614
crossref_primary_10_1109_TSMC_2023_3289322
crossref_primary_10_1109_ACCESS_2021_3050238
crossref_primary_10_1007_s10845_021_01808_w
crossref_primary_10_1007_s40747_022_00844_0
crossref_primary_10_1080_00207543_2021_1943037
crossref_primary_10_1109_ACCESS_2021_3094374
crossref_primary_10_1109_JIOT_2022_3151667
crossref_primary_10_1109_ACCESS_2022_3172953
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1093_jcde_qwac044
crossref_primary_10_1016_j_comcom_2021_07_008
crossref_primary_10_1016_j_ifacol_2022_10_177
crossref_primary_10_1016_j_micpro_2021_104389
crossref_primary_10_1109_ACCESS_2022_3188765
crossref_primary_10_1109_COMST_2021_3106401
crossref_primary_10_1016_j_cie_2024_110359
crossref_primary_10_1007_s10586_023_04017_7
crossref_primary_10_1016_j_cie_2023_109802
crossref_primary_10_1080_00207543_2024_2329324
crossref_primary_10_1007_s11036_024_02354_4
crossref_primary_10_1109_TII_2022_3189725
crossref_primary_10_1007_s11227_023_05358_1
crossref_primary_10_1016_j_cirpj_2022_11_003
crossref_primary_10_1016_j_jmsy_2023_06_007
crossref_primary_10_1016_j_rcim_2021_102283
crossref_primary_10_1051_wujns_2022276531
crossref_primary_10_1109_THMS_2023_3308614
crossref_primary_10_1109_TII_2022_3167380
crossref_primary_10_1080_23080477_2024_2345951
crossref_primary_10_1016_j_asoc_2023_110596
crossref_primary_10_1080_00207543_2021_1925772
crossref_primary_10_3390_app15010232
crossref_primary_10_1016_j_eswa_2023_123019
crossref_primary_10_1061_JCCEE5_CPENG_6042
crossref_primary_10_1016_j_cor_2023_106294
crossref_primary_10_1631_FITEE_2100331
crossref_primary_10_1016_j_cie_2023_109255
crossref_primary_10_1016_j_jclepro_2023_139249
crossref_primary_10_1016_j_egyr_2020_11_055
crossref_primary_10_1109_TII_2023_3282313
crossref_primary_10_1007_s10586_024_04426_2
crossref_primary_10_1016_j_cie_2024_110646
crossref_primary_10_1080_00207543_2021_1904160
crossref_primary_10_1109_JSYST_2022_3192066
crossref_primary_10_3390_biomimetics8060478
crossref_primary_10_1109_LRA_2022_3184795
crossref_primary_10_3390_app11072977
crossref_primary_10_1109_TETCI_2022_3145706
crossref_primary_10_23919_CSMS_2021_0027
crossref_primary_10_3390_app122312377
crossref_primary_10_1080_00207543_2022_2098871
crossref_primary_10_1016_j_compind_2021_103511
crossref_primary_10_1016_j_ifacol_2021_08_093
crossref_primary_10_1109_ACCESS_2020_3020136
crossref_primary_10_1016_j_aei_2023_102307
crossref_primary_10_1109_ACCESS_2021_3110242
crossref_primary_10_3390_su15042920
crossref_primary_10_1109_ACCESS_2020_3029868
crossref_primary_10_1007_s12065_022_00786_z
crossref_primary_10_1016_j_jmsy_2024_08_015
crossref_primary_10_1007_s00521_024_09723_w
crossref_primary_10_1080_00207543_2020_1870013
crossref_primary_10_1016_j_cie_2024_110656
crossref_primary_10_1016_j_ijepes_2021_107724
crossref_primary_10_3390_s22072445
crossref_primary_10_1109_TASE_2023_3248229
crossref_primary_10_1016_j_engappai_2023_106708
crossref_primary_10_1109_ACCESS_2020_3004861
crossref_primary_10_1016_j_asoc_2024_112002
crossref_primary_10_1145_3590163
crossref_primary_10_1016_j_knosys_2022_110083
crossref_primary_10_1016_j_procir_2020_05_163
crossref_primary_10_3390_app13148483
crossref_primary_10_1109_JIOT_2023_3283056
crossref_primary_10_1109_TCYB_2021_3128075
crossref_primary_10_1109_TSC_2023_3268990
crossref_primary_10_1016_j_chb_2024_108269
crossref_primary_10_1016_j_cie_2025_110856
crossref_primary_10_1007_s10845_023_02208_y
crossref_primary_10_1007_s11036_024_02302_2
crossref_primary_10_1016_j_jmsy_2022_11_006
crossref_primary_10_3390_app12010384
crossref_primary_10_1002_cpe_5654
crossref_primary_10_1002_tie_22337
crossref_primary_10_3390_electronics12153288
crossref_primary_10_1016_j_ifacol_2022_10_107
crossref_primary_10_1098_rsta_2020_0360
crossref_primary_10_1007_s12597_024_00865_y
crossref_primary_10_3233_JCM_247560
crossref_primary_10_1109_TMC_2024_3357874
crossref_primary_10_3390_info13060286
crossref_primary_10_1007_s10845_021_01847_3
crossref_primary_10_1016_j_aei_2022_101776
crossref_primary_10_1109_ACCESS_2021_3104717
crossref_primary_10_3390_electronics12234752
crossref_primary_10_1080_00207543_2021_1973138
crossref_primary_10_1016_j_cor_2022_106122
crossref_primary_10_1016_j_dcan_2022_08_003
crossref_primary_10_1109_TEM_2022_3166769
crossref_primary_10_1016_j_procir_2023_09_012
crossref_primary_10_1007_s10845_024_02454_8
crossref_primary_10_1007_s40747_025_01828_6
crossref_primary_10_1016_j_jmsy_2020_06_001
crossref_primary_10_3390_s21031019
Cites_doi 10.1016/j.cie.2018.03.039
10.1109/RNDM.2016.7608300
10.1287/opre.25.1.45
10.1007/s00521-018-3394-4
10.1007/s10845-005-7029-0
10.1016/S0921-8890(00)00087-7
10.1287/ijoc.3.2.149
10.1016/0377-2217(93)90182-M
10.1109/TSMCA.2007.914753
10.1109/JIOT.2017.2786349
10.1038/nature14236
10.1016/j.cor.2011.12.005
10.1038/nature16961
10.1109/JIOT.2018.2878872
10.1109/TCYB.2016.2562674
10.1016/S0377-2217(97)00019-2
10.1080/095372800232504
10.1109/ACCESS.2018.2872674
10.1016/S0360-8352(01)00010-9
10.1109/MNET.2018.1700101
10.1016/j.jnca.2017.08.013
10.1287/opre.40.1.113
10.1109/FUZZY.2011.6007565
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2908210
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 4284
ExternalDocumentID 10_1109_TII_2019_2908210
8676376
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-b6c1c03a523b5691a08bcf2d8e18e2ca17f0c50eba5a037907859e0d00ffc7803
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:14:33 EDT 2025
Tue Jul 01 03:00:04 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Aug 27 05:52:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b6c1c03a523b5691a08bcf2d8e18e2ca17f0c50eba5a037907859e0d00ffc7803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8410-164X
0000-0001-9073-593X
PQID 2253468600
PQPubID 85507
PageCount 9
ParticipantIDs crossref_primary_10_1109_TII_2019_2908210
proquest_journals_2253468600
crossref_citationtrail_10_1109_TII_2019_2908210
ieee_primary_8676376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ge (ref9) 2008; 38
ref12
ref15
gu (ref17) 0
ref14
ref30
ref11
ref10
ref2
ref1
ref16
lawrence (ref28) 1984
ref23
ref26
ref25
zhang (ref13) 0; 2
ref22
van hasselt (ref24) 0
ref21
ref29
silver (ref19) 2016; 529
(ref27) 2015
mnih (ref20) 0
ref4
ref3
ref6
liu (ref7) 0
ref5
wang (ref8) 2012; 39
mnih (ref18) 2015; 518
References_xml – ident: ref23
  doi: 10.1016/j.cie.2018.03.039
– start-page: 2829
  year: 0
  ident: ref17
  article-title: Continuous deep q-learning with model-based acceleration
  publication-title: Proc Int Conf Mach Learn
– ident: ref4
  doi: 10.1109/RNDM.2016.7608300
– ident: ref25
  doi: 10.1287/opre.25.1.45
– year: 0
  ident: ref20
  article-title: Playing Atari With Deep Reinforcement Learning
  publication-title: NIPS Deep Learning Workshop
– ident: ref12
  doi: 10.1007/s00521-018-3394-4
– ident: ref15
  doi: 10.1007/s10845-005-7029-0
– ident: ref14
  doi: 10.1016/S0921-8890(00)00087-7
– ident: ref1
  doi: 10.1287/ijoc.3.2.149
– volume: 2
  start-page: 1114
  year: 0
  ident: ref13
  article-title: A reinforcement learning approach to job-shop scheduling
  publication-title: Proc 14th Int Joint Conf Artif Intell
– ident: ref30
  doi: 10.1016/0377-2217(93)90182-M
– year: 0
  ident: ref7
  article-title: Performance modelling of representative load sharing schemes for clustered servers in multi-access edge computing
  publication-title: IEEE Internet of Things Journal
– volume: 38
  start-page: 358
  year: 2008
  ident: ref9
  article-title: An effective PSO and AIS-based hybrid intelligent algorithm for job-shop scheduling
  publication-title: IEEE Trans Sys Man Cybern A Syst Humans
  doi: 10.1109/TSMCA.2007.914753
– ident: ref3
  doi: 10.1109/JIOT.2017.2786349
– volume: 518
  start-page: 529
  year: 2015
  ident: ref18
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 39
  start-page: 2291
  year: 2012
  ident: ref8
  article-title: A new hybrid genetic algorithm for job shop scheduling problem
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2011.12.005
– year: 1984
  ident: ref28
  publication-title: An experimental investigation of heuristic scheduling techniques
– volume: 529
  start-page: 484
  year: 2016
  ident: ref19
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref6
  doi: 10.1109/JIOT.2018.2878872
– ident: ref22
  doi: 10.1109/TCYB.2016.2562674
– ident: ref29
  doi: 10.1016/S0377-2217(97)00019-2
– start-page: 2094
  year: 0
  ident: ref24
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proc 13th Int Conf on Artificial Intell
– ident: ref26
  doi: 10.1080/095372800232504
– ident: ref21
  doi: 10.1109/ACCESS.2018.2872674
– ident: ref16
  doi: 10.1016/S0360-8352(01)00010-9
– year: 2015
  ident: ref27
– ident: ref2
  doi: 10.1109/MNET.2018.1700101
– ident: ref5
  doi: 10.1016/j.jnca.2017.08.013
– ident: ref10
  doi: 10.1287/opre.40.1.113
– ident: ref11
  doi: 10.1109/FUZZY.2011.6007565
SSID ssj0037039
Score 2.6191354
Snippet Manufacturing is involved with complex job shop scheduling problems (JSP). In smart factories, edge computing supports computing resources at the edge of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4276
SubjectTerms Computer simulation
Decisions
Deep Q network
Dispatching
Edge computing
Factories
HyperText Markup Language
Industrial plants
Job shop scheduling
Job shops
Machine learning
Manufacturing
multiple dispatching rules
Production facilities
Production scheduling
Response time
Servers
Smart manufacturing
Task analysis
Title Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network
URI https://ieeexplore.ieee.org/document/8676376
https://www.proquest.com/docview/2253468600
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwRoyXcuCCRLe0abPkiHhoIG0Sj4ndqiR1BwK2CboLv54kbScECHGrqiSK_DmJnXy2AY4Uask7SgU5z3gQhzoOtElMoJmMTS6VoNrdd_T6vDuIr4fJsAEn81gYRPTkM2y5T_-Wn03MzF2VtQW3q6HDF2DBOm5lrFa96zKrudLnRk3CgEWU1U-SVLbvr64ch0u2Ilff28XKfjmCfE2VHxuxP10uV6FXz6sklTy3ZoVumY9vKRv_O_E1WKnMTHJa6sU6NHC8Actfkg9uwu3dq1Ub0lPjmYtu8OGK5M5imDly-og8PBWP5CIbISkrP7h_nmBAfNCucWY3OUeckhvSL8nkWzC4vLg_6wZVhYXARDIsAs1NaChT1hvVCZehokKbPMoEhgIjo8JOTk1CUatEWRFbR1okEmlGaZ6bjqBsGxbHkzHuANGGutTvuVCCxVY9VZRgzmJGKWYWHNGEdi301FTpx10VjJfUuyFUpham1MGUVjA14XjeY1qm3vij7aaT-rxdJfAm7Ne4ptXafE_tDsZiLqylt_t7rz1YcmOXpNx9WCzeZnhgTY9CH3qd-wR3RdUZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED5t42HjYYOViY4N_MAL0pI6cezaj4htamGpBOtE3yLbuRQEZBNLX_brsZ2kmjaEeIsiW7buzuez_X13AG81GiXGWkeVKEWUJSaLjOU2MkxltlJaUuPvO_KZmFxlHxd8sQEnay4MIgbwGcb-M7zll9d25a_KRlK41TAWm_CEezJuy9bq_S5ztqtCdlSeRCylrH-UpGo0n049ikvFqa_w7dmy9zahUFXlkSsO-8v5HuT9zFpYyY941ZjY3j1I2vi_U38Gu12gSd63lvEcNrDeh6f30g8O4MvlL2c4JNf1yvMbAmGRXDotlh6eviRfvzffyFm5RNLWfvD_AsSABNqu9YE3OUW8IZ_JrIWTv4Cr87P5h0nU1ViIbKqSJjLCJpYy7c6jhguVaCqNrdJSYiIxtToZV9RyikZz7UTsjtKSK6QlpVVlx5KyA9iqr2t8CcRY6pO_V1JLljkD1SnHimWMUiydcuQQRr3QC9slIPd1MH4W4SBCVeHUVHg1FZ2ahvBu3eOmTb7xj7YDL_V1u07gQzjq9Vp0q_O2cD6MZUK6WO_w773ewPZknl8UF9PZp1ew48dpIbpHsNX8XuGxC0Qa8zrY3x--Sdhh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Manufacturing+Scheduling+With+Edge+Computing+Using+Multiclass+Deep+Q+Network&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Lin%2C+Chun-Cheng&rft.au=Deng%2C+Der-Jiunn&rft.au=Chih%2C+Yen-Ling&rft.au=Chiu%2C+Hsin-Ting&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=15&rft.issue=7&rft.spage=4276&rft.epage=4284&rft_id=info:doi/10.1109%2FTII.2019.2908210&rft.externalDocID=8676376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon