Low-Complexity Tracking Control of Strict-Feedback Systems With Unknown Control Directions

This paper focuses on the problem of output tracking with prescribed transient and steady-state performance for strict-feedback systems with unknown nonlinear functions and unmatched disturbances. In lieu of Nussbaum gain techniques, parameter estimation algorithms and switching control strategies,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 64; no. 12; pp. 5175 - 5182
Main Authors Zhang, Jin-Xi, Yang, Guang-Hong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper focuses on the problem of output tracking with prescribed transient and steady-state performance for strict-feedback systems with unknown nonlinear functions and unmatched disturbances. In lieu of Nussbaum gain techniques, parameter estimation algorithms and switching control strategies, a continuous static low-complexity control solution is provided by means of a novel combination of smooth orientation functions and error transformation functions. The proposed method possesses inherent robustness against model uncertainties, disturbances, and virtual control signal derivatives, thus eliminating the needs to introduce extra robust control schemes and compute analytic derivatives. Comparative simulation results further illustrate the above theoretical findings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2019.2910738