Optimal Adaptive Filtering Algorithm by Using the Fractional-Order Derivative
The previous work for the filter design considers uncorrelated white measurement noise disturbance. For more complex correlated noise disturbance, the conventional adaptive filter results in biased estimates. To overcome this problem, we introduce a linear prefilter to whiten the correlated noise (i...
Saved in:
Published in | IEEE signal processing letters Vol. 29; pp. 399 - 403 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The previous work for the filter design considers uncorrelated white measurement noise disturbance. For more complex correlated noise disturbance, the conventional adaptive filter results in biased estimates. To overcome this problem, we introduce a linear prefilter to whiten the correlated noise (i.e., colored noise) for obtaining the unbiased estimate of the filter weight. Moreover, the design of some adaptive filters mainly focuses on the integer-order optimization methods. However, compared with the integer-order-based adaptive algorithms, the fractional-order-based algorithms show better performance. Thus, this letter develops a new gradient approach for the adaptive filter design based on the fractional-order derivative and a linear filter. Finally, the simulation results are provided from the system identification perspective for demonstrating the performance analysis of the proposed algorithms. |
---|---|
AbstractList | The previous work for the filter design considers uncorrelated white measurement noise disturbance. For more complex correlated noise disturbance, the conventional adaptive filter results in biased estimates. To overcome this problem, we introduce a linear prefilter to whiten the correlated noise (i.e., colored noise) for obtaining the unbiased estimate of the filter weight. Moreover, the design of some adaptive filters mainly focuses on the integer-order optimization methods. However, compared with the integer-order-based adaptive algorithms, the fractional-order-based algorithms show better performance. Thus, this letter develops a new gradient approach for the adaptive filter design based on the fractional-order derivative and a linear filter. Finally, the simulation results are provided from the system identification perspective for demonstrating the performance analysis of the proposed algorithms. |
Author | Zhang, Xiao Ding, Feng |
Author_xml | – sequence: 1 givenname: Xiao orcidid: 0000-0002-6413-6148 surname: Zhang fullname: Zhang, Xiao email: xzhang@jiangnan.edu.cn organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, China – sequence: 2 givenname: Feng orcidid: 0000-0002-2721-2025 surname: Ding fullname: Ding, Feng email: fding@jiangnan.edu.cn organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, China |
BookMark | eNp9kM1LAzEQxYNUsFXvgpcFz1vzsUmTY6lWhUoF7Tlk00mbst2t2bTQ_94sLR48eJpheL-ZN2-AenVTA0J3BA8Jwepx9vkxpJiSISNMcFxcoD7hXOaUCdJLPR7hXCksr9CgbTcYY0kk76P3-S76ramy8dKk7gDZ1FcRgq9X2bhaNcHH9TYrj9mi7UZxnQTB2Oib2lT5PCwhZE9JfjAdfIMunalauD3Xa7SYPn9NXvPZ_OVtMp7llioS85KMlkoq7kzBAQiTTjpcCmolEC6l4KwcGSEpFJaV2GJnhHVWlcCYg4ITdo0eTnt3ofneQxv1ptmH5KjVVFBWjDAvaFLhk8qGpm0DOL0L6ddw1ATrLjSdQtNdaPocWkLEH8T6aLpvYzC--g-8P4EeAH7vKMF5kQz9ADy4ezs |
CODEN | ISPLEM |
CitedBy_id | crossref_primary_10_1016_j_dsp_2022_103595 crossref_primary_10_1016_j_dsp_2024_104445 crossref_primary_10_1016_j_jprocont_2023_103007 crossref_primary_10_1016_j_cam_2024_115976 crossref_primary_10_1002_oca_3210 crossref_primary_10_1007_s12555_020_0561_z crossref_primary_10_1002_rnc_6227 crossref_primary_10_1016_j_measurement_2023_113377 crossref_primary_10_1016_j_dsp_2025_105133 crossref_primary_10_1016_j_jfranklin_2023_02_021 crossref_primary_10_1109_JESTIE_2023_3303093 crossref_primary_10_1016_j_sigpro_2025_109953 crossref_primary_10_1016_j_pnsc_2023_10_004 crossref_primary_10_1007_s11071_023_08302_3 crossref_primary_10_1016_j_arcontrol_2023_100909 crossref_primary_10_1177_01423312221148783 crossref_primary_10_1007_s00500_023_08912_4 crossref_primary_10_1016_j_jfranklin_2022_08_045 crossref_primary_10_1109_TSMC_2024_3378912 crossref_primary_10_1002_rnc_6236 crossref_primary_10_1007_s11071_023_08458_y crossref_primary_10_1002_rnc_6479 crossref_primary_10_1002_rnc_7047 crossref_primary_10_1016_j_dsp_2024_104951 crossref_primary_10_1002_rnc_7705 crossref_primary_10_1016_j_cam_2023_115107 crossref_primary_10_1016_j_ijepes_2022_108445 crossref_primary_10_1002_acs_3891 crossref_primary_10_1002_oca_2871 crossref_primary_10_1002_mma_10146 crossref_primary_10_1007_s00034_024_02730_1 crossref_primary_10_1109_TIM_2022_3208652 crossref_primary_10_1016_j_chaos_2023_113460 crossref_primary_10_1016_j_cam_2023_115104 crossref_primary_10_1007_s12555_021_0572_4 crossref_primary_10_1007_s12555_021_0744_2 crossref_primary_10_1002_rnc_6580 crossref_primary_10_1016_j_inffus_2022_10_015 crossref_primary_10_1016_j_jfranklin_2023_09_009 crossref_primary_10_1002_rnc_6741 crossref_primary_10_1016_j_isatra_2022_11_013 crossref_primary_10_1002_rnc_6221 crossref_primary_10_1016_j_precisioneng_2024_11_007 crossref_primary_10_1016_j_eswa_2024_124133 crossref_primary_10_1007_s12555_022_0253_y crossref_primary_10_1016_j_jfranklin_2023_01_040 crossref_primary_10_1002_asjc_3277 crossref_primary_10_3390_s22228740 crossref_primary_10_1016_j_chaos_2024_115181 crossref_primary_10_1002_acs_3420 crossref_primary_10_1002_oca_2941 crossref_primary_10_3390_pr11092700 crossref_primary_10_1016_j_oceaneng_2024_119016 crossref_primary_10_1007_s12555_022_0430_z crossref_primary_10_1016_j_isatra_2024_11_048 crossref_primary_10_1002_rnc_7344 crossref_primary_10_3390_math10030438 crossref_primary_10_1016_j_jfranklin_2022_09_041 crossref_primary_10_3390_electronics13040758 crossref_primary_10_1016_j_isatra_2024_02_025 crossref_primary_10_3390_agriculture12040500 crossref_primary_10_1109_TCE_2024_3480894 crossref_primary_10_1016_j_jfranklin_2023_08_022 crossref_primary_10_1109_TII_2022_3231934 crossref_primary_10_1007_s00034_024_02777_0 crossref_primary_10_1016_j_arcontrol_2024_100942 crossref_primary_10_1109_TIM_2022_3154797 crossref_primary_10_3390_electronics11060885 crossref_primary_10_1007_s12555_021_0935_x crossref_primary_10_3390_math11132945 crossref_primary_10_1007_s00034_025_03016_w crossref_primary_10_1016_j_jfranklin_2022_07_051 crossref_primary_10_1002_rnc_6080 crossref_primary_10_1016_j_oceaneng_2025_120674 crossref_primary_10_1016_j_jfranklin_2023_05_006 crossref_primary_10_1016_j_jfranklin_2023_05_007 crossref_primary_10_1016_j_jfranklin_2022_09_049 crossref_primary_10_1016_j_matcom_2022_12_031 crossref_primary_10_3390_app14135493 crossref_primary_10_1002_acs_3602 crossref_primary_10_1007_s12555_022_0758_4 crossref_primary_10_1016_j_isatra_2022_02_011 crossref_primary_10_3390_agronomy12030591 crossref_primary_10_1016_j_cnsns_2023_107759 crossref_primary_10_3390_jmse11081522 crossref_primary_10_1002_oca_3257 crossref_primary_10_1007_s12555_021_0923_1 crossref_primary_10_1007_s00034_022_02112_5 crossref_primary_10_1007_s00034_022_02116_1 crossref_primary_10_1177_10775463221117861 crossref_primary_10_1002_rnc_6951 crossref_primary_10_1002_rnc_7007 crossref_primary_10_1049_cth2_12771 crossref_primary_10_1038_s41598_025_89969_z crossref_primary_10_1109_JSEN_2024_3502675 crossref_primary_10_1016_j_automatica_2022_110365 crossref_primary_10_1016_j_eswa_2025_126539 crossref_primary_10_1080_00207721_2023_2178864 crossref_primary_10_3390_math10040610 crossref_primary_10_1109_TCSII_2022_3206792 crossref_primary_10_1016_j_cam_2022_114794 crossref_primary_10_1007_s12555_021_0845_y crossref_primary_10_3390_e24030335 crossref_primary_10_1016_j_jprocont_2022_09_003 crossref_primary_10_1016_j_jfranklin_2023_05_026 crossref_primary_10_1016_j_jprocont_2023_103035 crossref_primary_10_1007_s11071_023_08259_3 crossref_primary_10_3390_jmse12010142 crossref_primary_10_1007_s11071_024_10763_z crossref_primary_10_1007_s11071_023_08744_9 crossref_primary_10_1002_acs_3904 crossref_primary_10_1016_j_ijsolstr_2025_113341 crossref_primary_10_1016_j_ijepes_2023_109149 crossref_primary_10_1016_j_dsp_2022_103899 crossref_primary_10_1177_00202940221124093 crossref_primary_10_1002_oca_3158 crossref_primary_10_1002_oca_3279 crossref_primary_10_3390_fractalfract7110789 crossref_primary_10_1002_oca_2985 crossref_primary_10_1007_s00034_025_03068_y crossref_primary_10_1007_s40031_024_01187_9 crossref_primary_10_1109_TIM_2022_3210952 crossref_primary_10_1080_00207721_2024_2375615 crossref_primary_10_1016_j_jfranklin_2022_11_003 crossref_primary_10_1002_asjc_3119 crossref_primary_10_1016_j_apnum_2024_01_016 crossref_primary_10_1049_cth2_12312 crossref_primary_10_3390_e24070868 crossref_primary_10_1007_s12555_022_1002_y crossref_primary_10_1007_s11071_023_08816_w crossref_primary_10_1049_cth2_12316 crossref_primary_10_1016_j_jfranklin_2022_01_032 crossref_primary_10_1016_j_chaos_2022_112611 crossref_primary_10_1002_rnc_5988 crossref_primary_10_1002_acs_3637 crossref_primary_10_1016_j_jfranklin_2023_02_019 crossref_primary_10_1002_acs_3471 crossref_primary_10_1002_acs_3593 crossref_primary_10_1007_s12555_021_0249_z crossref_primary_10_1177_09596518231165348 crossref_primary_10_1007_s12555_021_1018_8 crossref_primary_10_1049_bme2_12110 crossref_primary_10_1007_s12555_021_0448_7 crossref_primary_10_1007_s42835_022_01130_2 crossref_primary_10_32604_cmes_2022_020565 crossref_primary_10_1007_s12555_022_0080_1 crossref_primary_10_1007_s12555_022_0867_0 crossref_primary_10_3390_electronics11050772 crossref_primary_10_1007_s12555_022_1248_4 crossref_primary_10_1007_s11071_024_09723_4 crossref_primary_10_1016_j_ces_2023_118901 |
Cites_doi | 10.1016/j.amc.2017.07.023 10.1016/j.apm.2020.03.014 10.1109/78.747775 10.1109/TASL.2010.2060193 10.1109/TCSII.2021.3076112 10.1016/j.automatica.2018.04.014 10.1109/LSP.2020.3021925 10.1109/TSP.2005.857036 10.1016/j.apm.2020.12.035 10.1109/TCSII.2020.3021674 10.1109/TSMCB.2009.2028871 10.1016/j.sigpro.2017.08.009 10.1109/TSP.2005.855108 10.1109/TCSII.2006.883215 10.1109/LSP.2003.821754 10.1109/LSP.2008.925746 10.1109/78.774769 10.1016/j.amc.2021.126663 10.1109/TCSII.2007.898893 10.1109/LSP.2020.3000459 10.1016/j.sigpro.2017.06.025 10.1109/LSP.2014.2368777 10.1109/LSP.2015.2394301 10.1109/LSP.2007.891840 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/LSP.2021.3136504 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2361 |
EndPage | 403 |
ExternalDocumentID | 10_1109_LSP_2021_3136504 9655462 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873111 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-b17d9895fa45ee138f8f0b62c8e1588653b7a682e4c3b0c0fa6cfc9be33fe4513 |
IEDL.DBID | RIE |
ISSN | 1070-9908 |
IngestDate | Mon Jun 30 05:38:48 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 Tue Jul 01 02:21:36 EDT 2025 Wed Aug 27 03:00:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b17d9895fa45ee138f8f0b62c8e1588653b7a682e4c3b0c0fa6cfc9be33fe4513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6413-6148 0000-0002-2721-2025 |
PQID | 2623470542 |
PQPubID | 75747 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2623470542 crossref_primary_10_1109_LSP_2021_3136504 ieee_primary_9655462 crossref_citationtrail_10_1109_LSP_2021_3136504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE signal processing letters |
PublicationTitleAbbrev | LSP |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Zahoor (ref20) 2009; 35 ref24 ref23 ref25 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Ljung (ref26) 1999 |
References_xml | – ident: ref17 doi: 10.1016/j.amc.2017.07.023 – ident: ref18 doi: 10.1016/j.apm.2020.03.014 – ident: ref9 doi: 10.1109/78.747775 – ident: ref12 doi: 10.1109/TASL.2010.2060193 – ident: ref8 doi: 10.1109/TCSII.2021.3076112 – ident: ref24 doi: 10.1016/j.automatica.2018.04.014 – ident: ref23 doi: 10.1109/LSP.2020.3021925 – ident: ref7 doi: 10.1109/TSP.2005.857036 – ident: ref16 doi: 10.1016/j.apm.2020.12.035 – ident: ref1 doi: 10.1109/TCSII.2020.3021674 – ident: ref22 doi: 10.1109/TSMCB.2009.2028871 – volume: 35 start-page: 14 issue: 1 year: 2009 ident: ref20 article-title: A modified least mean square algorithm using fractional derivative and its application to system identification publication-title: Eur. J. Sci. Res. – ident: ref21 doi: 10.1016/j.sigpro.2017.08.009 – ident: ref11 doi: 10.1109/TSP.2005.855108 – ident: ref15 doi: 10.1109/TCSII.2006.883215 – ident: ref6 doi: 10.1109/LSP.2003.821754 – ident: ref5 doi: 10.1109/LSP.2008.925746 – volume-title: System Identification: Theory for the User year: 1999 ident: ref26 – ident: ref10 doi: 10.1109/78.774769 – ident: ref13 doi: 10.1016/j.amc.2021.126663 – ident: ref3 doi: 10.1109/TCSII.2007.898893 – ident: ref14 doi: 10.1109/LSP.2020.3000459 – ident: ref25 doi: 10.1016/j.sigpro.2017.06.025 – ident: ref4 doi: 10.1109/LSP.2014.2368777 – ident: ref19 doi: 10.1109/LSP.2015.2394301 – ident: ref2 doi: 10.1109/LSP.2007.891840 |
SSID | ssj0008185 |
Score | 2.65426 |
Snippet | The previous work for the filter design considers uncorrelated white measurement noise disturbance. For more complex correlated noise disturbance, the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 399 |
SubjectTerms | Adaptation models Adaptive algorithms Adaptive filtering Adaptive filters Algorithms Colored noise Convergence Estimation Filter design (mathematics) Finite impulse response filters fractional-order derivative gradient search Integers Linear filters Mathematical models Noise Noise measurement Optimization Prefilters Signal processing algorithms System identification |
Title | Optimal Adaptive Filtering Algorithm by Using the Fractional-Order Derivative |
URI | https://ieeexplore.ieee.org/document/9655462 https://www.proquest.com/docview/2623470542 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7Vkx58VbG-yMGL4La7m0ezR1FLEWsFFbwtm2RWxdpK3Qr6651kt8UX4mVZmAmEmWTmm2RmQsg-eqU8sojcolzagLczFWglAT_cWqWM5ODqnXsXsnvDz27FbY0czmphAMAnn0HT_fq7fDsyE3dU1kqky6lCgzuHgVtZqzWzus7xlPmFYYAWVk2vJMOkdX51iYFgHGF8yhCQ8C8uyL-p8sMQe-_SWSa96bzKpJLH5qTQTfP-rWXjfye-QpYqmEmPynWxSmowXCOLn5oP1kmvj9biyTHZ7NkZPdp5cFfnSKRHg7vR-KG4f6L6jfqsAopAkXbGZRlENgj6rmUnPUH2V986fJ3cdE6vj7tB9bhCYOIkKgIdtW2iEpFnXABETOUqD7WMjYJIKCUF0-1Mqhi4YTo0YZ5Jk5tEA2M5cBGxDTI_HA1hk9AsBCQyjWTLtZYqCzUHY4WwwsaGNUhrKu_UVJ3H3QMYg9RHIGGSooZSp6G00lCDHMxGPJddN_7grTuBz_gqWTfIzlSlabUtX9IYwR5vI0qNt34ftU0WYlff4M9Ydsh8MZ7ALqKOQu_55fYB8jTUaw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hONAeSimtCKXFh14qdZP1-hHvEbWNAiRQqSBxW63tWUANCQqbSvDrO_Zuor5U9bJayWPJ8tgz33heAO9IK1XcE3LjlfaJ7JcmsUYjfaT3xjgtMeQ7j0_18EIeX6rLNfiwyoVBxBh8ht3wG335fuYW4amsl-sQU0UCd4P0vuJNttZK7gbV00QYpgnJWLN0SqZ5b_T1C5mCGScLVRAkkb8oodhV5Q9RHPXLYAvGy5U1YSXfuovadt3jb0Ub_3fpz-FZCzTZYXMytmENpy_g6U_lB3dgfEby4jYQ-fIuiD02uAnOcxpkh5Or2fymvr5l9oHFuAJGUJEN5k0iRDlJzkLRTvaJyL_H4uEv4WLw-fzjMGnbKyQuy3mdWN73uclVVUqFyIWpTJVanTmDXBmjlbD9UpsMpRM2dWlVale53KIQFUrFxStYn86muAusTJEGhaVhL63VpkytROeV8spnTnSgt9zvwrW1x0MLjEkRbZA0L4hDReBQ0XKoA-9XM-6auhv_oN0JG76ia_e6A_tLlhbtxbwvMoJ7sk84Ndv7-6wD2Byej0fF6Oj05DU8yUK2Q3xx2Yf1er7AN4RBavs2Hr0fMVPXtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Adaptive+Filtering+Algorithm+by+Using+the+Fractional-Order+Derivative&rft.jtitle=IEEE+signal+processing+letters&rft.au=Zhang%2C+Xiao&rft.au=Ding%2C+Feng&rft.date=2022&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=29&rft.spage=399&rft.epage=403&rft_id=info:doi/10.1109%2FLSP.2021.3136504&rft.externalDocID=9655462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |