A Serial Image Copy-Move Forgery Localization Scheme With Source/Target Distinguishment
In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region distinguishment. BusterNet is based on two branches, i.e., Simi-Det and Mani-Det, and suffers from two main drawbacks: (a) it should ensure that both b...
Saved in:
Published in | IEEE transactions on multimedia Vol. 23; pp. 3506 - 3517 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region distinguishment. BusterNet is based on two branches, i.e., Simi-Det and Mani-Det, and suffers from two main drawbacks: (a) it should ensure that both branches correctly locate regions; (b) the Simi-Det branch only extracts single-level and low-resolution features using VGG16 with four pooling layers. To ensure the identification of the source and target regions, we introduce two subnetworks that are constructed serially: the copy-move similarity detection network (CMSDNet) and the source/target region distinguishment network (STRDNet). Regarding the second drawback, the CMSDNet subnetwork improves Simi-Det by removing the last pooling layer in VGG16 and by introducing atrous convolution into VGG16 to preserve field-of-views of filters after the removal of the fourth pooling layer; double-level self-correlation is also considered for matching hierarchical features. Moreover, atrous spatial pyramid pooling and attention mechanism allow the capture of multiscale features and provide evidence for important information. Finally, STRDNet is designed to determine the similar regions obtained from CMSDNet directly as tampered regions and untampered regions. It determines regions at the image-level rather than at the pixel-level as made by Mani-Det of BusterNet. Experimental results on four publicly available datasets (new synthetic dataset, CASIA, CoMoFoD, and COVERAGE) demonstrate that the proposed algorithm is superior to the state-of-the-art algorithms in terms of similarity detection ability and source/target distinguishment ability. |
---|---|
AbstractList | In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region distinguishment. BusterNet is based on two branches, i.e., Simi-Det and Mani-Det, and suffers from two main drawbacks: (a) it should ensure that both branches correctly locate regions; (b) the Simi-Det branch only extracts single-level and low-resolution features using VGG16 with four pooling layers. To ensure the identification of the source and target regions, we introduce two subnetworks that are constructed serially: the copy-move similarity detection network (CMSDNet) and the source/target region distinguishment network (STRDNet). Regarding the second drawback, the CMSDNet subnetwork improves Simi-Det by removing the last pooling layer in VGG16 and by introducing atrous convolution into VGG16 to preserve field-of-views of filters after the removal of the fourth pooling layer; double-level self-correlation is also considered for matching hierarchical features. Moreover, atrous spatial pyramid pooling and attention mechanism allow the capture of multiscale features and provide evidence for important information. Finally, STRDNet is designed to determine the similar regions obtained from CMSDNet directly as tampered regions and untampered regions. It determines regions at the image-level rather than at the pixel-level as made by Mani-Det of BusterNet. Experimental results on four publicly available datasets (new synthetic dataset, CASIA, CoMoFoD, and COVERAGE) demonstrate that the proposed algorithm is superior to the state-of-the-art algorithms in terms of similarity detection ability and source/target distinguishment ability. |
Author | Coatrieux, Gouenou Chen, Beijing Shi, Yun-Qing Zheng, Yuhui Tan, Weijin |
Author_xml | – sequence: 1 givenname: Beijing orcidid: 0000-0002-2506-0427 surname: Chen fullname: Chen, Beijing email: nbutimage@126.com organization: School of Computer & Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China – sequence: 2 givenname: Weijin surname: Tan fullname: Tan, Weijin email: 13913301359@163.com organization: School of Computer & Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China – sequence: 3 givenname: Gouenou orcidid: 0000-0002-5643-0224 surname: Coatrieux fullname: Coatrieux, Gouenou email: gouenou.coatrieux@imt-atlantique.fr organization: INSERM, UMR1101, IMT Atlantique Bretagne Pays de la Loire, Brest, LaTIM, France – sequence: 4 givenname: Yuhui orcidid: 0000-0002-1709-3093 surname: Zheng fullname: Zheng, Yuhui email: zheng_yuhui@nuist.edu.cn organization: School of Computer & Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China – sequence: 5 givenname: Yun-Qing surname: Shi fullname: Shi, Yun-Qing email: shi@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, USA |
BookMark | eNp9kE1PAjEQhhuDiYDeTbw08bww7X72SFCUBOIBDMdNtzsLJcsWu8UEf71FiAcPnmYOzzsfT490GtMgIfcMBoyBGC7n8wEHDoMQeJIl2RXpMhGxACBNO76POQSCM7ghvbbdArAohrRLViO6QKtlTac7uUY6NvtjMDefSCfGrtEe6cwoWesv6bRp6EJtcId0pd2GLszBKhwupeccfdKt0836oNvNDht3S64rWbd4d6l98j55Xo5fg9nby3Q8mgWKC-aCAsq4iESkJLJIskxwEUcshFRVsiwiYCpVWZrFskjLDAVTIixYKbH0dAWZCPvk8Tx3b83HAVuXb_1ZjV-Z8zgLkzBJUu6p5Ewpa9rWYpUr7X4-clbqOmeQnyTmXmJ-kphfJPog_Anurd5Je_wv8nCOaET8xQUH_wYLvwF3tH6L |
CODEN | ITMUF8 |
CitedBy_id | crossref_primary_10_32604_cmc_2024_053740 crossref_primary_10_1109_TCSVT_2022_3220630 crossref_primary_10_1145_3669905 crossref_primary_10_32604_jcs_2022_032915 crossref_primary_10_1155_2022_3493336 crossref_primary_10_1109_TIP_2021_3132828 crossref_primary_10_1109_ACCESS_2023_3291128 crossref_primary_10_1007_s11042_023_16455_x crossref_primary_10_1109_TIM_2024_3451570 crossref_primary_10_1145_3548689 crossref_primary_10_1109_ACCESS_2021_3136781 crossref_primary_10_1007_s11042_021_11529_0 crossref_primary_10_1155_2022_9755509 crossref_primary_10_1109_TMM_2024_3521685 crossref_primary_10_1007_s11042_023_15032_6 crossref_primary_10_1007_s11042_024_20243_6 crossref_primary_10_1007_s00521_025_11009_8 crossref_primary_10_1007_s10489_023_05174_3 crossref_primary_10_1016_j_jvcir_2024_104125 crossref_primary_10_1145_3571076 crossref_primary_10_1109_TII_2024_3476541 crossref_primary_10_1016_j_eswa_2023_121918 crossref_primary_10_1049_cje_2021_08_004 crossref_primary_10_1109_TMM_2023_3345160 crossref_primary_10_32604_cmc_2025_055739 crossref_primary_10_1016_j_asoc_2024_111992 crossref_primary_10_1016_j_neucom_2024_128834 crossref_primary_10_1093_comjnl_bxac186 crossref_primary_10_3390_electronics13193919 crossref_primary_10_1109_TNNLS_2022_3204390 crossref_primary_10_1016_j_eswa_2024_124171 crossref_primary_10_1109_TPAMI_2024_3432551 crossref_primary_10_1109_TAI_2024_3379941 crossref_primary_10_3390_math11143134 crossref_primary_10_1145_3580512 crossref_primary_10_1109_TMM_2023_3270629 crossref_primary_10_1109_TMM_2023_3237322 crossref_primary_10_1109_TIP_2024_3482191 crossref_primary_10_1109_TMM_2022_3182509 crossref_primary_10_1109_LSP_2024_3400055 crossref_primary_10_1109_ACCESS_2022_3212069 crossref_primary_10_1007_s11042_021_11539_y crossref_primary_10_1007_s11042_024_19584_z crossref_primary_10_11834_jig_230098 crossref_primary_10_1016_j_asoc_2023_110730 crossref_primary_10_1016_j_imavis_2024_105138 crossref_primary_10_1142_S0218001422540192 crossref_primary_10_1038_s41598_022_19325_y crossref_primary_10_1109_TCSVT_2023_3269742 crossref_primary_10_1109_TETC_2024_3386960 crossref_primary_10_1109_TCSVT_2021_3116679 crossref_primary_10_1109_TMM_2022_3215000 crossref_primary_10_1117_1_JEI_33_4_043004 crossref_primary_10_1016_j_ipm_2024_103685 crossref_primary_10_1111_exsy_13729 crossref_primary_10_1155_2021_6626974 crossref_primary_10_3390_e26110900 crossref_primary_10_3390_app14093629 crossref_primary_10_3390_s20226668 crossref_primary_10_1007_s11042_021_11174_7 crossref_primary_10_1109_TIM_2023_3285981 crossref_primary_10_1109_TMM_2022_3231110 crossref_primary_10_1016_j_neucom_2024_128607 crossref_primary_10_1155_2021_1627486 crossref_primary_10_1109_TMM_2023_3310341 crossref_primary_10_1007_s00500_022_07432_x crossref_primary_10_1155_2021_5554058 crossref_primary_10_1109_TMM_2021_3098422 crossref_primary_10_3390_s24134143 crossref_primary_10_1007_s11042_022_14287_9 |
Cites_doi | 10.1109/ACCESS.2013.2260814 10.1007/978-3-642-16435-4_5 10.1109/ICIP.2016.7532339 10.1109/ACCESS.2018.2871952 10.1145/3231737 10.1109/TIFS.2018.2825953 10.1109/TMM.2018.2872898 10.1007/s11042-018-6595-z 10.1109/CVPR.2015.7298594 10.1016/j.diin.2012.04.004 10.1016/j.cviu.2020.103015 10.1109/TMM.2019.2943204 10.1023/B:VISI.0000029664.99615.94 10.1109/TIFS.2015.2455334 10.1007/s11071-015-2374-9 10.1109/TIFS.2012.2218597 10.1109/TMM.2019.2929931 10.1109/TIFS.2015.2423261 10.1007/978-3-030-01231-1_11 10.1109/TMM.2011.2121056 10.1109/ICME.2019.00166 10.1145/3123266.3123411 10.1109/CVPR.2017.75 10.1109/TIFS.2018.2876837 10.1109/TPAMI.2017.2699184 10.1109/TIFS.2016.2585118 10.1109/TMM.2019.2959443 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TMM.2020.3026868 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0077 |
EndPage | 3517 |
ExternalDocumentID | 10_1109_TMM_2020_3026868 9207851 |
Genre | orig-research |
GrantInformation_xml | – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions funderid: 10.13039/501100012246 – fundername: National Natural Science Foundation of China grantid: 62072251; 61972206 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-b0d5b494cae14a18929541307cfadb401c7c8785ab7d8e91c93b1daed14af0893 |
IEDL.DBID | RIE |
ISSN | 1520-9210 |
IngestDate | Sun Jun 29 12:43:52 EDT 2025 Tue Jul 01 01:54:35 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Wed Aug 27 05:08:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-b0d5b494cae14a18929541307cfadb401c7c8785ab7d8e91c93b1daed14af0893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5643-0224 0000-0002-1709-3093 0000-0002-2506-0427 |
PQID | 2583636672 |
PQPubID | 75737 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TMM_2020_3026868 crossref_primary_10_1109_TMM_2020_3026868 proquest_journals_2583636672 ieee_primary_9207851 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on multimedia |
PublicationTitleAbbrev | TMM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 pun (ref35) 2015; 10 ref15 ref36 ref14 ref31 ref33 ref11 ref32 su (ref8) 2017; 20 ref2 ref1 ref16 ref19 ref18 simonyan (ref22) 0 ref23 chen (ref24) 2017 popescu (ref10) 2004 ref25 ref20 woo (ref26) 2018 ref21 ref27 ref7 ref9 ref4 ref3 ref5 tralic (ref29) 0 larochelle (ref30) 2010 dong (ref28) 2011 shivakumar (ref17) 2011; 8 fridrich (ref6) 0 |
References_xml | – year: 2004 ident: ref10 article-title: Exposing digital forgeries by detecting duplicated image regions publication-title: Dartmouth College Technical Report – ident: ref1 doi: 10.1109/ACCESS.2013.2260814 – ident: ref12 doi: 10.1007/978-3-642-16435-4_5 – ident: ref33 doi: 10.1109/ICIP.2016.7532339 – ident: ref14 doi: 10.1109/ACCESS.2018.2871952 – ident: ref31 doi: 10.1145/3231737 – ident: ref27 doi: 10.1109/TIFS.2018.2825953 – ident: ref11 doi: 10.1109/TMM.2018.2872898 – ident: ref13 doi: 10.1007/s11042-018-6595-z – ident: ref23 doi: 10.1109/CVPR.2015.7298594 – year: 2011 ident: ref28 article-title: CASIA tampered image detection evaluation (TIDE) database – ident: ref7 doi: 10.1016/j.diin.2012.04.004 – start-page: 1243 year: 2010 ident: ref30 article-title: Learning to combine foveal glimpses with a third-order Boltzmann machine publication-title: Proc Neural Inf Process Syst – ident: ref37 doi: 10.1016/j.cviu.2020.103015 – ident: ref18 doi: 10.1109/TMM.2019.2943204 – start-page: 1 year: 0 ident: ref6 article-title: Detection of copy-move forgery in digital images publication-title: Proc Digit Foren Res Workshop – ident: ref16 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 20 start-page: 1 year: 2017 ident: ref8 article-title: A fast forgery detection algorithm based on exponential-fourier moments for video region duplication publication-title: IEEE Trans Multimedia – ident: ref34 doi: 10.1109/TIFS.2015.2455334 – start-page: 3 year: 2018 ident: ref26 article-title: 'CBAM: Convolutional block attention module publication-title: Proc Eur Conf Comput Vis – ident: ref9 doi: 10.1007/s11071-015-2374-9 – ident: ref15 doi: 10.1109/TIFS.2012.2218597 – ident: ref19 doi: 10.1109/TMM.2019.2929931 – start-page: 1 year: 0 ident: ref22 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc 3rd Int Conf Learn Representations – volume: 10 start-page: 1705 year: 2015 ident: ref35 article-title: Image forgery detection using adaptive over-segmentation and feature point matching publication-title: IEEE Trans Inf Foren Secur doi: 10.1109/TIFS.2015.2423261 – ident: ref21 doi: 10.1007/978-3-030-01231-1_11 – start-page: 49 year: 0 ident: ref29 article-title: CoMoFoD - New database for copy-move forgery detection publication-title: Proc Elmar - Int Symp Electronics Marine – ident: ref3 doi: 10.1109/TMM.2011.2121056 – year: 2017 ident: ref24 article-title: Rethinking atrous convolution for semantic image segmentation – ident: ref36 doi: 10.1109/ICME.2019.00166 – ident: ref20 doi: 10.1145/3123266.3123411 – ident: ref32 doi: 10.1109/CVPR.2017.75 – ident: ref4 doi: 10.1109/TIFS.2018.2876837 – ident: ref25 doi: 10.1109/TPAMI.2017.2699184 – ident: ref5 doi: 10.1109/TIFS.2016.2585118 – volume: 8 start-page: 199 year: 2011 ident: ref17 article-title: Detection of region duplication forgery in digital images using SURF publication-title: Int J Comput Sci – ident: ref2 doi: 10.1109/TMM.2019.2959443 |
SSID | ssj0014507 |
Score | 2.5715964 |
Snippet | In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3506 |
SubjectTerms | Algorithms Artificial neural networks atrous convolution attention mechanism Convolution Copy-move Correlation Datasets Decoding deep neural network Feature extraction Forgery image forgery Localization Similarity Target detection Task analysis |
Title | A Serial Image Copy-Move Forgery Localization Scheme With Source/Target Distinguishment |
URI | https://ieeexplore.ieee.org/document/9207851 https://www.proquest.com/docview/2583636672 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61TDBQKCDKSx5YkHDzctN4REAFiLDQqt2i2HFoBTSIJkjw6zk7SYUAIbYMl-iiz_bd53sBHOuhZTwOUpqmiaAM6TXlaPWoj_bEQ0LhKtMyP7zzr0bsZtKbNOB0WQujlDLJZ6qrH00sP8lkoa_KLO7aepZ8E5pI3MparWXEgPVMaTSaI5ty5DF1SNLm1jAMkQi6yE-RcAS6qeoXE2Rmqvw4iI11GbQgrPUqk0oeu0UuuvLjW8vG_yq-AeuVm0nOynWxCQ01b0OrHuFAqh3dhrUv_Qi3YHxGytsycv2M5ww5z17eaZi9KTLITPU0udWmryrdxK9M1bMi41k-JfcmCGANTWI5udAnx_yhmC2mWrNtGA0uh-dXtJq8QKXLnZwKO-kJxpmMlcNiJ-A6GojWri_TOBFIyWRfBvhHsegngeKO5J5wklglKJ3a6ALtwMo8m6tdII7wFEsTXYcSMI_FAkV76PYFaSB1rWIHrBqMSFZtyfV0jKfI0BObRwhfpOGLKvg6cLJ846VsyfGH7JZGYylXAdGBgxrvqNqzi8hFtXzP9_vu3u9v7cOqqzNazAXMAazkr4U6RJckF0dmLX4CMKDbSw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4heqA9QIFWXUqLD-XQg3cTx8nahx4QdLVbNlxYBLc0dpwuatmgbrYVfZa-St-tY8dZIUC9IfWWw9hKPJOZ-Tx_AO_s0DKZi5KWZaEoR3hNJVo9mqA9iRBQMONa5qcnyfCMf7qIL1bg97IWxhjjks9M1z66WH5R6YW9KutJFthZ8j6F8tjc_ESANv8wOkJu7jM2-Dg5HFI_Q4BqJsOaqqCIFZdc5ybkeSikjWuh3u7rMi8Uggvd1wI3zVW_EEaGWkYqLHJTIHUZCNtqCRX8E_QzYtZUhy1jFDx2xdhoAAMqETm1QdBA9iZpitCTISJGiCNsG9dbRs9Ncbmn-p09G2zAn_YkmjSWr91Frbr6150mkf_rUT2Hde9Ik4NG8jdhxcy2YKMdUkG8ztqCZ7c6Lm7D-QFp7gPJ6Ao1KTmsrm9oWv0wZFC5-nAytsbdF6fiLlNzZcj5ZT0lpy7M0Zu41HlyZHXj7Mvicj61J_ECzh7lY1_C6qyamVdAQhUZXha20kbwiOcKSWN0bEUptK3G7ECvZX6mfeN1O__jW-YAWCAzFJfMikvmxaUD75crrpumI_-g3bbcX9J5xndgt5WvzGulecbwtZIoSfps5-FVe7A2nKTjbDw6OX4NT5nN33HXTbuwWn9fmDfogNXqrfsPCHx-bGn6C6JhOZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Serial+Image+Copy-Move+Forgery+Localization+Scheme+With+Source%2FTarget+Distinguishment&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Chen%2C+Beijing&rft.au=Tan%2C+Weijin&rft.au=Coatrieux%2C+Gouenou&rft.au=Zheng%2C+Yuhui&rft.date=2021&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=23&rft.spage=3506&rft.epage=3517&rft_id=info:doi/10.1109%2FTMM.2020.3026868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2020_3026868 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |