A Serial Image Copy-Move Forgery Localization Scheme With Source/Target Distinguishment

In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region distinguishment. BusterNet is based on two branches, i.e., Simi-Det and Mani-Det, and suffers from two main drawbacks: (a) it should ensure that both b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on multimedia Vol. 23; pp. 3506 - 3517
Main Authors Chen, Beijing, Tan, Weijin, Coatrieux, Gouenou, Zheng, Yuhui, Shi, Yun-Qing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region distinguishment. BusterNet is based on two branches, i.e., Simi-Det and Mani-Det, and suffers from two main drawbacks: (a) it should ensure that both branches correctly locate regions; (b) the Simi-Det branch only extracts single-level and low-resolution features using VGG16 with four pooling layers. To ensure the identification of the source and target regions, we introduce two subnetworks that are constructed serially: the copy-move similarity detection network (CMSDNet) and the source/target region distinguishment network (STRDNet). Regarding the second drawback, the CMSDNet subnetwork improves Simi-Det by removing the last pooling layer in VGG16 and by introducing atrous convolution into VGG16 to preserve field-of-views of filters after the removal of the fourth pooling layer; double-level self-correlation is also considered for matching hierarchical features. Moreover, atrous spatial pyramid pooling and attention mechanism allow the capture of multiscale features and provide evidence for important information. Finally, STRDNet is designed to determine the similar regions obtained from CMSDNet directly as tampered regions and untampered regions. It determines regions at the image-level rather than at the pixel-level as made by Mani-Det of BusterNet. Experimental results on four publicly available datasets (new synthetic dataset, CASIA, CoMoFoD, and COVERAGE) demonstrate that the proposed algorithm is superior to the state-of-the-art algorithms in terms of similarity detection ability and source/target distinguishment ability.
AbstractList In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region distinguishment. BusterNet is based on two branches, i.e., Simi-Det and Mani-Det, and suffers from two main drawbacks: (a) it should ensure that both branches correctly locate regions; (b) the Simi-Det branch only extracts single-level and low-resolution features using VGG16 with four pooling layers. To ensure the identification of the source and target regions, we introduce two subnetworks that are constructed serially: the copy-move similarity detection network (CMSDNet) and the source/target region distinguishment network (STRDNet). Regarding the second drawback, the CMSDNet subnetwork improves Simi-Det by removing the last pooling layer in VGG16 and by introducing atrous convolution into VGG16 to preserve field-of-views of filters after the removal of the fourth pooling layer; double-level self-correlation is also considered for matching hierarchical features. Moreover, atrous spatial pyramid pooling and attention mechanism allow the capture of multiscale features and provide evidence for important information. Finally, STRDNet is designed to determine the similar regions obtained from CMSDNet directly as tampered regions and untampered regions. It determines regions at the image-level rather than at the pixel-level as made by Mani-Det of BusterNet. Experimental results on four publicly available datasets (new synthetic dataset, CASIA, CoMoFoD, and COVERAGE) demonstrate that the proposed algorithm is superior to the state-of-the-art algorithms in terms of similarity detection ability and source/target distinguishment ability.
Author Coatrieux, Gouenou
Chen, Beijing
Shi, Yun-Qing
Zheng, Yuhui
Tan, Weijin
Author_xml – sequence: 1
  givenname: Beijing
  orcidid: 0000-0002-2506-0427
  surname: Chen
  fullname: Chen, Beijing
  email: nbutimage@126.com
  organization: School of Computer & Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China
– sequence: 2
  givenname: Weijin
  surname: Tan
  fullname: Tan, Weijin
  email: 13913301359@163.com
  organization: School of Computer & Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China
– sequence: 3
  givenname: Gouenou
  orcidid: 0000-0002-5643-0224
  surname: Coatrieux
  fullname: Coatrieux, Gouenou
  email: gouenou.coatrieux@imt-atlantique.fr
  organization: INSERM, UMR1101, IMT Atlantique Bretagne Pays de la Loire, Brest, LaTIM, France
– sequence: 4
  givenname: Yuhui
  orcidid: 0000-0002-1709-3093
  surname: Zheng
  fullname: Zheng, Yuhui
  email: zheng_yuhui@nuist.edu.cn
  organization: School of Computer & Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing, China
– sequence: 5
  givenname: Yun-Qing
  surname: Shi
  fullname: Shi, Yun-Qing
  email: shi@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, USA
BookMark eNp9kE1PAjEQhhuDiYDeTbw08bww7X72SFCUBOIBDMdNtzsLJcsWu8UEf71FiAcPnmYOzzsfT490GtMgIfcMBoyBGC7n8wEHDoMQeJIl2RXpMhGxACBNO76POQSCM7ghvbbdArAohrRLViO6QKtlTac7uUY6NvtjMDefSCfGrtEe6cwoWesv6bRp6EJtcId0pd2GLszBKhwupeccfdKt0836oNvNDht3S64rWbd4d6l98j55Xo5fg9nby3Q8mgWKC-aCAsq4iESkJLJIskxwEUcshFRVsiwiYCpVWZrFskjLDAVTIixYKbH0dAWZCPvk8Tx3b83HAVuXb_1ZjV-Z8zgLkzBJUu6p5Ewpa9rWYpUr7X4-clbqOmeQnyTmXmJ-kphfJPog_Anurd5Je_wv8nCOaET8xQUH_wYLvwF3tH6L
CODEN ITMUF8
CitedBy_id crossref_primary_10_32604_cmc_2024_053740
crossref_primary_10_1109_TCSVT_2022_3220630
crossref_primary_10_1145_3669905
crossref_primary_10_32604_jcs_2022_032915
crossref_primary_10_1155_2022_3493336
crossref_primary_10_1109_TIP_2021_3132828
crossref_primary_10_1109_ACCESS_2023_3291128
crossref_primary_10_1007_s11042_023_16455_x
crossref_primary_10_1109_TIM_2024_3451570
crossref_primary_10_1145_3548689
crossref_primary_10_1109_ACCESS_2021_3136781
crossref_primary_10_1007_s11042_021_11529_0
crossref_primary_10_1155_2022_9755509
crossref_primary_10_1109_TMM_2024_3521685
crossref_primary_10_1007_s11042_023_15032_6
crossref_primary_10_1007_s11042_024_20243_6
crossref_primary_10_1007_s00521_025_11009_8
crossref_primary_10_1007_s10489_023_05174_3
crossref_primary_10_1016_j_jvcir_2024_104125
crossref_primary_10_1145_3571076
crossref_primary_10_1109_TII_2024_3476541
crossref_primary_10_1016_j_eswa_2023_121918
crossref_primary_10_1049_cje_2021_08_004
crossref_primary_10_1109_TMM_2023_3345160
crossref_primary_10_32604_cmc_2025_055739
crossref_primary_10_1016_j_asoc_2024_111992
crossref_primary_10_1016_j_neucom_2024_128834
crossref_primary_10_1093_comjnl_bxac186
crossref_primary_10_3390_electronics13193919
crossref_primary_10_1109_TNNLS_2022_3204390
crossref_primary_10_1016_j_eswa_2024_124171
crossref_primary_10_1109_TPAMI_2024_3432551
crossref_primary_10_1109_TAI_2024_3379941
crossref_primary_10_3390_math11143134
crossref_primary_10_1145_3580512
crossref_primary_10_1109_TMM_2023_3270629
crossref_primary_10_1109_TMM_2023_3237322
crossref_primary_10_1109_TIP_2024_3482191
crossref_primary_10_1109_TMM_2022_3182509
crossref_primary_10_1109_LSP_2024_3400055
crossref_primary_10_1109_ACCESS_2022_3212069
crossref_primary_10_1007_s11042_021_11539_y
crossref_primary_10_1007_s11042_024_19584_z
crossref_primary_10_11834_jig_230098
crossref_primary_10_1016_j_asoc_2023_110730
crossref_primary_10_1016_j_imavis_2024_105138
crossref_primary_10_1142_S0218001422540192
crossref_primary_10_1038_s41598_022_19325_y
crossref_primary_10_1109_TCSVT_2023_3269742
crossref_primary_10_1109_TETC_2024_3386960
crossref_primary_10_1109_TCSVT_2021_3116679
crossref_primary_10_1109_TMM_2022_3215000
crossref_primary_10_1117_1_JEI_33_4_043004
crossref_primary_10_1016_j_ipm_2024_103685
crossref_primary_10_1111_exsy_13729
crossref_primary_10_1155_2021_6626974
crossref_primary_10_3390_e26110900
crossref_primary_10_3390_app14093629
crossref_primary_10_3390_s20226668
crossref_primary_10_1007_s11042_021_11174_7
crossref_primary_10_1109_TIM_2023_3285981
crossref_primary_10_1109_TMM_2022_3231110
crossref_primary_10_1016_j_neucom_2024_128607
crossref_primary_10_1155_2021_1627486
crossref_primary_10_1109_TMM_2023_3310341
crossref_primary_10_1007_s00500_022_07432_x
crossref_primary_10_1155_2021_5554058
crossref_primary_10_1109_TMM_2021_3098422
crossref_primary_10_3390_s24134143
crossref_primary_10_1007_s11042_022_14287_9
Cites_doi 10.1109/ACCESS.2013.2260814
10.1007/978-3-642-16435-4_5
10.1109/ICIP.2016.7532339
10.1109/ACCESS.2018.2871952
10.1145/3231737
10.1109/TIFS.2018.2825953
10.1109/TMM.2018.2872898
10.1007/s11042-018-6595-z
10.1109/CVPR.2015.7298594
10.1016/j.diin.2012.04.004
10.1016/j.cviu.2020.103015
10.1109/TMM.2019.2943204
10.1023/B:VISI.0000029664.99615.94
10.1109/TIFS.2015.2455334
10.1007/s11071-015-2374-9
10.1109/TIFS.2012.2218597
10.1109/TMM.2019.2929931
10.1109/TIFS.2015.2423261
10.1007/978-3-030-01231-1_11
10.1109/TMM.2011.2121056
10.1109/ICME.2019.00166
10.1145/3123266.3123411
10.1109/CVPR.2017.75
10.1109/TIFS.2018.2876837
10.1109/TPAMI.2017.2699184
10.1109/TIFS.2016.2585118
10.1109/TMM.2019.2959443
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2020.3026868
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 3517
ExternalDocumentID 10_1109_TMM_2020_3026868
9207851
Genre orig-research
GrantInformation_xml – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  funderid: 10.13039/501100012246
– fundername: National Natural Science Foundation of China
  grantid: 62072251; 61972206
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-b0d5b494cae14a18929541307cfadb401c7c8785ab7d8e91c93b1daed14af0893
IEDL.DBID RIE
ISSN 1520-9210
IngestDate Sun Jun 29 12:43:52 EDT 2025
Tue Jul 01 01:54:35 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Wed Aug 27 05:08:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-b0d5b494cae14a18929541307cfadb401c7c8785ab7d8e91c93b1daed14af0893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5643-0224
0000-0002-1709-3093
0000-0002-2506-0427
PQID 2583636672
PQPubID 75737
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TMM_2020_3026868
crossref_primary_10_1109_TMM_2020_3026868
proquest_journals_2583636672
ieee_primary_9207851
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
pun (ref35) 2015; 10
ref15
ref36
ref14
ref31
ref33
ref11
ref32
su (ref8) 2017; 20
ref2
ref1
ref16
ref19
ref18
simonyan (ref22) 0
ref23
chen (ref24) 2017
popescu (ref10) 2004
ref25
ref20
woo (ref26) 2018
ref21
ref27
ref7
ref9
ref4
ref3
ref5
tralic (ref29) 0
larochelle (ref30) 2010
dong (ref28) 2011
shivakumar (ref17) 2011; 8
fridrich (ref6) 0
References_xml – year: 2004
  ident: ref10
  article-title: Exposing digital forgeries by detecting duplicated image regions
  publication-title: Dartmouth College Technical Report
– ident: ref1
  doi: 10.1109/ACCESS.2013.2260814
– ident: ref12
  doi: 10.1007/978-3-642-16435-4_5
– ident: ref33
  doi: 10.1109/ICIP.2016.7532339
– ident: ref14
  doi: 10.1109/ACCESS.2018.2871952
– ident: ref31
  doi: 10.1145/3231737
– ident: ref27
  doi: 10.1109/TIFS.2018.2825953
– ident: ref11
  doi: 10.1109/TMM.2018.2872898
– ident: ref13
  doi: 10.1007/s11042-018-6595-z
– ident: ref23
  doi: 10.1109/CVPR.2015.7298594
– year: 2011
  ident: ref28
  article-title: CASIA tampered image detection evaluation (TIDE) database
– ident: ref7
  doi: 10.1016/j.diin.2012.04.004
– start-page: 1243
  year: 2010
  ident: ref30
  article-title: Learning to combine foveal glimpses with a third-order Boltzmann machine
  publication-title: Proc Neural Inf Process Syst
– ident: ref37
  doi: 10.1016/j.cviu.2020.103015
– ident: ref18
  doi: 10.1109/TMM.2019.2943204
– start-page: 1
  year: 0
  ident: ref6
  article-title: Detection of copy-move forgery in digital images
  publication-title: Proc Digit Foren Res Workshop
– ident: ref16
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 20
  start-page: 1
  year: 2017
  ident: ref8
  article-title: A fast forgery detection algorithm based on exponential-fourier moments for video region duplication
  publication-title: IEEE Trans Multimedia
– ident: ref34
  doi: 10.1109/TIFS.2015.2455334
– start-page: 3
  year: 2018
  ident: ref26
  article-title: 'CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis
– ident: ref9
  doi: 10.1007/s11071-015-2374-9
– ident: ref15
  doi: 10.1109/TIFS.2012.2218597
– ident: ref19
  doi: 10.1109/TMM.2019.2929931
– start-page: 1
  year: 0
  ident: ref22
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc 3rd Int Conf Learn Representations
– volume: 10
  start-page: 1705
  year: 2015
  ident: ref35
  article-title: Image forgery detection using adaptive over-segmentation and feature point matching
  publication-title: IEEE Trans Inf Foren Secur
  doi: 10.1109/TIFS.2015.2423261
– ident: ref21
  doi: 10.1007/978-3-030-01231-1_11
– start-page: 49
  year: 0
  ident: ref29
  article-title: CoMoFoD - New database for copy-move forgery detection
  publication-title: Proc Elmar - Int Symp Electronics Marine
– ident: ref3
  doi: 10.1109/TMM.2011.2121056
– year: 2017
  ident: ref24
  article-title: Rethinking atrous convolution for semantic image segmentation
– ident: ref36
  doi: 10.1109/ICME.2019.00166
– ident: ref20
  doi: 10.1145/3123266.3123411
– ident: ref32
  doi: 10.1109/CVPR.2017.75
– ident: ref4
  doi: 10.1109/TIFS.2018.2876837
– ident: ref25
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref5
  doi: 10.1109/TIFS.2016.2585118
– volume: 8
  start-page: 199
  year: 2011
  ident: ref17
  article-title: Detection of region duplication forgery in digital images using SURF
  publication-title: Int J Comput Sci
– ident: ref2
  doi: 10.1109/TMM.2019.2959443
SSID ssj0014507
Score 2.5715964
Snippet In this paper, we improve the parallel deep neural network (DNN) scheme BusterNet for image copy-move forgery localization with source/target region...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3506
SubjectTerms Algorithms
Artificial neural networks
atrous convolution
attention mechanism
Convolution
Copy-move
Correlation
Datasets
Decoding
deep neural network
Feature extraction
Forgery
image forgery
Localization
Similarity
Target detection
Task analysis
Title A Serial Image Copy-Move Forgery Localization Scheme With Source/Target Distinguishment
URI https://ieeexplore.ieee.org/document/9207851
https://www.proquest.com/docview/2583636672
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61TDBQKCDKSx5YkHDzctN4REAFiLDQqt2i2HFoBTSIJkjw6zk7SYUAIbYMl-iiz_bd53sBHOuhZTwOUpqmiaAM6TXlaPWoj_bEQ0LhKtMyP7zzr0bsZtKbNOB0WQujlDLJZ6qrH00sP8lkoa_KLO7aepZ8E5pI3MparWXEgPVMaTSaI5ty5DF1SNLm1jAMkQi6yE-RcAS6qeoXE2Rmqvw4iI11GbQgrPUqk0oeu0UuuvLjW8vG_yq-AeuVm0nOynWxCQ01b0OrHuFAqh3dhrUv_Qi3YHxGytsycv2M5ww5z17eaZi9KTLITPU0udWmryrdxK9M1bMi41k-JfcmCGANTWI5udAnx_yhmC2mWrNtGA0uh-dXtJq8QKXLnZwKO-kJxpmMlcNiJ-A6GojWri_TOBFIyWRfBvhHsegngeKO5J5wklglKJ3a6ALtwMo8m6tdII7wFEsTXYcSMI_FAkV76PYFaSB1rWIHrBqMSFZtyfV0jKfI0BObRwhfpOGLKvg6cLJ846VsyfGH7JZGYylXAdGBgxrvqNqzi8hFtXzP9_vu3u9v7cOqqzNazAXMAazkr4U6RJckF0dmLX4CMKDbSw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB4heqA9QIFWXUqLD-XQg3cTx8nahx4QdLVbNlxYBLc0dpwuatmgbrYVfZa-St-tY8dZIUC9IfWWw9hKPJOZ-Tx_AO_s0DKZi5KWZaEoR3hNJVo9mqA9iRBQMONa5qcnyfCMf7qIL1bg97IWxhjjks9M1z66WH5R6YW9KutJFthZ8j6F8tjc_ESANv8wOkJu7jM2-Dg5HFI_Q4BqJsOaqqCIFZdc5ybkeSikjWuh3u7rMi8Uggvd1wI3zVW_EEaGWkYqLHJTIHUZCNtqCRX8E_QzYtZUhy1jFDx2xdhoAAMqETm1QdBA9iZpitCTISJGiCNsG9dbRs9Ncbmn-p09G2zAn_YkmjSWr91Frbr6150mkf_rUT2Hde9Ik4NG8jdhxcy2YKMdUkG8ztqCZ7c6Lm7D-QFp7gPJ6Ao1KTmsrm9oWv0wZFC5-nAytsbdF6fiLlNzZcj5ZT0lpy7M0Zu41HlyZHXj7Mvicj61J_ECzh7lY1_C6qyamVdAQhUZXha20kbwiOcKSWN0bEUptK3G7ECvZX6mfeN1O__jW-YAWCAzFJfMikvmxaUD75crrpumI_-g3bbcX9J5xndgt5WvzGulecbwtZIoSfps5-FVe7A2nKTjbDw6OX4NT5nN33HXTbuwWn9fmDfogNXqrfsPCHx-bGn6C6JhOZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Serial+Image+Copy-Move+Forgery+Localization+Scheme+With+Source%2FTarget+Distinguishment&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Chen%2C+Beijing&rft.au=Tan%2C+Weijin&rft.au=Coatrieux%2C+Gouenou&rft.au=Zheng%2C+Yuhui&rft.date=2021&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=23&rft.spage=3506&rft.epage=3517&rft_id=info:doi/10.1109%2FTMM.2020.3026868&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2020_3026868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon