Properties of glitching pulsars in the Skyrme–Hartree–Fock framework
We address the crustal properties of neutron stars, such as crustal mass, crustal radius, crustal fraction of the moment of inertia and investigate the crustal and structural properties related to the glitching mechanism observed in pulsars. The mass, radius and crustal fraction of the moment of ine...
Saved in:
Published in | Pramāṇa Vol. 98; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
30.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the crustal properties of neutron stars, such as crustal mass, crustal radius, crustal fraction of the moment of inertia and investigate the crustal and structural properties related to the glitching mechanism observed in pulsars. The mass, radius and crustal fraction of the moment of inertia in neutron stars have been determined using
β
-equilibrated neutron–proton–electron–muon (npe
μ
) dense neutron star matter obtained using the extended Skyrme effective interactions with NRAPR and Brussels–Montreal parameter sets. The maximum mass of the neutron star calculated from these sets is able to reach
∼
2
M
⊙
and higher, corroborating the recently observed masses of compact stars. The crustal fraction of the moment of inertia depends sensitively on the pressure and the corresponding density at the core–crust transition. The core–crust transition density and pressure together with the extracted minimum crustal fraction of the total moment of inertia provide a limit for the radii of pulsars. Present calculations imply that due to the crustal entrainment, the crustal fraction of the total moment of inertia is about 5.5
%
. |
---|---|
AbstractList | We address the crustal properties of neutron stars, such as crustal mass, crustal radius, crustal fraction of the moment of inertia and investigate the crustal and structural properties related to the glitching mechanism observed in pulsars. The mass, radius and crustal fraction of the moment of inertia in neutron stars have been determined using
β
-equilibrated neutron–proton–electron–muon (npe
μ
) dense neutron star matter obtained using the extended Skyrme effective interactions with NRAPR and Brussels–Montreal parameter sets. The maximum mass of the neutron star calculated from these sets is able to reach
∼
2
M
⊙
and higher, corroborating the recently observed masses of compact stars. The crustal fraction of the moment of inertia depends sensitively on the pressure and the corresponding density at the core–crust transition. The core–crust transition density and pressure together with the extracted minimum crustal fraction of the total moment of inertia provide a limit for the radii of pulsars. Present calculations imply that due to the crustal entrainment, the crustal fraction of the total moment of inertia is about 5.5
%
. |
ArticleNumber | 17 |
Author | Lahiri, Joydev Basu, D N Atta, Debasis |
Author_xml | – sequence: 1 givenname: Joydev surname: Lahiri fullname: Lahiri, Joydev organization: Variable Energy Cyclotron Centre – sequence: 2 givenname: Debasis surname: Atta fullname: Atta, Debasis organization: Government General Degree College Kharagpur-II – sequence: 3 givenname: D N surname: Basu fullname: Basu, D N email: dnb@vecc.gov.in organization: Variable Energy Cyclotron Centre |
BookMark | eNp9kE1OwzAQRi1UJNrCBVjlAgH_NYmXqKIEqRJIwNpynEnrNo2rsSvUHXfghpyElLJALLoYzbd532jeiAw63wEh14zeMErz28A4lSKl_DCZylN1RoZU5SLNGWODP_mCjEJYUcqUFJMhKZ_RbwGjg5D4Jlm0Ltql6xbJdtcGgyFxXRKXkLys97iBr4_P0mBEOKSZt-ukQbOBd4_rS3LemDbA1e8ek7fZ_eu0TOdPD4_Tu3lquWIxNaAEZXXBLK8rPuGQZYWwSlUyr0VeKwnQQJY3cmKyAiqaMUGl5A0tgANUtRgTfuy16ENAaPQW3cbgXjOqDy700YXuXegfF1r1UPEPsi6a6HwX0bj2NCqOaOjvdAtAvfI77PoXT1Hfp7h4ZA |
CitedBy_id | crossref_primary_10_1007_s12043_025_02897_5 |
Cites_doi | 10.1103/PhysRevC.70.065806 10.1038/nphys2424 10.1103/PhysRevLett.83.3362 10.1038/nature09466 10.3847/2041-8213/ac0a81 10.1111/j.1745-3933.2011.01015.x 10.1103/PhysRevC.99.015803 10.1103/PhysRevD.104.063003 10.1103/PhysRev.55.374 10.1111/j.1365-2966.2006.10895.x 10.1140/epjp/i2014-14062-x 10.1086/589823 10.1103/PhysRevLett.109.241103 10.1016/j.nuclphysa.2014.09.045 10.1016/0370-1573(88)90043-9 10.1016/j.physrep.2005.02.004 10.1103/RevModPhys.64.1133 10.1103/PhysRevLett.95.211101 10.1086/376515 10.1016/j.nuclphysa.2004.06.012 10.1016/0370-1573(80)90001-0 10.1103/PhysRevC.75.015801 10.1016/0375-9474(71)90281-8 10.1103/PhysRevC.86.015801 10.1126/science.1233232 10.1016/0375-9474(94)00506-I 10.1103/PhysRevLett.86.5647 10.1016/S0370-1573(00)00019-3 10.1103/PhysRevC.73.035804 10.1146/annurev.ns.45.120195.002241 10.1103/PhysRevC.90.015803 10.1016/j.astropartphys.2012.04.005 10.1103/PhysRevC.74.045808 10.3847/2041-8213/ac8007 10.1086/151216 10.1016/0375-9474(77)90019-7 10.1016/S0370-2693(00)00672-9 10.1103/PhysRevC.74.035802 10.1086/190434 10.1103/PhysRevLett.66.2701 10.1103/PhysRevC.76.025801 10.1103/PhysRevC.80.065804 10.1103/PhysRev.55.364 10.1016/0375-9474(86)90057-6 10.1143/PTP.79.110 10.1103/PhysRevC.69.045804 10.1126/science.1090720 10.1016/j.physrep.2007.02.003 10.3847/2041-8213/aaa401 10.1103/PhysRevC.104.025805 10.3847/2041-8213/ac03b8 10.1016/0370-1573(86)90131-6 10.1103/PhysRevC.85.035201 10.1103/PhysRevC.70.065804 10.1080/14786435608238186 10.1111/j.1365-2966.2010.17827.x 10.1016/S0375-9474(97)00596-4 10.1088/2041-8205/719/2/L167 10.1103/PhysRevLett.106.081101 10.1103/PhysRevC.82.035804 10.1103/Physics.11.42 10.1016/j.nuclphysa.2007.03.006 10.1103/PhysRevLett.110.011101 10.1038/218731a0 10.1103/PhysRevC.81.062801 10.1103/PhysRevC.83.045810 10.1103/PhysRev.75.1561 10.1086/319702 10.1103/PhysRevC.88.024308 10.1103/PhysRevC.5.626 10.1103/PhysRevC.79.035802 10.1086/149400 10.1016/S0375-9474(97)00002-X 10.1146/annurev.ns.25.120175.000331 |
ContentType | Journal Article |
Copyright | Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12043-023-02697-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 0973-7111 |
ExternalDocumentID | 10_1007_s12043_023_02697_9 |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: CRG/2021/007333 |
GroupedDBID | -54 -5F -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BGNMA CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EOJEC ESBYG EST ESX F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ GX1 HF~ HG5 HG6 HMJXF HRMNR I-F IJ- IKXTQ IWAJR IXC IXD IXE I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KQ8 LLZTM M4Y MA- NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OBODZ OK1 P19 P2P P9T PF0 PT4 PT5 QOK QOS R89 R9I RAB RHV RNS ROL RPX RSV S16 S27 S3B SAP SC5 SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W48 WK8 XSB YLTOR Z45 Z7X Z83 Z88 Z8R Z8W ZMTXR ~02 ~8M ~A9 ~EX AAPKM AAYXX ABDBE AFDZB AFOHR AHPBZ ATHPR CITATION OVT |
ID | FETCH-LOGICAL-c291t-ae9301d81c2db252e6683c99b47d37d94eefe67f45a68eb06130442f08e2eebd3 |
IEDL.DBID | U2A |
ISSN | 0973-7111 |
IngestDate | Tue Jul 01 02:42:27 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Fri Feb 21 02:40:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 21.30.Fe Neutron stars equation of state URCA process 26.60.Dd 21.65.−f 26.60.Gj 26.60.−c 97.60.Jd Skyrme interaction equilibrium |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ae9301d81c2db252e6683c99b47d37d94eefe67f45a68eb06130442f08e2eebd3 |
ParticipantIDs | crossref_primary_10_1007_s12043_023_02697_9 crossref_citationtrail_10_1007_s12043_023_02697_9 springer_journals_10_1007_s12043_023_02697_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-30 |
PublicationDateYYYYMMDD | 2024-01-30 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi |
PublicationSubtitle | Published by the Indian Academy of Sciences |
PublicationTitle | Pramāṇa |
PublicationTitleAbbrev | Pramana - J Phys |
PublicationYear | 2024 |
Publisher | Springer India |
Publisher_xml | – name: Springer India |
References | PageDPrakashMLattimerJMSteinerAWPhys. Rev. Lett.20111062011PhRvL.106h1101P10.1103/PhysRevLett.106.081101 OyamatsuKIidaKPhys. Rev. C2007752007PhRvC..75a5801O10.1103/PhysRevC.75.015801 RezzollaLMostERWeihLRAstrophys. J. Lett.2018852L252018ApJ...852L..25R10.3847/2041-8213/aaa401 HorowitzCJPerez-GarciaMAPiekarewiczJPhys. Rev. C2004692004PhRvC..69d5804H10.1103/PhysRevC.69.045804 GorielySNucl. Phys. A2015933682015NuPhA.933...68G10.1016/j.nuclphysa.2014.09.045 MishraAP Roy Chowdhury and D N BasuAstropart. Phys.201236422012APh....36...42M10.1016/j.astropartphys.2012.04.005 XuJChenLWLiBAMaHRPhys. Rev. C2009792009PhRvC..79c5802X10.1103/PhysRevC.79.035802 BrownGEPhys. Rep.19881631671988PhR...163..167B10.1016/0370-1573(88)90043-9 MoustakidisChCPhys. Rev. C2012862012PhRvC..86a5801M10.1103/PhysRevC.86.015801 BaymGPethickCSutherlandPAstrophys. J.19711702991971ApJ...170..299B10.1086/151216 BaymGPethickCAnnu. Rev. Nucl. Sci.197525271975ARNPS..25...27B10.1146/annurev.ns.25.120175.000331 V S Uma Maheswari, D N Basu, J N De and S K Samaddar, Nucl. Phys. A615, 516 (1997) CackettEMMon. Not. R. Astron. Soc.20063724792006MNRAS.372..479C10.1111/j.1365-2966.2006.10895.x SteinerAWPrakashMLattimerJMEllisPJPhys. Rep.20054113252005PhR...411..325S10.1016/j.physrep.2005.02.004 FeynmanRPMetropolisNTellerEPhys. Rev.19497515611949PhRv...75.1561F10.1103/PhysRev.75.1561 BaymGBetheHAPethickCJNucl. Phys. A19711752251971NuPhA.175..225B10.1016/0375-9474(71)90281-8 HorowitzCJPerez-GarciaMACarriereJBerryDKPiekarewiczJPhys. Rev. C2004702004PhRvC..70f5806H10.1103/PhysRevC.70.065806 ChamelNPhys. Rev. Lett.20131102013PhRvL.110a1101C10.1103/PhysRevLett.110.011101 LattimerJMPethickCJPrakashMHaenselPPhys. Rev. Lett.19916627011991PhRvL..66.2701L10.1103/PhysRevLett.66.2701 HeinkeCOHoWCGAstrophys. J. Lett.2010719L1672010ApJ...719L.167H10.1088/2041-8205/719/2/L167 GorielySChamelNPearsonJMPhys. Rev. C2010822010PhRvC..82c5804G10.1103/PhysRevC.82.035804 BaadeWZwickyEPhys. Rev.193445138 CarriereJHorowitzCJPiekarewiczJAstrophys. J.20035934632003ApJ...593..463C10.1086/376515 DucoinCChomazPhGulminelliFNucl. Phys. A20077894032007NuPhA.789..403D10.1016/j.nuclphysa.2007.03.006 ChabanatEBoncheEHaenselEMeyerJSchaefferRNucl. Phys. A19976277101997NuPhA.627..710C10.1016/S0375-9474(97)00596-4 KrewaldSKlemtVSpethJFaesslerANucl. Phys. A19772811661977NuPhA.281..166K10.1016/0375-9474(77)90019-7 BlaizotJPPhys. Rep.1980641711980PhR....64..171B58470610.1016/0370-1573(80)90001-0 LinkBEpsteinRILattimerJMPhys. Rev. Lett.19998333621999PhRvL..83.3362L10.1103/PhysRevLett.83.3362 T Gold, Nature218, 731 (1968); ibid. 221, 25 (1969) TolmanRCPhys. Rev.1939553641939PhRv...55..364T10.1103/PhysRev.55.364 PiekarewiczJFattoyevFJHorowitzCJPhys. Rev. C2014902014PhRvC..90a5803P10.1103/PhysRevC.90.015803 ZhuoYZHanYLWuXZProg. Theor. Phys.1988791101988PThPh..79..110Y10.1143/PTP.79.110 HartleJBAstrophys. J.196715010051967ApJ...150.1005H10.1086/149400 OppenheimerJRVolkoffGMPhys. Rev.1939553741939PhRv...55..374O10.1103/PhysRev.55.374 GeLXZhuoYZNorenbergWNucl. Phys. A19864597710.1016/0375-9474(86)90057-6 DemorestPBPennucciTRansomSMRobertsMSEHesselsJWTNature201046710812010Natur.467.1081D10.1038/nature09466 HorowitzCJPiekarewiczJPhys. Rev. Lett.20018656472001PhRvL..86.5647H10.1103/PhysRevLett.86.5647 LegredIChatziioannouKEssickRHanSLandryaPPhys. Rev. D20211042021PhRvD.104f3003L10.1103/PhysRevD.104.063003 DouchinFHaenselPPhys. Lett. B20004851072000PhLB..485..107D10.1016/S0370-2693(00)00672-9 WorleyAKrastevPGLiBAAstrophys. J.20086853902008ApJ...685..390W10.1086/589823 ChowdhuryPRBhattacharyyaABasuDNPhys. Rev. C201081062801(R)2010PhRvC..81f2801C10.1103/PhysRevC.81.062801 BasuDNP Roy Chowdhury and A MishraEur. Phys. J. Plus20141296210.1140/epjp/i2014-14062-x HoWCGAnderssonNNature Phys.201287872012NatPh...8..787H10.1038/nphys2424 TsaloukidisLMargaritisChMoustakidisChCPhys. Rev. C2019992019PhRvC..99a5803T10.1103/PhysRevC.99.015803 YakovlevDGHoWCGShterninPSHeinkeCOPotekhinAYMon. Not. R. Astron. Soc.201141119772011MNRAS.411.1977Y10.1111/j.1365-2966.2010.17827.x ChamelNGorielySPearsonJMPhys. Rev. C2009802009PhRvC..80f5804C10.1103/PhysRevC.80.065804 AntoniadisJScience201334061312013Sci...340..448A10.1126/science.1233232 StockerHGreinerWPhys. Rep.19861372771986PhR...137..277S10.1016/0370-1573(86)90131-6 LattimerJMPrakashMScience20043045362004Sci...304..536L10.1126/science.1090720 KubisSPhys. Rev. C2007762007PhRvC..76b5801K10.1103/PhysRevC.76.025801 RusterSBHempelMSchaffner-BielichJPhys. Rev. C2006732006PhRvC..73c5804R10.1103/PhysRevC.73.035804 GorielySChamelNPearsonJMPhys. Rev. C2013882013PhRvC..88b4308G10.1103/PhysRevC.88.024308 J M Lattimer and M Prakash, Phys. Rep.333, 121 (2000); ibid., Astrophys. J.550, 426 (2001) ArnettWDBowersRLAstrophys. J. Suppl.1977334151977ApJS...33..415A10.1086/190434 DucoinCMargueronJProvidênciaCVidañaIPhys. Rev. C2011832011PhRvC..83d5810D10.1103/PhysRevC.83.045810 PethickCJRev. Mod. Phys.19926411331992RvMP...64.1133P10.1103/RevModPhys.64.1133 RomaniRWAstrophys. J. Lett.2022934L172022ApJ...934L..17R10.3847/2041-8213/ac8007 FonsecaEAstrophys. J. Lett.2021915L122021ApJ...915L..12F10.3847/2041-8213/ac03b8 RileyTEAstrophys. J. Lett.2021918L272021ApJ...918L..27R10.3847/2041-8213/ac0a81 T H R Skyrme, Philos. Mag.l, 1043 (1956); ibid., Nucl. Phys.9, 615 (1959) KlähnTPhys. Rev. C2006742006PhRvC..74c5802K10.1103/PhysRevC.74.035802 PearsonJMChamelNPotekhinAYFantinaAFDucoinCDuttaAKGorielySMon. Not. R. Astron. Soc.201848129942018MNRAS.481.2994P BurrowsAReddySThompsonTANucl. Phys. A20067773562006NuPhA.777..356B10.1016/j.nuclphysa.2004.06.012 VautherinDBrinkDMPhys. Rev. C197236261972PhRvC...5..626V10.1103/PhysRevC.5.626 PethickCJRavenhallDGAnnu. Rev. Nucl. Part. Sci.1995454291995ARNPS..45..429P10.1146/annurev.ns.45.120195.002241 OwenBJPhys. Rev. Lett.2005952005PhRvL..95u1101O10.1103/PhysRevLett.95.211101 DutraMLourencoOMartinsJSSDelfinoAStoneJRStevensonPDPhys. Rev. C2012852012PhRvC..85c5201D10.1103/PhysRevC.85.035201 Ch MargaritisPSKoliogiannisA Kanakis-PegiosMoustakidisChCPhys. Rev. C20211042021PhRvC.104b5805M10.1103/PhysRevC.104.025805 ShterninPSYakovlevDGHeinkeCOHoWCGPatnaudeDJMon. Not. Lett. R. Astron. Soc.2011412L1082011MNRAS.412L.108S10.1111/j.1745-3933.2011.01015.x SteinerAWPhys. Rev. C2006742006PhRvC..74d5808S10.1103/PhysRevC.74.045808 LattimerJMPhysics2018114210.1103/Physics.11.42 PethickCJRavenhallDGLorenzCPNucl. Phys. A19955846751995NuPhA.584..675P10.1016/0375-9474(94)00506-I KubisSPhys. Rev. C2004702004PhRvC..70f5804K10.1103/PhysRevC.70.065804 AnderssonNGlampedakisKHoWCGEspinozaCMPhys. Rev. Lett.20121092012PhRvL.109x1103A10.1103/PhysRevLett.109.241103 LattimerJMPrakashMPhys. Rep.20074421092007PhR...442..109L10.1016/j.physrep.2007.02.003 RP Feynman (2697_CR4) 1949; 75 CJ Pethick (2697_CR11) 1992; 64 N Chamel (2697_CR76) 2013; 110 WCG Ho (2697_CR74) 2012; 8 J Carriere (2697_CR35) 2003; 593 S Goriely (2697_CR44) 2010; 82 D Page (2697_CR60) 2011; 106 S Kubis (2697_CR31) 2007; 76 J Xu (2697_CR27) 2009; 79 E Chabanat (2697_CR39) 1997; 627 RW Romani (2697_CR70) 2022; 934 H Stocker (2697_CR8) 1986; 137 L Rezzolla (2697_CR68) 2018; 852 K Oyamatsu (2697_CR25) 2007; 75 GE Brown (2697_CR9) 1988; 163 JP Blaizot (2697_CR7) 1980; 64 PR Chowdhury (2697_CR51) 2010; 81 CJ Horowitz (2697_CR34) 2001; 86 JM Lattimer (2697_CR10) 1991; 66 S Krewald (2697_CR40) 1977; 281 JM Lattimer (2697_CR12) 2004; 304 DN Basu (2697_CR53) 2014; 129 T Klähn (2697_CR58) 2006; 74 JM Lattimer (2697_CR16) 2007; 442 CJ Horowitz (2697_CR19) 2004; 69 A Mishra (2697_CR52) 2012; 36 YZ Zhuo (2697_CR42) 1988; 79 cr-split#-2697_CR15.2 C Ducoin (2697_CR26) 2007; 789 F Douchin (2697_CR24) 2000; 485 cr-split#-2697_CR15.1 M Dutra (2697_CR47) 2012; 85 TE Riley (2697_CR72) 2021; 918 WD Arnett (2697_CR55) 1977; 33 EM Cackett (2697_CR57) 2006; 372 BJ Owen (2697_CR22) 2005; 95 L Tsaloukidis (2697_CR28) 2019; 99 PS Shternin (2697_CR62) 2011; 412 2697_CR3 N Andersson (2697_CR75) 2012; 109 I Legred (2697_CR71) 2021; 104 J Antoniadis (2697_CR67) 2013; 340 RC Tolman (2697_CR48) 1939; 55 CJ Horowitz (2697_CR20) 2004; 70 G Baym (2697_CR36) 1975; 25 2697_CR50 JR Oppenheimer (2697_CR2) 1939; 55 C Ducoin (2697_CR64) 2011; 83 CJ Pethick (2697_CR14) 1995; 584 G Baym (2697_CR5) 1971; 170 AW Steiner (2697_CR17) 2005; 411 PS Ch Margaritis (2697_CR29) 2021; 104 JM Pearson (2697_CR65) 2018; 481 CJ Pethick (2697_CR13) 1995; 45 JM Lattimer (2697_CR63) 2018; 11 LX Ge (2697_CR41) 1986; 459 A Worley (2697_CR32) 2008; 685 CO Heinke (2697_CR59) 2010; 719 D Vautherin (2697_CR38) 1972; 3 JB Hartle (2697_CR54) 1967; 150 N Chamel (2697_CR43) 2009; 80 W Baade (2697_CR1) 1934; 45 DG Yakovlev (2697_CR61) 2011; 411 ChC Moustakidis (2697_CR33) 2012; 86 A Burrows (2697_CR21) 2006; 777 S Goriely (2697_CR45) 2013; 88 AW Steiner (2697_CR56) 2006; 74 B Link (2697_CR18) 1999; 83 JR Oppenheimer (2697_CR49) 1939; 55 J Piekarewicz (2697_CR73) 2014; 90 SB Ruster (2697_CR23) 2006; 73 S Kubis (2697_CR30) 2004; 70 cr-split#-2697_CR37.2 E Fonseca (2697_CR69) 2021; 915 cr-split#-2697_CR37.1 G Baym (2697_CR6) 1971; 175 PB Demorest (2697_CR66) 2010; 467 S Goriely (2697_CR46) 2015; 933 |
References_xml | – reference: PethickCJRev. Mod. Phys.19926411331992RvMP...64.1133P10.1103/RevModPhys.64.1133 – reference: KubisSPhys. Rev. C2004702004PhRvC..70f5804K10.1103/PhysRevC.70.065804 – reference: WorleyAKrastevPGLiBAAstrophys. J.20086853902008ApJ...685..390W10.1086/589823 – reference: DucoinCChomazPhGulminelliFNucl. Phys. A20077894032007NuPhA.789..403D10.1016/j.nuclphysa.2007.03.006 – reference: T Gold, Nature218, 731 (1968); ibid. 221, 25 (1969) – reference: SteinerAWPrakashMLattimerJMEllisPJPhys. Rep.20054113252005PhR...411..325S10.1016/j.physrep.2005.02.004 – reference: RomaniRWAstrophys. J. Lett.2022934L172022ApJ...934L..17R10.3847/2041-8213/ac8007 – reference: FonsecaEAstrophys. J. Lett.2021915L122021ApJ...915L..12F10.3847/2041-8213/ac03b8 – reference: LattimerJMPrakashMPhys. Rep.20074421092007PhR...442..109L10.1016/j.physrep.2007.02.003 – reference: BurrowsAReddySThompsonTANucl. Phys. A20067773562006NuPhA.777..356B10.1016/j.nuclphysa.2004.06.012 – reference: GeLXZhuoYZNorenbergWNucl. Phys. A19864597710.1016/0375-9474(86)90057-6 – reference: CarriereJHorowitzCJPiekarewiczJAstrophys. J.20035934632003ApJ...593..463C10.1086/376515 – reference: ChamelNGorielySPearsonJMPhys. Rev. C2009802009PhRvC..80f5804C10.1103/PhysRevC.80.065804 – reference: PethickCJRavenhallDGAnnu. Rev. Nucl. Part. Sci.1995454291995ARNPS..45..429P10.1146/annurev.ns.45.120195.002241 – reference: MishraAP Roy Chowdhury and D N BasuAstropart. Phys.201236422012APh....36...42M10.1016/j.astropartphys.2012.04.005 – reference: DucoinCMargueronJProvidênciaCVidañaIPhys. Rev. C2011832011PhRvC..83d5810D10.1103/PhysRevC.83.045810 – reference: OwenBJPhys. Rev. Lett.2005952005PhRvL..95u1101O10.1103/PhysRevLett.95.211101 – reference: GorielySNucl. Phys. A2015933682015NuPhA.933...68G10.1016/j.nuclphysa.2014.09.045 – reference: BaymGPethickCAnnu. Rev. Nucl. Sci.197525271975ARNPS..25...27B10.1146/annurev.ns.25.120175.000331 – reference: DemorestPBPennucciTRansomSMRobertsMSEHesselsJWTNature201046710812010Natur.467.1081D10.1038/nature09466 – reference: XuJChenLWLiBAMaHRPhys. Rev. C2009792009PhRvC..79c5802X10.1103/PhysRevC.79.035802 – reference: TsaloukidisLMargaritisChMoustakidisChCPhys. Rev. C2019992019PhRvC..99a5803T10.1103/PhysRevC.99.015803 – reference: HoWCGAnderssonNNature Phys.201287872012NatPh...8..787H10.1038/nphys2424 – reference: PiekarewiczJFattoyevFJHorowitzCJPhys. Rev. C2014902014PhRvC..90a5803P10.1103/PhysRevC.90.015803 – reference: BaymGBetheHAPethickCJNucl. Phys. A19711752251971NuPhA.175..225B10.1016/0375-9474(71)90281-8 – reference: OyamatsuKIidaKPhys. Rev. C2007752007PhRvC..75a5801O10.1103/PhysRevC.75.015801 – reference: KlähnTPhys. Rev. C2006742006PhRvC..74c5802K10.1103/PhysRevC.74.035802 – reference: FeynmanRPMetropolisNTellerEPhys. Rev.19497515611949PhRv...75.1561F10.1103/PhysRev.75.1561 – reference: TolmanRCPhys. Rev.1939553641939PhRv...55..364T10.1103/PhysRev.55.364 – reference: RileyTEAstrophys. J. Lett.2021918L272021ApJ...918L..27R10.3847/2041-8213/ac0a81 – reference: AnderssonNGlampedakisKHoWCGEspinozaCMPhys. Rev. Lett.20121092012PhRvL.109x1103A10.1103/PhysRevLett.109.241103 – reference: HorowitzCJPiekarewiczJPhys. Rev. Lett.20018656472001PhRvL..86.5647H10.1103/PhysRevLett.86.5647 – reference: RusterSBHempelMSchaffner-BielichJPhys. Rev. C2006732006PhRvC..73c5804R10.1103/PhysRevC.73.035804 – reference: HartleJBAstrophys. J.196715010051967ApJ...150.1005H10.1086/149400 – reference: J M Lattimer and M Prakash, Phys. Rep.333, 121 (2000); ibid., Astrophys. J.550, 426 (2001) – reference: SteinerAWPhys. Rev. C2006742006PhRvC..74d5808S10.1103/PhysRevC.74.045808 – reference: ChabanatEBoncheEHaenselEMeyerJSchaefferRNucl. Phys. A19976277101997NuPhA.627..710C10.1016/S0375-9474(97)00596-4 – reference: BaymGPethickCSutherlandPAstrophys. J.19711702991971ApJ...170..299B10.1086/151216 – reference: HorowitzCJPerez-GarciaMAPiekarewiczJPhys. Rev. C2004692004PhRvC..69d5804H10.1103/PhysRevC.69.045804 – reference: ChowdhuryPRBhattacharyyaABasuDNPhys. Rev. C201081062801(R)2010PhRvC..81f2801C10.1103/PhysRevC.81.062801 – reference: LattimerJMPhysics2018114210.1103/Physics.11.42 – reference: ChamelNPhys. Rev. Lett.20131102013PhRvL.110a1101C10.1103/PhysRevLett.110.011101 – reference: T H R Skyrme, Philos. Mag.l, 1043 (1956); ibid., Nucl. Phys.9, 615 (1959) – reference: DutraMLourencoOMartinsJSSDelfinoAStoneJRStevensonPDPhys. Rev. C2012852012PhRvC..85c5201D10.1103/PhysRevC.85.035201 – reference: StockerHGreinerWPhys. Rep.19861372771986PhR...137..277S10.1016/0370-1573(86)90131-6 – reference: YakovlevDGHoWCGShterninPSHeinkeCOPotekhinAYMon. Not. R. Astron. Soc.201141119772011MNRAS.411.1977Y10.1111/j.1365-2966.2010.17827.x – reference: BasuDNP Roy Chowdhury and A MishraEur. Phys. J. Plus20141296210.1140/epjp/i2014-14062-x – reference: LegredIChatziioannouKEssickRHanSLandryaPPhys. Rev. D20211042021PhRvD.104f3003L10.1103/PhysRevD.104.063003 – reference: PageDPrakashMLattimerJMSteinerAWPhys. Rev. Lett.20111062011PhRvL.106h1101P10.1103/PhysRevLett.106.081101 – reference: ShterninPSYakovlevDGHeinkeCOHoWCGPatnaudeDJMon. Not. Lett. R. Astron. Soc.2011412L1082011MNRAS.412L.108S10.1111/j.1745-3933.2011.01015.x – reference: OppenheimerJRVolkoffGMPhys. Rev.1939553741939PhRv...55..374O10.1103/PhysRev.55.374 – reference: DouchinFHaenselPPhys. Lett. B20004851072000PhLB..485..107D10.1016/S0370-2693(00)00672-9 – reference: ZhuoYZHanYLWuXZProg. Theor. Phys.1988791101988PThPh..79..110Y10.1143/PTP.79.110 – reference: PethickCJRavenhallDGLorenzCPNucl. Phys. A19955846751995NuPhA.584..675P10.1016/0375-9474(94)00506-I – reference: KubisSPhys. Rev. C2007762007PhRvC..76b5801K10.1103/PhysRevC.76.025801 – reference: HorowitzCJPerez-GarciaMACarriereJBerryDKPiekarewiczJPhys. Rev. C2004702004PhRvC..70f5806H10.1103/PhysRevC.70.065806 – reference: LattimerJMPrakashMScience20043045362004Sci...304..536L10.1126/science.1090720 – reference: LinkBEpsteinRILattimerJMPhys. Rev. Lett.19998333621999PhRvL..83.3362L10.1103/PhysRevLett.83.3362 – reference: MoustakidisChCPhys. Rev. C2012862012PhRvC..86a5801M10.1103/PhysRevC.86.015801 – reference: CackettEMMon. Not. R. Astron. Soc.20063724792006MNRAS.372..479C10.1111/j.1365-2966.2006.10895.x – reference: KrewaldSKlemtVSpethJFaesslerANucl. Phys. A19772811661977NuPhA.281..166K10.1016/0375-9474(77)90019-7 – reference: BrownGEPhys. Rep.19881631671988PhR...163..167B10.1016/0370-1573(88)90043-9 – reference: Ch MargaritisPSKoliogiannisA Kanakis-PegiosMoustakidisChCPhys. Rev. C20211042021PhRvC.104b5805M10.1103/PhysRevC.104.025805 – reference: ArnettWDBowersRLAstrophys. J. Suppl.1977334151977ApJS...33..415A10.1086/190434 – reference: V S Uma Maheswari, D N Basu, J N De and S K Samaddar, Nucl. Phys. A615, 516 (1997) – reference: GorielySChamelNPearsonJMPhys. Rev. C2013882013PhRvC..88b4308G10.1103/PhysRevC.88.024308 – reference: BlaizotJPPhys. Rep.1980641711980PhR....64..171B58470610.1016/0370-1573(80)90001-0 – reference: PearsonJMChamelNPotekhinAYFantinaAFDucoinCDuttaAKGorielySMon. Not. R. Astron. Soc.201848129942018MNRAS.481.2994P – reference: AntoniadisJScience201334061312013Sci...340..448A10.1126/science.1233232 – reference: VautherinDBrinkDMPhys. Rev. C197236261972PhRvC...5..626V10.1103/PhysRevC.5.626 – reference: RezzollaLMostERWeihLRAstrophys. J. Lett.2018852L252018ApJ...852L..25R10.3847/2041-8213/aaa401 – reference: LattimerJMPethickCJPrakashMHaenselPPhys. Rev. Lett.19916627011991PhRvL..66.2701L10.1103/PhysRevLett.66.2701 – reference: GorielySChamelNPearsonJMPhys. Rev. C2010822010PhRvC..82c5804G10.1103/PhysRevC.82.035804 – reference: BaadeWZwickyEPhys. Rev.193445138 – reference: HeinkeCOHoWCGAstrophys. J. Lett.2010719L1672010ApJ...719L.167H10.1088/2041-8205/719/2/L167 – volume: 70 year: 2004 ident: 2697_CR20 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.70.065806 – volume: 8 start-page: 787 year: 2012 ident: 2697_CR74 publication-title: Nature Phys. doi: 10.1038/nphys2424 – volume: 83 start-page: 3362 year: 1999 ident: 2697_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3362 – volume: 467 start-page: 1081 year: 2010 ident: 2697_CR66 publication-title: Nature doi: 10.1038/nature09466 – volume: 918 start-page: L27 year: 2021 ident: 2697_CR72 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac0a81 – volume: 412 start-page: L108 year: 2011 ident: 2697_CR62 publication-title: Mon. Not. Lett. R. Astron. Soc. doi: 10.1111/j.1745-3933.2011.01015.x – volume: 99 year: 2019 ident: 2697_CR28 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.99.015803 – volume: 104 year: 2021 ident: 2697_CR71 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.063003 – volume: 55 start-page: 374 year: 1939 ident: 2697_CR2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.55.374 – volume: 372 start-page: 479 year: 2006 ident: 2697_CR57 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2006.10895.x – volume: 129 start-page: 62 year: 2014 ident: 2697_CR53 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2014-14062-x – volume: 685 start-page: 390 year: 2008 ident: 2697_CR32 publication-title: Astrophys. J. doi: 10.1086/589823 – volume: 109 year: 2012 ident: 2697_CR75 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.241103 – volume: 933 start-page: 68 year: 2015 ident: 2697_CR46 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2014.09.045 – volume: 163 start-page: 167 year: 1988 ident: 2697_CR9 publication-title: Phys. Rep. doi: 10.1016/0370-1573(88)90043-9 – volume: 411 start-page: 325 year: 2005 ident: 2697_CR17 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.02.004 – volume: 64 start-page: 1133 year: 1992 ident: 2697_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.1133 – volume: 95 year: 2005 ident: 2697_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.211101 – volume: 593 start-page: 463 year: 2003 ident: 2697_CR35 publication-title: Astrophys. J. doi: 10.1086/376515 – volume: 777 start-page: 356 year: 2006 ident: 2697_CR21 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2004.06.012 – ident: #cr-split#-2697_CR37.2 – volume: 64 start-page: 171 year: 1980 ident: 2697_CR7 publication-title: Phys. Rep. doi: 10.1016/0370-1573(80)90001-0 – volume: 75 year: 2007 ident: 2697_CR25 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.75.015801 – volume: 175 start-page: 225 year: 1971 ident: 2697_CR6 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(71)90281-8 – volume: 86 year: 2012 ident: 2697_CR33 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.86.015801 – volume: 340 start-page: 6131 year: 2013 ident: 2697_CR67 publication-title: Science doi: 10.1126/science.1233232 – volume: 45 start-page: 138 year: 1934 ident: 2697_CR1 publication-title: Phys. Rev. – volume: 584 start-page: 675 year: 1995 ident: 2697_CR14 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(94)00506-I – volume: 86 start-page: 5647 year: 2001 ident: 2697_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5647 – ident: #cr-split#-2697_CR15.1 doi: 10.1016/S0370-1573(00)00019-3 – volume: 73 year: 2006 ident: 2697_CR23 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.73.035804 – volume: 45 start-page: 429 year: 1995 ident: 2697_CR13 publication-title: Annu. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.ns.45.120195.002241 – volume: 90 year: 2014 ident: 2697_CR73 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.90.015803 – volume: 36 start-page: 42 year: 2012 ident: 2697_CR52 publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2012.04.005 – volume: 74 year: 2006 ident: 2697_CR56 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.74.045808 – volume: 934 start-page: L17 year: 2022 ident: 2697_CR70 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac8007 – volume: 170 start-page: 299 year: 1971 ident: 2697_CR5 publication-title: Astrophys. J. doi: 10.1086/151216 – volume: 281 start-page: 166 year: 1977 ident: 2697_CR40 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(77)90019-7 – volume: 485 start-page: 107 year: 2000 ident: 2697_CR24 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(00)00672-9 – volume: 74 year: 2006 ident: 2697_CR58 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.74.035802 – volume: 33 start-page: 415 year: 1977 ident: 2697_CR55 publication-title: Astrophys. J. Suppl. doi: 10.1086/190434 – volume: 66 start-page: 2701 year: 1991 ident: 2697_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.2701 – volume: 55 start-page: 374 year: 1939 ident: 2697_CR49 publication-title: Phys. Rev. doi: 10.1103/PhysRev.55.374 – volume: 76 year: 2007 ident: 2697_CR31 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.76.025801 – volume: 80 year: 2009 ident: 2697_CR43 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.065804 – volume: 55 start-page: 364 year: 1939 ident: 2697_CR48 publication-title: Phys. Rev. doi: 10.1103/PhysRev.55.364 – volume: 459 start-page: 77 year: 1986 ident: 2697_CR41 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(86)90057-6 – volume: 79 start-page: 110 year: 1988 ident: 2697_CR42 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.79.110 – volume: 69 year: 2004 ident: 2697_CR19 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.69.045804 – volume: 304 start-page: 536 year: 2004 ident: 2697_CR12 publication-title: Science doi: 10.1126/science.1090720 – volume: 442 start-page: 109 year: 2007 ident: 2697_CR16 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2007.02.003 – volume: 852 start-page: L25 year: 2018 ident: 2697_CR68 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/aaa401 – volume: 104 year: 2021 ident: 2697_CR29 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.104.025805 – volume: 915 start-page: L12 year: 2021 ident: 2697_CR69 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac03b8 – volume: 137 start-page: 277 year: 1986 ident: 2697_CR8 publication-title: Phys. Rep. doi: 10.1016/0370-1573(86)90131-6 – volume: 85 year: 2012 ident: 2697_CR47 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.035201 – volume: 70 year: 2004 ident: 2697_CR30 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.70.065804 – ident: #cr-split#-2697_CR37.1 doi: 10.1080/14786435608238186 – volume: 411 start-page: 1977 year: 2011 ident: 2697_CR61 publication-title: Mon. Not. R. Astron. Soc. doi: 10.1111/j.1365-2966.2010.17827.x – volume: 627 start-page: 710 year: 1997 ident: 2697_CR39 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(97)00596-4 – volume: 719 start-page: L167 year: 2010 ident: 2697_CR59 publication-title: Astrophys. J. Lett. doi: 10.1088/2041-8205/719/2/L167 – volume: 106 year: 2011 ident: 2697_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.081101 – volume: 82 year: 2010 ident: 2697_CR44 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.035804 – volume: 11 start-page: 42 year: 2018 ident: 2697_CR63 publication-title: Physics doi: 10.1103/Physics.11.42 – volume: 789 start-page: 403 year: 2007 ident: 2697_CR26 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2007.03.006 – volume: 110 year: 2013 ident: 2697_CR76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.011101 – ident: 2697_CR3 doi: 10.1038/218731a0 – volume: 81 start-page: 062801(R) year: 2010 ident: 2697_CR51 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.81.062801 – volume: 83 year: 2011 ident: 2697_CR64 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.83.045810 – volume: 75 start-page: 1561 year: 1949 ident: 2697_CR4 publication-title: Phys. Rev. doi: 10.1103/PhysRev.75.1561 – ident: #cr-split#-2697_CR15.2 doi: 10.1086/319702 – volume: 88 year: 2013 ident: 2697_CR45 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.88.024308 – volume: 3 start-page: 626 year: 1972 ident: 2697_CR38 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.5.626 – volume: 79 year: 2009 ident: 2697_CR27 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.79.035802 – volume: 150 start-page: 1005 year: 1967 ident: 2697_CR54 publication-title: Astrophys. J. doi: 10.1086/149400 – ident: 2697_CR50 doi: 10.1016/S0375-9474(97)00002-X – volume: 25 start-page: 27 year: 1975 ident: 2697_CR36 publication-title: Annu. Rev. Nucl. Sci. doi: 10.1146/annurev.ns.25.120175.000331 – volume: 481 start-page: 2994 year: 2018 ident: 2697_CR65 publication-title: Mon. Not. R. Astron. Soc. |
SSID | ssj0019435 |
Score | 2.3769045 |
Snippet | We address the crustal properties of neutron stars, such as crustal mass, crustal radius, crustal fraction of the moment of inertia and investigate the crustal... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Astronomy Astrophysics and Astroparticles Observations and Techniques Physics Physics and Astronomy |
Title | Properties of glitching pulsars in the Skyrme–Hartree–Fock framework |
URI | https://link.springer.com/article/10.1007/s12043-023-02697-9 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA66IXgRP3F-jBy8aaBL0zQ5brpaFEXQwTyVpElEnN1ot4M3_4P_0F9i0rUbAxE8hObw5vLkTZ737fsRAM5IaDDFykM4ZdZBYQojYUIPGU_4JBV224mrRr67p_GA3AyDYVUUVtTZ7nVIsrypl8VurowTWY6xg_IQ8XXQDJzvbrV4gLuL2AG3FkBVHvP7ulUKWo1_lrQSbYOtyh6E3fkG7oA1ne2CjTIvMy32QPzgfpbnruspHBv4Yo3mMvkRTmajwvqk8DWD1oSDj28f-bv-_vyKrSrk2s0ie9NBU-de7YNB1H-6jFH1-AFKMe9MkdDcnj3FOilWEgdYU8r8lHNJQuWHihOtjaahIYGgTEtHyx4h2HhMY62l8g9AIxtn-hBA4kJ9nvJkKCwXUcmNUL6iTBIRMiNlC3RqPJK06gzuHqgYJcuexg7DxGKYlBgmvAXOF2sm874Yf0pf1DAn1Rkp_hA_-p_4Mdi0auCSaZDvnYDGNJ_pU2sqTGUbNLu9q17kvtfPt_12qSk_29-6uA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aEd2IT6zPLNxpYJpJ81gWsYzaFsEWuhuSSSJinZaZduHOf_AP_RKT6UxLQQQXgSxuNiePc5L7CABXhFlMsQ4QTri7oHCNkbQsQDaQIUmkm3bis5G7PRoNyMOwOSyTwvIq2r1ySRYn9TLZzadxIscxrlHBkFgHG04McB_INcCthe9AOAVQpsf8Pm6Vglb9nwWttHfBTqkHYWs-gXtgzaT7YLOIy0zyAxA9-cfyzFc9hWMLX5xoLoIf4WQ2yt2dFL6m0Ek4-Pz2kb2b78-vyC2FzPhe25100FaxV4dg0L7r30ao_PwAJVg0pkga4fae5o0Ea4Wb2FDKw0QIRZgOmRbEGGsos6QpKTfK03JACLYBN9gYpcMjUEvHqTkGkHhXX6ADxaTjIqqElTrUlCsiGbdK1UGjwiNOysrg_oOKUbysaewxjB2GcYFhLOrgejFmMq-L8af1TQVzXO6R_A_zk_-ZX4KtqN_txJ373uMp2MZOdvhHkjA4A7VpNjPnTjZM1UWxSn4AGR66pQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgCMSCeIry9MAGVl3HdeyxAqLwqipBpW5RHNsIUdIqTQc2_oE_5Euw06SlEkJiiJTherm-9jn2vecagDPqG8KIwogk3B5QuCIoNj5GBsceTWI77dSpkR86LOzR236r_0PFX1S7VynJqabBdWlK88ZImcZc-OYkncjijf2Y8JFYBit2O266uO6R9iyPICwbKKUyv49bhKPFXGgBMcEm2Ci5IWxPJ3MLLOl0G6wWNZrJeAeEXXdxnrkOqHBo4LMl0EUhJBxNBmN7PoUvKbR0Dj6-vmdv-uvjM7RhkWn3F9hdD5qqDmsX9ILrp8sQlQ8hoISIZo5iLew6VLyZECVJi2jGuJcIIamvPF8JqrXRzDe0FTOupYNoTCkxmGuitVTeHqilw1TvA0hd2g8rLP3Y4hKTwsTKU4xLGvvcSFkHzcofUVJ2CXePVQyieX9j58PI-jAqfBiJOjifjRlNe2T8aX1RuTkq18v4D_OD_5mfgrXuVRDd33TuDsE6sQzE3Zd4-AjU8myijy2DyOVJESTfFm2-4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+glitching+pulsars+in+the+Skyrme%E2%80%93Hartree%E2%80%93Fock+framework&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Lahiri%2C+Joydev&rft.au=Atta%2C+Debasis&rft.au=Basu%2C+D+N&rft.date=2024-01-30&rft.pub=Springer+India&rft.eissn=0973-7111&rft.volume=98&rft.issue=1&rft_id=info:doi/10.1007%2Fs12043-023-02697-9&rft.externalDocID=10_1007_s12043_023_02697_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-7111&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-7111&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-7111&client=summon |