Anti-Unwinding Sliding Mode Attitude Maneuver Control for Rigid Spacecraft
In this article, anti-unwinding attitude maneuver control for rigid spacecraft is considered. First, in order to avoid the unwinding phenomenon when the system states are restricted to the switching surface, a novel switching function is designed by a hyperbolic sine function such that the switching...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 2; pp. 978 - 985 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, anti-unwinding attitude maneuver control for rigid spacecraft is considered. First, in order to avoid the unwinding phenomenon when the system states are restricted to the switching surface, a novel switching function is designed by a hyperbolic sine function such that the switching surface contains the two equilibriums. Then, a sliding mode attitude maneuver controller is developed based on the proposed switching function to ensure the robustness of the closed-loop system to disturbance and inertia uncertainty. Another important feature of the presented attitude control law is that a dynamic parameter is constructed to guarantee the unwinding-free performance before the system states reach the switching surface. Furthermore, a boundary layer is introduced for the designed controller to avoid the chattering phenomenon. Moreover, the convergence property and unwinding-free performance when the system states within the boundary layer are proven. The simulation results demonstrate that the unwinding problem is settled during attitude maneuver for rigid spacecraft by adopting the newly developed switching function and the presented attitude control scheme. |
---|---|
AbstractList | In this article, anti-unwinding attitude maneuver control for rigid spacecraft is considered. First, in order to avoid the unwinding phenomenon when the system states are restricted to the switching surface, a novel switching function is designed by a hyperbolic sine function such that the switching surface contains the two equilibriums. Then, a sliding mode attitude maneuver controller is developed based on the proposed switching function to ensure the robustness of the closed-loop system to disturbance and inertia uncertainty. Another important feature of the presented attitude control law is that a dynamic parameter is constructed to guarantee the unwinding-free performance before the system states reach the switching surface. Furthermore, a boundary layer is introduced for the designed controller to avoid the chattering phenomenon. Moreover, the convergence property and unwinding-free performance when the system states within the boundary layer are proven. The simulation results demonstrate that the unwinding problem is settled during attitude maneuver for rigid spacecraft by adopting the newly developed switching function and the presented attitude control scheme. |
Author | Wu, Ai-Guo Zhang, Ying Dong, Rui-Qi |
Author_xml | – sequence: 1 givenname: Rui-Qi orcidid: 0000-0001-6116-4859 surname: Dong fullname: Dong, Rui-Qi email: rykidong@163.com organization: Department of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 2 givenname: Ai-Guo orcidid: 0000-0002-8264-0671 surname: Wu fullname: Wu, Ai-Guo email: ag.wu@163.com organization: Department of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen, China – sequence: 3 givenname: Ying orcidid: 0000-0003-1212-6519 surname: Zhang fullname: Zhang, Ying email: zhangyinghit@126.com organization: Department of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen, China |
BookMark | eNp9kM1LAzEQxYNUsK3eBS8Lnrfma7PJcVn8pEWw7TnEbLakrEnNZhX_e1NbPHjwMLwZmDeP-U3AyHlnALhEcIYQFDerqp5hiNGMwFJgDE_AGBUFz3GByQiMIUQ8F5izMzDp-20aGaVoDJ4qF22-dp_WNdZtsmVnf3ThG5NVMdo4pGahnBk-TMhq72LwXdb6kL3YjW2y5U5po4Nq4zk4bVXXm4ujTsH67nZVP-Tz5_vHuprnGgsUc2VwaTBpNBOpMCSCaqhgiVBB2-KVKl4IChslaEO4YIbzEptWc0g4LGlryBRcH-7ugn8fTB_l1g_BpUiJGaZlyVJO2oKHLR183wfTyl2wbyp8SQTlnphMxOSemDwSSxb2x6JtVNHuf1a2-894dTBaY8xvjqAJN2LkG00meK0 |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1007_s12555_021_1118_5 crossref_primary_10_1109_TAES_2024_3358778 crossref_primary_10_1002_rnc_6529 crossref_primary_10_1016_j_actaastro_2023_04_031 crossref_primary_10_1061_JAEEEZ_ASENG_5294 crossref_primary_10_1016_j_ast_2022_107397 crossref_primary_10_1109_TIM_2023_3301066 crossref_primary_10_2514_1_A36085 crossref_primary_10_1016_j_isatra_2022_08_016 crossref_primary_10_1109_TAC_2023_3281341 crossref_primary_10_1177_09596518241262507 crossref_primary_10_1109_TAC_2024_3471333 crossref_primary_10_1002_rnc_6809 crossref_primary_10_1109_TAC_2023_3262444 crossref_primary_10_1109_TAES_2022_3218277 crossref_primary_10_1016_j_asr_2024_04_019 crossref_primary_10_1002_rnc_7423 crossref_primary_10_1002_rnc_6991 crossref_primary_10_1016_j_isatra_2023_09_013 crossref_primary_10_1049_cth2_12358 crossref_primary_10_1007_s40998_024_00761_7 crossref_primary_10_1109_TSMC_2023_3262838 crossref_primary_10_1016_j_ast_2024_108952 crossref_primary_10_1016_j_automatica_2022_110567 crossref_primary_10_1016_j_ast_2023_108833 crossref_primary_10_1109_TRO_2023_3266994 crossref_primary_10_1016_j_oceaneng_2025_120304 crossref_primary_10_1080_02533839_2024_2308251 crossref_primary_10_1016_j_asr_2022_04_002 crossref_primary_10_1109_TAES_2024_3384180 crossref_primary_10_3390_math11204372 crossref_primary_10_1002_rnc_6005 crossref_primary_10_1080_00207721_2024_2414897 crossref_primary_10_1109_TMECH_2022_3230993 crossref_primary_10_1016_j_asr_2025_01_061 crossref_primary_10_1002_rnc_7896 crossref_primary_10_1016_j_fss_2024_108915 crossref_primary_10_1109_TSMC_2023_3292426 crossref_primary_10_1177_09544100231153318 |
Cites_doi | 10.1016/j.jfranklin.2012.08.005 10.1080/00207179108934184 10.1016/j.actaastro.2005.04.009 10.1109/7.892682 10.1109/TIE.2011.2107719 10.1016/j.cja.2014.02.017 10.2514/1.G000980 10.1109/7.259536 10.1016/j.automatica.2021.109642 10.1109/TAC.2008.2008350 10.1016/j.automatica.2013.09.001 10.1016/j.actaastro.2018.10.045 10.1109/ACC.2005.1470075 10.1016/j.ast.2016.04.012 10.1002/asjc.1601 10.1137/S0363012997321358 10.3166/ejc.12.654-668 10.1049/iet-cta.2008.0610 10.1016/j.ast.2018.03.049 10.1109/TAC.1977.1101446 10.1504/IJSPACESE.2016.078581 10.1016/j.ast.2018.07.020 10.1177/1077546306065398 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TAC.2021.3079220 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 985 |
ExternalDocumentID | 10_1109_TAC_2021_3079220 9428616 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: HIT.BRETIV.201907 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: U2013203 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61822305 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province; Guangdong Natural Science Foundation grantid: 2020A1515011091; 2019A1515011576 funderid: 10.13039/501100003453 – fundername: National Natural Science Foundation of China grantid: 61690210; 61690212 funderid: 10.13039/501100001809 – fundername: Shenzhen Municipal Basic Research Project for Discipline Layout grantid: JCYJ20180507183437860; JCYJ20170811160715620 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-ae27e23dc69dc620394c0a071154f5b4a85940da94d3896e8872efc8038074fe3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Mon Jun 30 10:16:04 EDT 2025 Tue Jul 01 03:36:38 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Wed Aug 27 03:00:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-ae27e23dc69dc620394c0a071154f5b4a85940da94d3896e8872efc8038074fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8264-0671 0000-0003-1212-6519 0000-0001-6116-4859 |
PQID | 2624776291 |
PQPubID | 85475 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9428616 proquest_journals_2624776291 crossref_primary_10_1109_TAC_2021_3079220 crossref_citationtrail_10_1109_TAC_2021_3079220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Greenwood (ref22) 1965 ref24 ref23 ref25 ref20 ref8 ref7 Hughes (ref21) 1986 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref5 doi: 10.1016/j.jfranklin.2012.08.005 – ident: ref7 doi: 10.1080/00207179108934184 – ident: ref8 doi: 10.1016/j.actaastro.2005.04.009 – ident: ref3 doi: 10.1109/7.892682 – volume-title: Spacecraft Attitude Dynamics year: 1986 ident: ref21 – ident: ref25 doi: 10.1109/TIE.2011.2107719 – ident: ref16 doi: 10.1016/j.cja.2014.02.017 – ident: ref17 doi: 10.2514/1.G000980 – volume-title: Principles of Dynamics year: 1965 ident: ref22 – ident: ref11 doi: 10.1109/7.259536 – ident: ref13 doi: 10.1016/j.automatica.2021.109642 – ident: ref20 doi: 10.1109/TAC.2008.2008350 – ident: ref23 doi: 10.1016/j.automatica.2013.09.001 – ident: ref4 doi: 10.1016/j.actaastro.2018.10.045 – ident: ref19 doi: 10.1109/ACC.2005.1470075 – ident: ref14 doi: 10.1016/j.ast.2016.04.012 – ident: ref18 doi: 10.1002/asjc.1601 – ident: ref24 doi: 10.1137/S0363012997321358 – ident: ref10 doi: 10.3166/ejc.12.654-668 – ident: ref12 doi: 10.1049/iet-cta.2008.0610 – ident: ref15 doi: 10.1016/j.ast.2018.03.049 – ident: ref6 doi: 10.1109/TAC.1977.1101446 – ident: ref1 doi: 10.1504/IJSPACESE.2016.078581 – ident: ref2 doi: 10.1016/j.ast.2018.07.020 – ident: ref9 doi: 10.1177/1077546306065398 |
SSID | ssj0016441 |
Score | 2.5698867 |
Snippet | In this article, anti-unwinding attitude maneuver control for rigid spacecraft is considered. First, in order to avoid the unwinding phenomenon when the system... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 978 |
SubjectTerms | Attitude control Attitude maneuver Boundary layers Control systems design Control theory Controllers Feedback control Hyperbolic functions Kinematics Quaternions rigid spacecraft Sliding mode control sliding mode control (SMC) Space vehicles Spacecraft Spacecraft attitude control Switches Switching Trigonometric functions Uncertainty unwinding phenomenon |
Title | Anti-Unwinding Sliding Mode Attitude Maneuver Control for Rigid Spacecraft |
URI | https://ieeexplore.ieee.org/document/9428616 https://www.proquest.com/docview/2624776291 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34qmJ9kYMXwbTJZpNmj6VYSqEe1IK3sI-JBEsqmiL4653dpEVUxEPYPezCsjM7-012Zj6Ay1wzVGQcfY4897lG7kuljG-04YLLNOw7sonpbTKe8clj_LgB1-tcGER0wWfYtV33lm8Weml_lfUEYeUkTFrQIsetztVavxjYe722unSAadjqSTIQvYfBkBxBFnZJnwWzzN5friDHqfLDELvbZbQL09W66qCS5-6yUl398a1k438Xvgc7Dcz0BrVe7MMGlgew_aX4YBsmg7Iq_Fn5XrjEFu9-XrjWsqN5g8qGEFBnKktckrp7wzqm3SOQ690VT4Xx7sndJtAp8-oQZqObh-HYb5gVfM1EWPkSWR9ZZHQi6GNBJLgOJKENAlR5rEhGseCBkYIbAjQJkiVimOs0sOXpeY7REWyWixKPwQuj2KTKElcrw1Oyf6kyqIUURkaxxKgDvdVmZ7opO27ZL-aZcz8CkZF4MiuerBFPB67WM17qkht_jG3b3V6Paza6A2creWbNmXzLWMJ4n2y_CE9-n3UKW8wmN7iY7DPYrF6XeE6Qo1IXTtc-Ad5F0WM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROLQ9lLYUdSm0PrSHHrKbOE42PnBYLaDlZzmUXYlb6p9JFRUFBFmh8iy8St-NsZNdoYK4IfUQxQc7Sjzjmc_xzHwAXwvDUZNxDASKIhAGRaC0toE1VkihsqjvySbGx-loKg5Ok9MluF3kwiCiDz7Drmv6s3x7bmbuV1lPElZOo7QNoTzEP9e0Qbva3t8haX7jfG93MhwFLYdAYLiM6kAh7yOPrUklXTyMpTChIr9K0KFINL1NIkVolRSWXHeKtOY4FiYLXSF2UWBMz30BK4QzEt5khy3OKBySaOw8mQx6sfkhaCh7k8GQtp486tIKktxxid9zep7F5YHp9_5sbxX-zmeiCWP53Z3Vumtu_ikS-b9O1Vt40wJpNmg0_x0sYfUeXt8rr7gGB4OqLoNpdV361B12clb6u-N_Y4PaBUlQY6wqnNGCZsMmap8RjGc_yl-lZScXyhCsVkX9AabP8jHrsFydV_gRWBQnNtOOmltbkZGFz7RFI5W0Kk4Uxh3ozYWbm7awuuP3OMv9BiuUOalD7tQhb9WhA98XIy6aoiJP9F1z0l30awXbgc25_uSt1bnKecpFn7ybjDYeH_UFXo4m46P8aP_48BO84i6Vw0egb8JyfTnDLQJYtf7s9ZzBz-fWljtVEi0d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Unwinding+Sliding+Mode+Attitude+Maneuver+Control+for+Rigid+Spacecraft&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Dong%2C+Rui-Qi&rft.au=Wu%2C+Ai-Guo&rft.au=Zhang%2C+Ying&rft.date=2022-02-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=2&rft.spage=978&rft.epage=985&rft_id=info:doi/10.1109%2FTAC.2021.3079220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2021_3079220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |